

QCD for BSM in PYTHIA

Torbjörn Sjöstrand

Department of Astronomy and Theoretical Physics Lund University Sölvegatan 14A, SE-223 62 Lund, Sweden

IPMU-YITP Workshop, Kyoto, 9 September 2011

LHC is a QCD machine:

- hard processes initiated by partons (quarks, gluons),
- associated with initial-state QCD corrections (showers etc.),
- underlying event by QCD mechanisms (MPI, colour flow),
- even in BSM scenarios production of new coloured states often favoured (squarks, Kaluza–Klein gluons, excited quarks, leptoquarks, ...).

LHC is a QCD machine:

- hard processes initiated by partons (quarks, gluons),
- associated with initial-state QCD corrections (showers etc.),
- underlying event by QCD mechanisms (MPI, colour flow),
- even in BSM scenarios production of new coloured states often favoured (squarks, Kaluza–Klein gluons, excited quarks, leptoquarks, . . .).

BSM physics can raise "new", specific QCD aspects, here

- *R*-parity violation in SUSY,
- 2 R-hadron formation in SUSY,
- oparton showers and hadronization in Hidden Valleys,

all implemented in PYTHIA 8.

1. *R*-parity violation in SUSY

Baryon number violation (BNV) is allowed in SUSY superpotential

$$W_{\rm BNV} = \lambda_{ijk}'' \epsilon_{abc} \overline{U}_{ia} \overline{D}_{jb} \overline{D}_{kc}$$

(where ijk = generation, abc = colour). Alternatively lepton number violation, but proton unstable if both.

 $\lambda_{ijk}^{\prime\prime}$ should not be too big, or else large loop corrections \Rightarrow relevent for LSP (Lightest Supersymmetric Particle).

 $\mathsf{Long-lived} \Rightarrow \mathsf{secondary \ vertex}.$

1. *R*-parity violation in SUSY

Baryon number violation (BNV) is allowed in SUSY superpotential

$$W_{\rm BNV} = \lambda_{ijk}'' \epsilon_{abc} \overline{U}_{ia} \overline{D}_{jb} \overline{D}_{kc}$$

(where ijk = generation, abc = colour). Alternatively lepton number violation, but proton unstable if both.

 $\lambda_{ijk}^{\prime\prime}$ should not be too big, or else large loop corrections \Rightarrow relevent for LSP (Lightest Supersymmetric Particle).

 $\mathsf{Long-lived} \Rightarrow \mathsf{secondary \ vertex}.$

What about showers and hadronization in decays?

P. Skands & TS, Nucl. Phys. B659 (2003) 243; N. Desai & P. Skands, in preparation

The Lund string

In QCD, for large charge separation, field lines seem to be compressed to tubelike region(s) \Rightarrow string(s)

by self-interactions among soft gluons in the "vacuum".

Gives linear confinement with string tension: $F(r) \approx \text{const} = \kappa \approx 1 \text{ GeV/fm} \iff V(r) \approx \kappa r$ Separation of transverse and longitudinal degrees of freedom \Rightarrow simple description as 1+1-dimensional object - string with Lorentz invariant formalism

The Lund gluon picture

Gluon = kink on string, carrying energy and momentum

Force ratio gluon/ quark = 2, cf. QCD $N_C/C_F = 9/4$, $\rightarrow 2$ for $N_C \rightarrow \infty$

The junction

What string topology for 3 quarks in overall colour singlet? One possibility is to introduce a **junction** (Artru, 't Hooft, ...).

Junction rest frame = where string tensions $T_i = \kappa p_i / |p_i|$ balance = 120° separation between quark directions. This is not the CM frame where momenta p_i balance, but in BNV decay no collinear singularity between quarks, so normally junction is slowly moving in LSP rest frame.

Junction hadronization

The junction and dipole showers

Solution: let each three possible dipoles radiate, but with half normal strength. Gives correct answer collinear to each parton, and reasonable interpolation in between.

2. R-hadron motivation

Now different tack: *R*-parity conserved.

Conventional SUSY: LSP is neutralino, sneutrino, or gravitino. Squarks and gluinos are unstable and decay to LSP, e.g. $\tilde{g} \rightarrow \tilde{q}\overline{q} \rightarrow q\tilde{\chi}\overline{q}$.

Alternative SUSY: gluino LSP, or long-lived for another reason.

E.g. Split SUSY (Dimopoulos & Arkani-Hamed): scalars are heavy, including squarks \Rightarrow gluinos long-lived.

Now different tack: *R*-parity conserved.

