The Forward-Backward Asymmetry in Top Quark Pair Production

> Bryan Webber Cavendish Laboratory University of Cambridge

- Top quark production at Tevatron and LHC
- Standard Model predictions
- Tevatron data
- LHC data and prospects
- Conclusions

Top Production at Tevatron

- pp at 1.96 TeV
- CDF & D0
- ~5 fb⁻¹/expt
- σ_{tt̄}~8 pb
- → 40,000 tt

Top Production at LHC

- pp at 7 TeV
- ATLAS & CMS
- ~2.5 fb⁻¹/expt
- $\sigma_{t\bar{t}}$ ~160 pb
- ➡ 400,000 īt
 - Expect >5 fb⁻¹
 this run (2012)

But dominated by gg rather than $q\bar{q}$ collisions

Parton distributions

• $u\bar{u} \rightarrow t\bar{t}$ dominates at Tevatron, $gg \rightarrow t\bar{t}$ at LHC

6

Asymmetry in Top Quark Pair Production $y_t > y_{ar{t}}$

Kyoto MC Workshop, Sept 2011

Lepton+jets mode

- CDF: 1260 events, i.e. ~10% acceptance
- Acceptance/selection cuts reduce asymmetry
 - * Lepton and at least 4 jets (inc. I b-jet) with $p_T > 20 \,\text{GeV/c}$, $|\eta| < 2 \,(|\eta|_b < 1)$
 - Missing $E_T \ge 20 \,\mathrm{GeV}$
- Simulate SM with MC@NLO event generator

MC@NLO matching

$$d\sigma_{\rm NLO} = \begin{bmatrix} B(\Phi_B) + V(\Phi_B) - \int \sum_i C_i (\Phi_B, \Phi_R) d\Phi_R \end{bmatrix} d\Phi_B + R(\Phi_B, \Phi_R) d\Phi_B d\Phi_R$$

$$\equiv \begin{bmatrix} B + V - \int C d\Phi_R \end{bmatrix} d\Phi_B + R d\Phi_B d\Phi_R \qquad \text{Born phase} \qquad \text{Emission} \\ \text{space} \qquad \text{phase space} \end{bmatrix}$$

$$d\sigma_{\rm MC} = B(\Phi_B) d\Phi_B \begin{bmatrix} \Delta_{\rm MC}(0) + \frac{R_{\rm MC}(\Phi_B, \Phi_R)}{B(\Phi_B)} \Delta_{\rm MC}(k_T(\Phi_B, \Phi_R)) d\Phi_R \end{bmatrix}$$

$$\equiv B d\Phi_B [\Delta_{\rm MC}(0) + (R_{\rm MC}/B) \Delta_{\rm MC}(k_T) d\Phi_R] \qquad \text{Sudakov form factor} \\ \text{(no-emission probability)} \end{bmatrix}$$

$$d\sigma_{\rm MC@NLO} = \begin{bmatrix} B + V + \int (R_{\rm MC} - C) d\Phi_R \end{bmatrix} d\Phi_B [\Delta_{\rm MC}(0) + (R_{\rm MC}/B) \Delta_{\rm MC}(k_T) d\Phi_R]$$

$$+ (R - R_{\rm MC}) \Delta_{\rm MC}(k_T) d\Phi_B d\Phi_R \qquad \text{MC starting from no emission}$$

$$\bullet \qquad \text{Expanding gives NLO result} \qquad \begin{array}{c} S \text{ Frixione \& BW, JHEP 06(2002)029} \\ S \text{ Frixione, P Nason \& BW, JHEP 08(2003)007 \end{array}$$

Asymmetry in Top Quark Pair Production

Kyoto MC Workshop, Sept 2011

CDF Results

arXiv:1101.0034

- CDF reports a large effect, increasing with tt invariant mass
- SM predicts a smaller NLO effect
- MC@NLO and MCFM in good agreement

Asymmetry in Top Quark Pair Production

Kyoto MC Workshop, Sept 2011

tt invariant mass distribution

- No sign of bumps or other anomalies
- 2/3 of events below $M_{t\bar{t}} = 450 \text{ GeV}$
- I0% disagree with SM
- Claim 3.4 st.dev. above SM at $M_{t\bar{t}} > 450$ GeV

Asymmetry in Top Quark Pair Production

Ahrens, Ferroglia, Neubert, Pecjak, Yang, arXiv: 1106.6051

Stable w.r.t. soft gluon resummation

buld still be hard NNLO effects

CDF data: low vs high mass

• No significant asymmetry below $M_{t\bar{t}} = 450 \text{ GeV}$

CDF data: lepton charge

Independent data sets are consistent

Dilepton decay mode

Consistent with lepton+jets mode

Disagreement with SM ">3 s.d."

