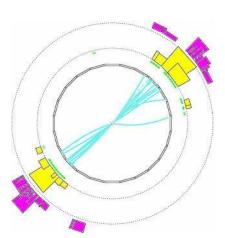
Introduction to Jet Finding and Jetography (1)

Gavin Salam

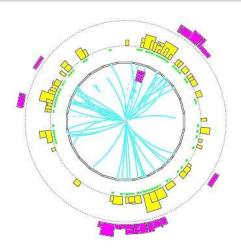
CERN, Princeton University and LPTHE/Paris (CNRS)

2011 IPMU-YITP School and Workshop on Monte Carlo Tools for LHC

Yukawa Institute for Theoretical Physics, Kyoto University, Japan September 2011



Jets are everywhere in QCD Our *window on partons*



But *not* the same as partons: Partons ill-defined; jets *well-definable*

quark

Gluon emission:

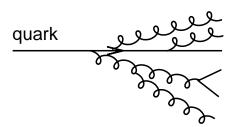
$$\int \alpha_{\rm S} \frac{dE}{E} \frac{d\theta}{\theta} \gg 1$$

$$\alpha_{\rm s} \rightarrow 1$$

Gluon emission:

$$\int \alpha_{\mathsf{S}} \frac{dE}{E} \frac{d\theta}{\theta} \gg 1$$

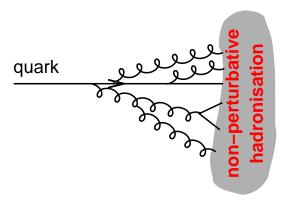
$$\alpha_{\mathsf{s}} o 1$$



Gluon emission:

$$\int \alpha_{\mathsf{S}} \frac{dE}{E} \frac{d\theta}{\theta} \gg 1$$

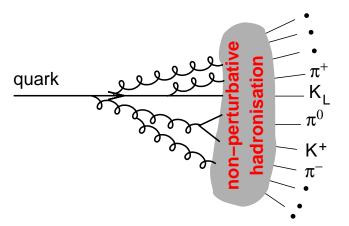
$$\alpha_{\mathsf{s}} \to 1$$



Gluon emission:

$$\int \alpha_{\mathsf{S}} \frac{dE}{E} \frac{d\theta}{\theta} \gg 1$$

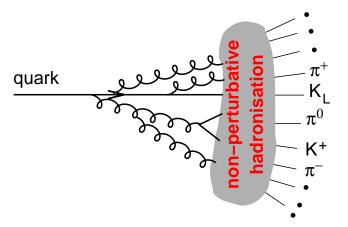
$$\alpha_{\rm s} \rightarrow 1$$



Gluon emission:

$$\int \alpha_{\mathsf{s}} \frac{dE}{E} \frac{d\theta}{\theta} \gg 1$$

$$\alpha_{\mathsf{s}} \to 1$$



Gluon emission:

$$\int \alpha_{\rm s} \frac{dE}{E} \frac{d\theta}{\theta} \gg 1$$

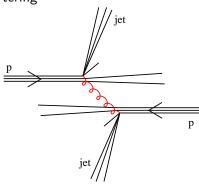
At low scales:

$$lpha_{
m s}
ightarrow 1$$

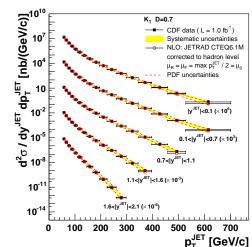
High-energy partons unavoidably lead to collimated bunches of hadrons

Jets from scattering of partons

Jets are unavoidable at hadron colliders, e.g. from parton scattering



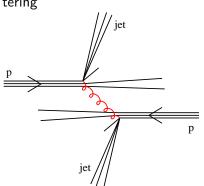
Tevatron results



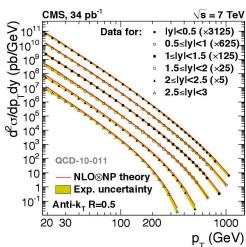
Jet cross section: data and theory agree over many orders of magnitude ⇔ probe of underlying interaction