Conventional SUSY: LSP is neutralino, sneutrino, or gravitino. Squarks and gluinos are unstable and decay to LSP, e.g. $\tilde{g} \rightarrow \tilde{q}\overline{q} \rightarrow q\chi\overline{q}$.

Alternative SUSY: gluino LSP, or long-lived for another reason.

E.g. Split SUSY (Dimopoulos & Arkani-Hamed): scalars are heavy, including squarks \Rightarrow gluinos long-lived.

More generally, many BSM models contain colour triplet or octet particles that can be (pseudo)stable: extra-dimensional excitations with odd KK-parity, leptoquarks, excited quarks,

- \Rightarrow PYTHIA allows for hadronization of 3 generic states:
- \bullet colour octet uncharged state, like $\tilde{\mathrm{g}},$
- colour triplet charge +2/3 state, like ${
 m \widetilde{t}}$
- colour triplet charge -1/3 state, like \tilde{b} .

A number of states predefined:

~	,~ ,	~ <u>¬</u>	l~ ,	ll ~		~ 1	~	l ~
bd	bud ₁	td	tud ₁	ĝg	gcd	gcb	gsuu	ğcsu
$\tilde{\mathrm{b}}\overline{\mathrm{u}}$	$\tilde{\mathrm{b}}\mathrm{u}\mathrm{u}_1$	$ $ $\tilde{t}\overline{u}$	t̃uu ₁	$\tilde{\mathrm{g}}\mathrm{d}\overline{\mathrm{d}}$	$\tilde{\mathrm{gcu}}$	$\tilde{\mathrm{g}}\mathrm{b}\overline{\mathrm{b}}$	<i>ğssd</i>	$\tilde{\mathrm{g}}\mathrm{css}$
$\tilde{b}\overline{s}$	$\tilde{\mathrm{b}}\mathrm{sd}_0$	fīs	${\rm \tilde{t}sd}_0$	$\tilde{\mathrm{gud}}$	$\tilde{\mathrm{g}}\mathrm{c}\overline{\mathrm{s}}$	ğddd	$\tilde{\mathrm{g}}\mathrm{ssu}$	ğ bdd
ĥē	$\tilde{\mathrm{b}}\mathrm{sd}_1$	t̄c	$\tilde{t}sd_1$	ĝuū	Ĩcc	g̃udd	$\tilde{\mathrm{g}}\mathrm{sss}$	ğ bud
$\tilde{b}\overline{b}$	${\rm \widetilde{b}su}_0$	$\tilde{t}b$	$\tilde{\mathrm{tsu}}_0$	${\rm \widetilde{g}d\overline{s}}$	$\tilde{\mathrm{gdb}}$	g̃uud	<i>ğ</i> cdd	ğbuu
$\tilde{\mathrm{b}}\mathrm{d}\mathrm{d}_1$	$\tilde{\mathrm{bsu}}_1$	$\tilde{t}dd_1$	$\tilde{t}su_1$	$\tilde{\mathrm{gus}}$	<u>ĝu</u> b	g̃uuu	g̃cud	<i>ğ</i> bsd
$\tilde{\mathrm{b}}\mathrm{ud}_0$	$\tilde{\mathrm{bss}}_1$	$\tilde{\mathrm{tud}}_0$	$\tilde{t}ss_1$	$\tilde{\mathrm{gss}}$	$\tilde{\mathrm{gsb}}$	<i>ğ</i> sdd	ğcuu	ğbsu
						ğsud	<i>ğ</i> csd	$\tilde{\mathrm{g}}\mathrm{bss}$

Approximate mass spectrum:

$$m_{\rm hadron} = \sum_{i} m_{i} + k \sum_{i \neq j} \frac{\langle \mathbf{F}_{i} \cdot \mathbf{F}_{j} \rangle \langle \mathbf{S}_{i} \cdot \mathbf{S}_{j} \rangle}{m_{i} m_{j}}$$

(\mathbf{F}_i colour vectors, \mathbf{S}_i spin vectors) so heavy particle decouples, $m(\tilde{\mathrm{bd}}_0) \approx m(\tilde{\mathrm{bd}}_1)$ (cf. $m_{\pi} \neq m_{rho}$).

R-hadron formation

Most hadronization properties by analogy with normal string fragmentation, but glueball formation new aspect, assumed $\sim 10\%$ of time (or less).