CDF M_{tt} dependence not confirmed

Asymmetry in Top $Q_{\underline{\varphi}_{140}}^{\underline{\#}_{160}}$ Pair \mathcal{P} roduction W+jets

DØ, 5.4 fb⁻¹ | 5

p_T^{tt} dependence

- Loss at high p_T would enhance asymmetry
- What about CDF data?

Kyoto MC Workshop, Sept 2011

60

80

100

Asymmetry in Top Quark Pair Production

0.0

-0.1

-0.2

-0.3

20

40

 p_T^{tt}

 A_{FB}

Top quark asymmetry at LHC

- No! Effect should increase with $Y_{t\bar{t}}$ (q vs \bar{q})
- SM effect is small (plots show MC truth for 2 fb⁻¹)

Asymmetry in Top Quark Pair Production

Kyoto MC Workshop, Sept 2011

Top quark asymmetry at LHC

- LHC is a pp collider p no effect??
- No! Effect should increase with $Y_{t\bar{t}}$ (q vs \bar{q})
- Rapidity correlation should be as shown below
- Top rapidity distribution should be wider

$$\Delta y = y_t - y_{\bar{t}} , \quad Y_{t\bar{t}} = \frac{1}{2} (y_t + y_{\bar{t}})$$

$$A^{t\bar{t}} = \frac{N(\Delta y > 0) - N(\Delta y < 0)}{N(\Delta y > 0) + N(\Delta y < 0)}$$

$$A_C = \frac{N(\Delta |y| > 0) - N(\Delta |y| < 0)}{N(\Delta |y| > 0) + N(\Delta |y| < 0)}$$

$$\Delta |y| \equiv |y_t| - |y_{\bar{t}}| > 0 \quad \longleftarrow \quad \Delta y \cdot Y_{t\bar{t}} > 0$$

SM asymmetry at LHC

- LHC cuts assumed:
 - * I charged lepton and at least 4 jets (inc. 2 b's) with $p_T > 20 \,\text{GeV/c}$, $|\eta| < 2.5$
 - Missing $E_T > 20 \,\mathrm{GeV}$
- 4 jet cut reduces gg contribution

SM asymmetry at LHC

- No! Effect should increase with $Y_{t\bar{t}}$ (q vs \bar{q})
- SM effect is small (plots show MC@NLO for 2 fb⁻¹)

SM asymmetry at LHC

- LHC is a pp collider \rightarrow no effect??
- No! Effect should increase with $Y_{t\bar{t}}$ (q vs \bar{q})
- SM effect enhanced by cut on $M_{t\bar{t}}$ (still insignificant)

Modelling the CDF asymmetry

- CDF reports a large effect, increasing with tt invariant mass
- Suppose this is new physics

Asymmetry in Top Quark Pair Production

Kyoto MC Workshop, Sept 2011

CDF asymmetry at LHC?

- LHC is a pp collider **—** no effect??
- No! Effect should increase with $Y_{t\bar{t}}$ (q vs \bar{q})
- Model CDF effect by reweighting SM by: $1 + f(M_{t\bar{t}}) \tanh(\Delta y/2)$

 $\simeq 1 + f(M_{t\bar{t}})\beta_t^* \cos\theta_t^*$

Asymmetry in Top Quark Pair Production

First ATLAS Results ATLAS-CONF-2011-106

-2

-1

0_{_3}

- 0<u>-</u>3 Looked for $|y_t| - |y_{\bar{t}}|^2 > 0$
- No significant effect: consistent with SM

Asymmetry	detector unfolded	detector and acceptance unfolded
A_C (muon pretag)	-0.020 ± 0.026 (stat.) ± 0.062 (syst.)	-0.016 ± 0.028 (stat.) ± 0.064 (syst.)
A_C (muon <i>b</i> -tag)	-0.030 ± 0.021 (stat.) ± 0.020 (syst.)	-0.028 ± 0.019 (stat.) ± 0.022 (syst.)
A_C (electron pretag)	-0.017 ± 0.031 (stat.) ± 0.067 (syst.)	-0.023 ± 0.034 (stat.) ± 0.065 (syst.)
A_C (electron <i>b</i> -tag)	-0.012 ± 0.026 (stat.) ± 0.030 (syst.)	-0.009 ± 0.023 (stat.) ± 0.032 (syst.)