Jets from scattering of partons

Jets are unavoidable at hadron colliders, e.g. from parton scattering



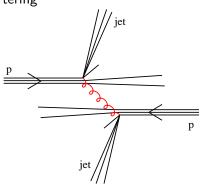
CMS results



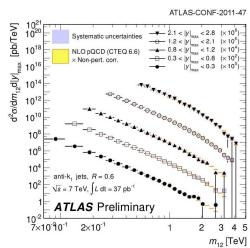
Jet cross section: data and theory agree over many orders of magnitude \Leftrightarrow probe of underlying interaction

Jets from scattering of partons

Jets are unavoidable at hadron colliders, e.g. from parton scattering

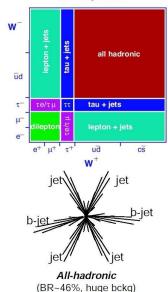


ATLAS results



Jet cross section: data and theory agree over many orders of magnitude \Leftrightarrow probe of underlying interaction

tt decay modes



Heavy objects: multi-jet final-states

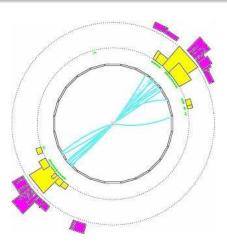
- ▶ $10^7 t\bar{t}$ pairs for 1 fb⁻¹ @ 14 TeV
- ▶ Vast # of QCD multijet events

# jets	$\#$ events for $1\mathrm{fb}^{-1}$
3	$2 \cdot 10^{10}$
4	$5\cdot 10^9$
5	$1\cdot 10^9$
6	$3 \cdot 10^{8}$
7	$1\cdot 10^8$
8	$4\cdot 10^7$

Tree level

$$p_t(\text{jet}) > 20 \text{ GeV}, \ \Delta R_{ij} > 0.4, \ |y_{ij}| < 2.5$$

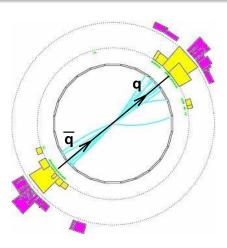
Gleisman & Höche '08



Jets are what we see. Clearly(?) 2 jets here

How many jets do you see?

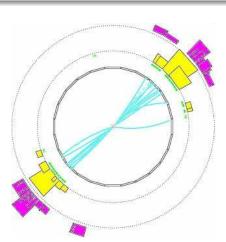
Do you really want to ask yourself this question for 10⁹ events?



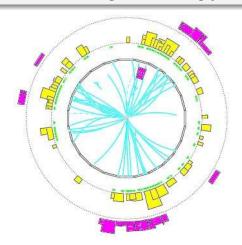
Jets are what we see. Clearly(?) 2 jets here

How many jets do you see?

Do you really want to ask yourself this question for 10⁹ events?

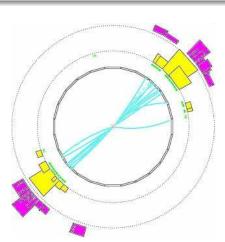


Jets are what we see. Clearly(?) 2 jets here

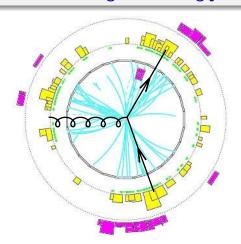


How many jets do you see?

Do you really want to ask yourself this question for 10⁹ events?

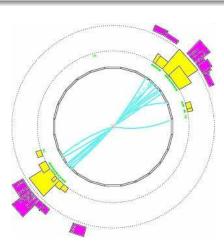


Jets are what we see. Clearly(?) 2 jets here

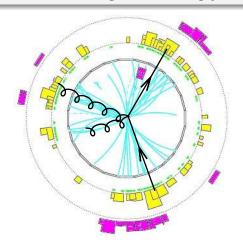


How many jets do you see?

Do you really want to ask yourself this question for 10⁹ events?

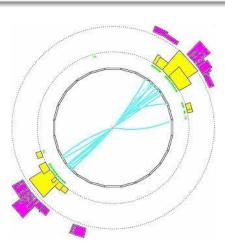


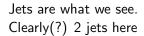
Jets are what we see. Clearly(?) 2 jets here

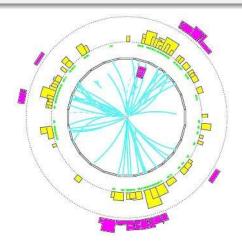


How many jets do you see?

Do you really want to ask yourself this question for 10⁹ events?