R-hadron interactions

R-hadron interactions with matter involve interesting aspects:

- $\tilde{\rm b}/\tilde{\rm t}/\tilde{\rm g}$ massive \Rightarrow slow-moving, $v\sim 0.7c.$
- In *R*-hadron rest frame the detector has v ~ 0.7c
 ⇒ E_{kin,p} ~ 1 GeV: low-energy (quasi)elastic processes.
- Cloud of light quarks and gluons interact with hadronic rate; sparticle is inert reservoir of kinetic energy.
- Charge-exchange reactions allowed, e.g.
 R⁺(ğud̄) + n → R⁰(ğdd̄) + p.
 Gives alternating track/no-track in detector.
- Baryon-exchange predominantly one way, *R*⁺(ğud̄) + n → *R*⁰(ğudd) + π⁺, since (a) kinematically disfavoured (π exceptionally light) and (b) few pions in matter.

... but part of detector simulation (GEANT), not PYTHIA.

A.C. Kraan, Eur. Phys. J. C37 (2004) 91; M. Fairbairn et al., Phys. Rep. 438 (2007) 1

3. Hidden Valleys: motivation

M. Strassler, K. Zurek, Phys. Lett. B651 (2007) 374; ...

Many BSM models contain new sectors

(= new gauge groups and matter content).

These new sectors may decouple from our own at low energy:

Standard Model SU(3)xSU(2)xU(1)

Hidden Valley
 G_v with v-matter

Hidden Valleys (secluded sectors) experimentally interesting if

- coupling not-too-weakly to our sector, and
- containing not-too-heavy particles.

Here: no attempt to construct a specific model, but to set up a reasonably generic framework.

L. Carloni & TS, JHEP 1009, 105; L. Carloni, J. Rathsman & TS, JHEP 1104, 091

Experimental relevance

Models only interesting if they can give observable consequences at the LHC!

Production

Either of two gauge groups,

• Abelian U(1), unbroken or broken (massless or massive γ_{ν}),

2 non-Abelian SU(N), unbroken $(N^2 - 1 \text{ massless } g_v's)$,

with matter q_{ν} 's in fundamental representation.

Production

Either of two gauge groups,

• Abelian U(1), unbroken or broken (massless or massive γ_{v}),

2 non-Abelian SU(N), unbroken $(N^2 - 1 \text{ massless } g_v's)$,

with matter q_{ν} 's in fundamental representation.

Three alternative production mechanisms

- $0 massive Z': q\overline{q} \to Z' \to q_{\nu} \overline{q}_{\nu},$
- 2 kinetic mixing: $q\overline{q} \rightarrow \gamma \rightarrow \gamma_{\nu} \rightarrow q_{\nu}\overline{q}_{\nu}$,
- massive F_{ν} charged under both SM and hidden group, so e.g. $gg \to F_{\nu}\overline{F}_{\nu}$. Subsequent decay $F_{\nu} \to fq_{\nu}$.

Showers

Interleaved shower in QCD, QED and HV sectors: emissions arranged in one common sequence of decreasing emission p_{\perp} scales.

 $\begin{array}{l} \mbox{HV } U(1) \mbox{: add } q_{\nu} \rightarrow q_{\nu} \gamma_{\nu} \mbox{ and } F_{\nu} \rightarrow F_{\nu} \gamma_{\nu} \mbox{.} \\ \mbox{HV } SU(\textit{N}) \mbox{: add } q_{\nu} \rightarrow q_{\nu} g_{\nu} \mbox{, } F_{\nu} \rightarrow F_{\nu} g_{\nu} \mbox{ and } g_{\nu} \rightarrow g_{\nu} g_{\nu} \mbox{.} \end{array}$

Recoil effects in visible sector also of invisible emissions!

Decays

Hidden Valley particles may remain invisible, or

- Broken U(1): γ_{ν} acquire mass, radiated γ_{ν} s decay back, $\gamma_{\nu} \rightarrow \gamma \rightarrow f\bar{f}$ with BRs as photon (\Rightarrow lepton pairs!)
- SU(N): hadronization in hidden sector, with full string fragmentation setup, permitting up to 8 different q_v flavours and 64 q_v q
 _v mesons, but for now assumed degenerate in mass, so only distinguish
 - off-diagonal, flavour-charged, stable & invisible
 - diagonal, can decay back $q_{\nu}\overline{q}_{\nu} \rightarrow f\overline{f}$

Even when tuned to same average activity, hope to separate U(1) and SU(N):

Summary

QCD physics tools can be essential also for BSM searches!

Summary

QCD physics tools can be essential also for BSM searches!

... and, hopefully, for upcoming discoveries!