 $\mathbf{Y}_{t} - \mathbf{Y}_{t}$

No significant effect: consistent with SM

Conclusions

- Asymmetry larger than SM seen by CDF in several independent data sets
- D0 also see this but no mass dependence
- D0 top pair p_T also inconsistent with SM
- Asymmetry at CDF (not SM) level could be seen at LHC in this run
- So far no sign of it

on" model

Ferrario & Rodrigo, PRD80(09) 051701

- sample "Octet A" lacksquare
 - (₩) ¹ 9.5 $-g_v = 0, |g_A = 3|$
 - $-g^{q}{}_{A}=-g^{t}{}_{A}$
 - M_G = 2.0 TeV
 - xsec ratio: $\sigma/\sigma_{sm} = 1.02$
 - M_{tt} spectrum ~ compares to Pythia
 - 0.2 Model: Parton $A_{tt} = 0.16$ Reco $A_{tt} = 0.08$
 - Data: Parton $A_{tt} = 0.15$, Reco $A_{tt} = 0.06$

0

0.1

0.4

0.3

-0.1

- Can fit CDF A^{tt} data
- M_{tt} spectrum will differ

Axigluon search in dijets ATLAS, arXiv:1103.3864

- Resonance bump would be similar to q^{*}
- Exclude $0.6 < M_G < 2.1$ TeV

Z' exchange models

Jung, Murayama, Pierce, Wells, PRD81(2010)015004

• Interferes with QCD
$$u\bar{u} \rightarrow g^* \rightarrow t\bar{t}$$

- RH coupling avoids FCNC constraints
- Data favour light Z' mass, below top
- BUT...
 - * Also get $uu \to tt$
 - * and $u\bar{u} \to Z'Z' \to t^*\bar{u}t^*\bar{u}$
 - \clubsuit need mixing so $Z' \to u \bar{u}$

Nonabelian Z' model

An important constraint on these

Jung, Pierce, Wells,	[3]: Xith: 1esp03t.48351, these n
	due to the Rutherford enhancement. the $t\bar{t}$ for the barehouse points of a
$SU(2)_X$ doublet $\begin{pmatrix} t_R \\ u_R \end{pmatrix}$	The $t\bar{t}$ for the benchmark points show K-factor of the SM [44] to all distribu- proper NLO calculation in these mod
Gauge triplet Z'_{\pm}, Z'_0	(They Call W, 2) [46] parton distribution sets for the l
Don't get $uu \to tt$ (v	GeV and $\mu = m_t$ are assumed. A national shown there would indicate that the statement of
Flavour mixing reduce	However, this model produces ver quarks Q far from assured, and indeed
Data favour $m_t < m_{Z'}$	behavior deviates most substantially $\lesssim 2m_{th}$ (point A) ring peak
	large enhancement at high $\sqrt{\hat{s}}$ persist
	We model losses of very forward to
	experiments in an approximate but we
	Carlo event sample of the SM in M
	an \hat{s} -dependent SM NLO K-factor.
	CDF $m_{t\bar{t}}$ analysis [43] and calculate
	and the missing energy as done by (

to the original theoretical distributio

us to derive a "smearing matrix" in **Kyoto MC Workshop, Sept 2011** reconstruction take a theoretical dis

Z' model asymmetry

• Jung-Pierce-Wells nonabelain model (point A) can fit data:

CDF asymmetry at LHC?

- LHC is a pp collider **—** no effect??
- No! Effect should increase with $Y_{t\bar{t}}$ (q vs \bar{q})
- Jung-Pierce-Wells model (point A) smaller effect (uu only)

W' model

A Papaefstathiou, in prep.

Includes simulation of CDF detector