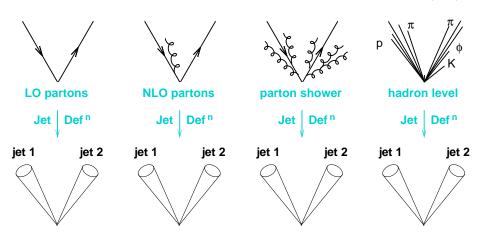


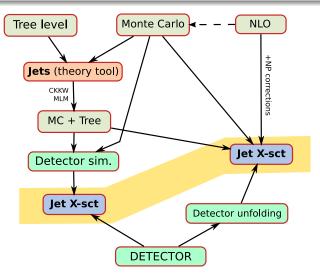




How many jets do you see? Do you really want to ask yourself this question for 10⁹ events?

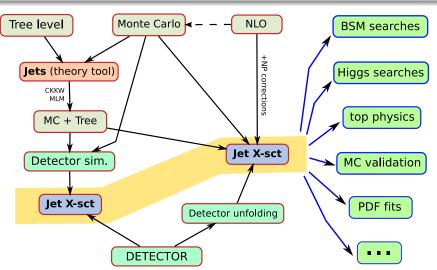
A jet definition is a fully specified set of rules for *projecting* information from an event's partons or hadrons onto a handful of *parton-like* objects (jets):





Jet (definitions) provide central link between expt., "theory" and theory

And jets are an input to almost all analyses



Jet (definitions) provide central link between expt., "theory" and theory

And jets are an input to almost all analyses

Aims: to provide you with

- ▶ the "basics" needed to understand what goes into current jet-based measurements;
- some insight into the issues that are relevant when thinking about a jet measurement

Structure:

- General considerations
- Common jet definitions at LHC

Today

Physics with jets

Tomorrow

Defining jets

The construction of a jet is unavoidably ambiguous. On at least two fronts:

- 1. which particles get put together into a common jet?

 Jet algorithm

 + parameters
- 2. how do you combine their momenta? Recombination scheme Most commonly used: direct 4-vector sums (*E*-scheme)

Taken together, these different elements specify a choice of jet definition

The construction of a jet is unavoidably ambiguous. On at least two fronts:

1. which particles get put together into a common jet?

Jet algorithm

+ parameters

2. how do you combine their momenta? Recombination scheme

Most commonly used: direct 4-vector sums (*E*-scheme)

Taken together, these different elements specify a choice of jet definition

Jets should be **invariant** with respect to certain modifications of the event:

- collinear splitting
- infrared emission

Why

- Because otherwise lose real-virtual cancellation in NLO/NNLO QCD calculations → divergent results
- Hadron-level 'jets' would become fundamentally non-perturbative
- ▶ Detectors can resolve neither full collinear nor full infrared event structure

Known as infrared and collinear safety

Jets should be **invariant** with respect to certain modifications of the event:

- collinear splitting
- infrared emission

Why?

- ▶ Because otherwise lose real-virtual cancellation in NLO/NNLO QCD calculations → divergent results
- ► Hadron-level 'jets' would become fundamentally non-perturbative
- ▶ Detectors can resolve neither full collinear nor full infrared event structure

Known as infrared and collinear safety

Jets should be **invariant** with respect to certain modifications of the event:

- collinear splitting
- infrared emission

Why?

- lacktriangle Because otherwise lose real-virtual cancellation in NLO/NNLO QCD calculations ightarrow divergent results
- ► Hadron-level 'jets' would become fundamentally non-perturbative
- ▶ Detectors can resolve neither full collinear nor full infrared event structure

Known as infrared and collinear safety

Sequential recombination $(k_t, \text{ etc.})$

- ▶ bottom-up
- successively undoes QCD branching

Cone

- top-down
- centred around idea of an 'invariant', directed energy flow

Cones: most widely used at Tevatron

Seq. rec.: most widely used at LHC and HERA

In this lecture we'll concentrate on the seguential recombination algorithms

Sequential recombination (k_t , etc.)

- bottom-up
- successively undoes QCD branching

<u>Cone</u>

- top-down
- centred around idea of an 'invariant', directed energy flow

Cones: most widely used at Tevatron

Seq. rec.: most widely used at LHC and HERA

In this lecture we'll concentrate on the sequential recombination algorithms

Sequential recombination jet algorithms

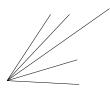
starting with a classic e^+e^- algorithm

E.g. this is how Pythia and Herwig have long modelled events

E.g. this is how Pythia and Herwig have long modelled events

E.g. this is how Pythia and Herwig have long modelled events

E.g. this is how Pythia and Herwig have long modelled events



It's a good approximation to think of the development of a jet as a consequence of the repeated $1 \to 2$ branching of quarks and gluons.

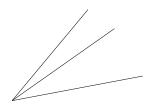
E.g. this is how Pythia and Herwig have long modelled events

Sequential recombination algorithms try to work their way backwards through this branching, repeatedly combining pairs of particles into a single one.

It's a good approximation to think of the development of a jet as a consequence of the repeated $1 \to 2$ branching of quarks and gluons.

E.g. this is how Pythia and Herwig have long modelled events

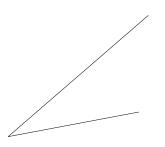
Sequential recombination algorithms try to work their way backwards through this branching, repeatedly combining pairs of particles into a single one.



It's a good approximation to think of the development of a jet as a consequence of the repeated $1 \to 2$ branching of quarks and gluons.

E.g. this is how Pythia and Herwig have long modelled events

Sequential recombination algorithms try to work their way backwards through this branching, repeatedly combining pairs of particles into a single one.



The main questions are:

- How do you choose which pair of particles to combine at any given stage?
- ▶ When do you stop combining them?

Majority of QCD branching is soft & collinear, with following divergences:

$$[dk_j]|M_{g\to g_ig_j}^2(k_j)|\simeq \frac{2\alpha_s C_A}{\pi} \frac{dE_j}{\min(E_i,E_j)} \frac{d\theta_{ij}}{\theta_{ij}}, \qquad (E_j\ll E_i\,,\,\,\theta_{ij}\ll 1)\,.$$

To invert branching process, take pair with strongest divergence between them — they're the most *likely* to belong together.

This is basis of $k_t/Durham$ algorithm (e^+e^-) :

1. Calculate (or update) distances between all particles i and j:

$$y_{ij} = rac{2\min(E_i^2, E_j^2)(1 - \cos heta_{ij})}{Q^2}$$

- Find smallest of y_{ii}
 - If $> y_{cut}$, stop clustering
 - ▶ Otherwise recombine i and j, and repeat from step 1

Catani, Dokshitzer, Olsson, Turnock & Webber '91

Majority of QCD branching is soft & collinear, with following divergences:

$$[dk_j]|M_{g\to g_ig_j}^2(k_j)|\simeq \frac{2\alpha_{\rm s}\,C_A}{\pi}\frac{dE_j}{\min(E_i,E_j)}\frac{d\theta_{ij}}{\theta_{ij}}\,,\qquad (E_j\ll E_i\,,\ \theta_{ij}\ll 1)\,.$$

To invert branching process, take pair with strongest divergence between them — they're the most *likely* to belong together.

This is basis of $k_t/Durham$ algorithm (e^+e^-) :

1. Calculate (or update) distances between all particles *i* and *j*:

$$y_{ij} = \frac{2\min(E_i^2, E_j^2)(1 - \cos\theta_{ij})}{Q^2}$$

2. Find smallest of y_{ii}

NB: relative k_t between particles

- If $> y_{cut}$, stop clustering
- ▶ Otherwise recombine *i* and *j*, and repeat from step 1

Catani, Dokshitzer, Olsson, Turnock & Webber '91

Majority of QCD branching is soft & collinear, with following divergences:

dk The algorithm has one parameter

To in them

Ycut: sets minimal relative transverse momentum between any pair of jets

This is basis of $k_t/Durham$ algorithm (e^+e^-) :

1. Calculate (or update) distances between all particles i and j:

$$y_{ij} = \frac{2\min(E_i^2, E_j^2)(1 - \cos\theta_{ij})}{Q^2}$$

- 2. Find smallest of y_{ii}
 - If $> y_{cut}$, stop clustering
 - ▶ Otherwise recombine i and i, and repeat from step 1

Catani, Dokshitzer, Olsson, Turnock & Webber '91

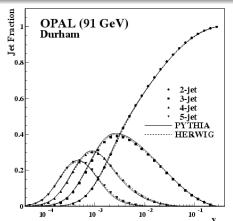
NB: relative k_t between particles

k_t /Durham algorithm features

- ► Gives hierarchy to event and jets

 Event can be charaterised

 by 1/23, 1/34, 1/45.
- Resolution parameter related to minimal transverse momentum between jets



Most widely-used jet algorithm in e^+e^-

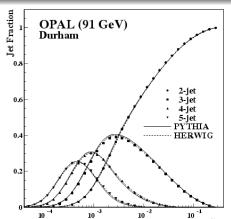
- ► Collinear safe: collinear particles recombined early on
- ▶ Infrared safe: soft particles have no impact on rest of clustering seq.

k_t /Durham algorithm features

- ► Gives hierarchy to event and jets

 Event can be charaterised

 by Y23, Y34, Y45.
- Resolution parameter related to minimal transverse momentum between jets



Most widely-used jet algorithm in e^+e^-

- Collinear safe: collinear particles recombined early on
- ▶ Infrared safe: soft particles have no impact on rest of clustering seq.

1st attempt

▶ Lose absolute normalisation scale Q. So use unnormalised d_{ij} rather than y_{ii} :

$$d_{ij} = 2\min(E_i^2, E_i^2)(1 - \cos\theta_{ij})$$

Now also have beam remnants (go down beam-pipe, not measured) Account for this with particle-beam distance

$$d_{iB} = 2E_i^2(1 - \cos\theta_{iB})$$

squared transv. mom. wrt beam

2nd attempt: make it longitudinally boost-invariant

Catani, Dokshitzer, Seymour & Webber '93

▶ Formulate in terms of rapidity (y), azimuth (ϕ) , p_t

$$d_{ij} = \min(p_{ti}^2, p_{tj}^2) \Delta R_{ij}^2, \qquad \Delta R_{ij}^2 = (y_i - y_j)^2 + (\phi_i - \phi_j)^2$$

NB: not η_i , E_{ti}

► Beam distance becomes

$$d_{iB} = p_{ti}^2$$

squared transv. mom. wrt beam

Apart from measures, just like e^+e^- alg. Known as exclusive k_t algorithm.

Problem: at hadron collider, no single fixed scale (as in Q in e^+e^-). So how do you choose d_{cut} ? See e.g. Seymour & Tevlin '06

3rd attempt: **inclusive** k_t **algorithm**

▶ Introduce angular radius R (NB: dimensionless!)

$$d_{ij} = \min(p_{ti}^2, p_{tj}^2) \frac{\Delta R_{ij}^2}{R^2}, \qquad d_{iB} = p_{ti}^2$$

- ▶ 1. Find smallest of d_{ij} , d_{iB}
 - 2. if *ij*, recombine them
 - 3. if iB, call i a jet and remove from list of particles
 - 4. repeat from step 1 until no particles left.

S.D. Ellis & Soper, '93; the simplest to use

Jets all separated by at least R on y, ϕ cylinder.

NB: number of jets not IR safe (soft jets near beam); number of jets above p_t cut **is** IR safe.

3rd attempt: inclusive k_t algorithm

▶ Introduce angular radius R (NB: dimensionless!)

$$d_{ij} = \min(p_{ti}^2, p_{tj}^2) \frac{\Delta R_{ij}^2}{R^2}, \qquad d_{iB} = p_{ti}^2$$

- Two parameters to remember

 2. if \mathbf{R} : sets $y-\phi$ reach of the jet; minimal interjet separation \mathbf{p}_t cut on the jets

These parameters are common to all widely used hadron-collider jet algorithms.

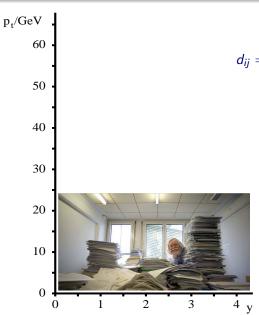
p_t cut is IR safe.

k_t alg.: Find smallest of

$$d_{ij} = \min(k_{ti}^2, k_{tj}^2) \frac{\Delta R_{ij}^2}{R^2}, \quad d_{iB} = k_{ti}^2$$

- ▶ If *d_{ij}* recombine
- ▶ if d_{iB} , i is a jet

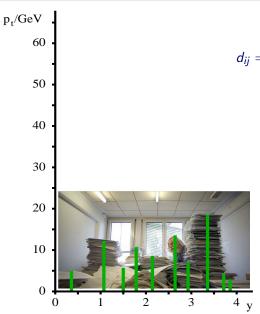
Example clustering with k_t algorithm, R = 1.0



$$d_{ij} = \min(k_{ti}^2, k_{tj}^2) \frac{\Delta R_{ij}^2}{R^2}, \quad d_{iB} = k_{ti}^2$$

- ▶ If *d_{ij}* recombine
- ▶ if d_{iB} , i is a jet

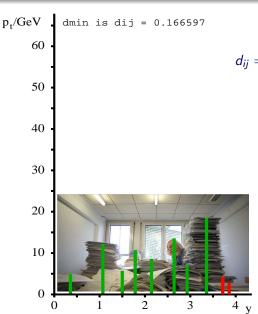
Example clustering with k_t algorithm, R = 1.0



$$d_{ij} = \min(k_{ti}^2, k_{tj}^2) \frac{\Delta R_{ij}^2}{R^2}, \quad d_{iB} = k_{ti}^2$$

- ▶ If *d_{ij}* recombine
- ▶ if d_{iB} , i is a jet

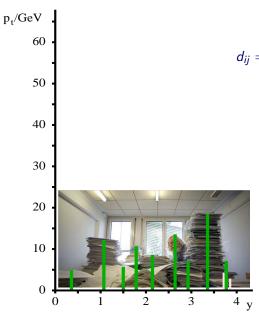
Example clustering with k_t algorithm, R = 1.0



$$d_{ij} = \min(k_{ti}^2, k_{tj}^2) \frac{\Delta R_{ij}^2}{R^2}, \quad d_{iB} = k_{ti}^2$$

- ▶ If d_{ii} recombine
- ▶ if d_{iB} , i is a jet

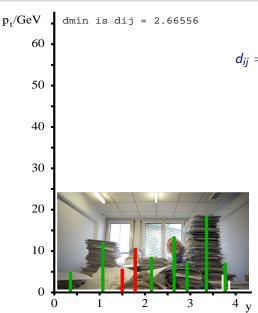
Example clustering with k_t algorithm, R = 1.0



$$d_{ij} = \min(k_{ti}^2, k_{tj}^2) \frac{\Delta R_{ij}^2}{R^2}, \quad d_{iB} = k_{ti}^2$$

- ▶ If *d_{ij}* recombine
- ▶ if d_{iB} , i is a jet

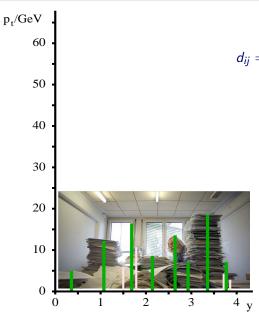
Example clustering with k_t algorithm, R = 1.0



$$d_{ij} = \min(k_{ti}^2, k_{tj}^2) \frac{\Delta R_{ij}^2}{R^2}, \quad d_{iB} = k_{ti}^2$$

- ▶ If d_{ij} recombine
- ▶ if d_{iB} , i is a jet

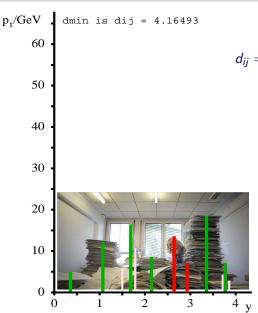
Example clustering with k_t algorithm, R = 1.0



$$d_{ij} = \min(k_{ti}^2, k_{tj}^2) \frac{\Delta R_{ij}^2}{R^2}, \quad d_{iB} = k_{ti}^2$$

- ▶ If *d_{ij}* recombine
- ▶ if d_{iB}, i is a jet

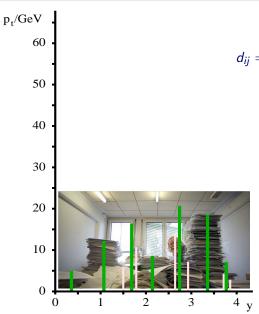
Example clustering with k_t algorithm, R = 1.0



$$d_{ij} = \min(k_{ti}^2, k_{tj}^2) \frac{\Delta R_{ij}^2}{R^2}, \quad d_{iB} = k_{ti}^2$$

- ▶ If d_{ij} recombine
- ▶ if d_{iB}, i is a jet

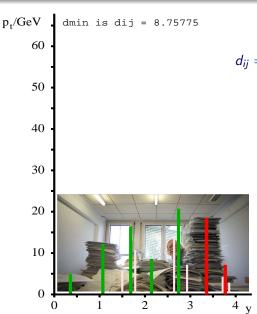
Example clustering with k_t algorithm, R = 1.0



$$d_{ij} = \min(k_{ti}^2, k_{tj}^2) \frac{\Delta R_{ij}^2}{R^2}, \quad d_{iB} = k_{ti}^2$$

- ▶ If *d_{ij}* recombine
- ▶ if d_{iB} , i is a jet

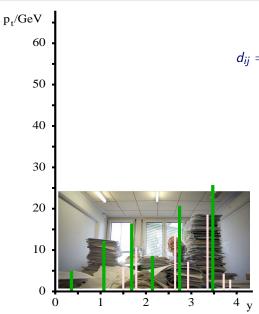
Example clustering with k_t algorithm, R = 1.0



$$d_{ij} = \min(k_{ti}^2, k_{tj}^2) \frac{\Delta R_{ij}^2}{R^2}, \quad d_{iB} = k_{ti}^2$$

- ▶ If d_{ij} recombine
- ▶ if d_{iB} , i is a jet

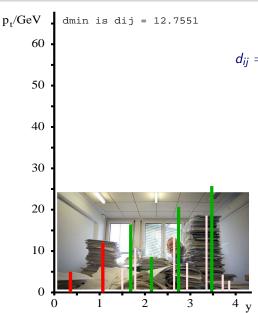
Example clustering with k_t algorithm, R = 1.0



$$d_{ij} = \min(k_{ti}^2, k_{tj}^2) \frac{\Delta R_{ij}^2}{R^2}, \quad d_{iB} = k_{ti}^2$$

- ▶ If *d_{ij}* recombine
- ▶ if d_{iB}, i is a jet

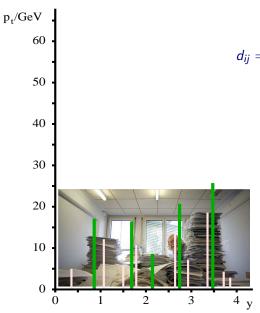
Example clustering with k_t algorithm, R = 1.0



$$d_{ij} = \min(k_{ti}^2, k_{tj}^2) \frac{\Delta R_{ij}^2}{R^2}, \quad d_{iB} = k_{ti}^2$$

- ▶ If *d_{ij}* recombine
- ▶ if d_{iB} , i is a jet

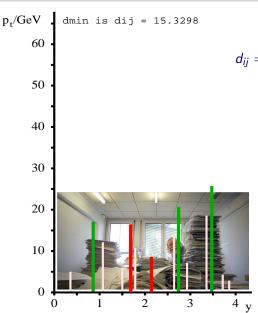
Example clustering with k_t algorithm, R = 1.0



$$d_{ij} = \min(k_{ti}^2, k_{tj}^2) \frac{\Delta R_{ij}^2}{R^2}, \quad d_{iB} = k_{ti}^2$$

- ▶ If *d_{ij}* recombine
- ▶ if d_{iB} , i is a jet

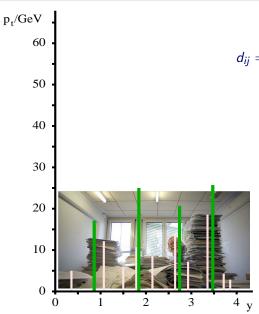
Example clustering with k_t algorithm, R = 1.0



$$d_{ij} = \min(k_{ti}^2, k_{tj}^2) \frac{\Delta R_{ij}^2}{R^2}, \quad d_{iB} = k_{ti}^2$$

- ▶ If d_{ij} recombine
- ▶ if d_{iB} , i is a jet

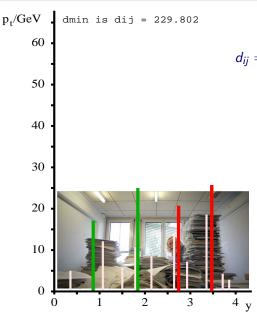
Example clustering with k_t algorithm, R = 1.0



$$d_{ij} = \min(k_{ti}^2, k_{tj}^2) \frac{\Delta R_{ij}^2}{R^2}, \quad d_{iB} = k_{ti}^2$$

- ▶ If *d_{ij}* recombine
- ▶ if d_{iB} , i is a jet

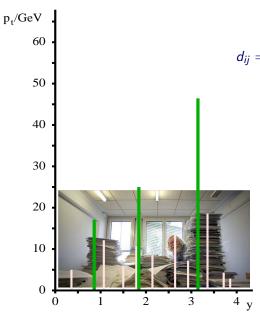
Example clustering with k_t algorithm, R = 1.0



$$d_{ij} = \min(k_{ti}^2, k_{tj}^2) \frac{\Delta R_{ij}^2}{R^2}, \quad d_{iB} = k_{ti}^2$$

- ▶ If d_{ij} recombine
- ▶ if d_{iB} , i is a jet

Example clustering with k_t algorithm, R = 1.0

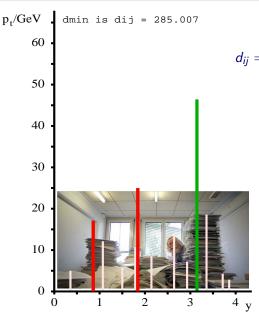


$$d_{ij} = \min(k_{ti}^2, k_{tj}^2) \frac{\Delta R_{ij}^2}{R^2}, \quad d_{iB} = k_{ti}^2$$

- ▶ If *d_{ij}* recombine
- ▶ if d_{iB} , i is a jet

Example clustering with k_t algorithm, R = 1.0

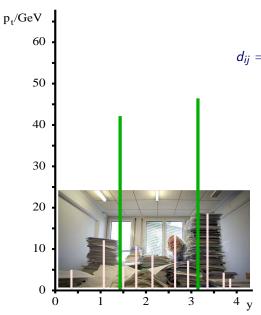
 $\boldsymbol{\phi}$ assumed 0 for all towers



$$d_{ij} = \min(k_{ti}^2, k_{tj}^2) \frac{\Delta R_{ij}^2}{R^2}, \quad d_{iB} = k_{ti}^2$$

- ▶ If *d_{ij}* recombine
- ▶ if d_{iB} , i is a jet

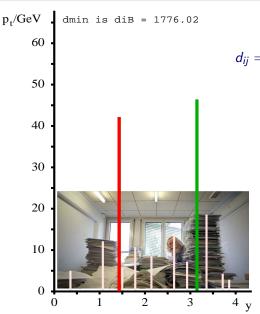
Example clustering with k_t algorithm, R = 1.0



$$d_{ij} = \min(k_{ti}^2, k_{tj}^2) \frac{\Delta R_{ij}^2}{R^2}, \quad d_{iB} = k_{ti}^2$$

- ▶ If *d_{ij}* recombine
- ▶ if d_{iB} , i is a jet

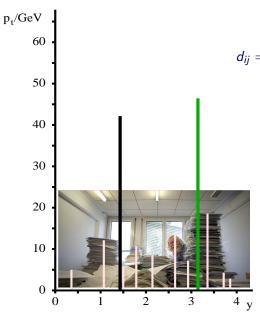
Example clustering with k_t algorithm, R = 1.0



$$d_{ij} = \min(k_{ti}^2, k_{tj}^2) \frac{\Delta R_{ij}^2}{R^2}, \quad d_{iB} = k_{ti}^2$$

- ▶ If *d_{ij}* recombine
- ▶ if d_{iB} , i is a jet

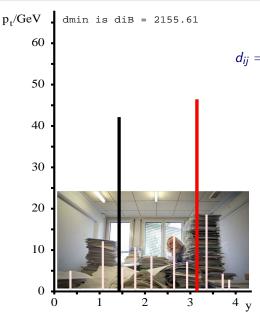
Example clustering with k_t algorithm, R = 1.0



$$d_{ij} = \min(k_{ti}^2, k_{tj}^2) \frac{\Delta R_{ij}^2}{R^2}, \quad d_{iB} = k_{ti}^2$$

- ▶ If *d_{ij}* recombine
- ▶ if d_{iB} , i is a jet

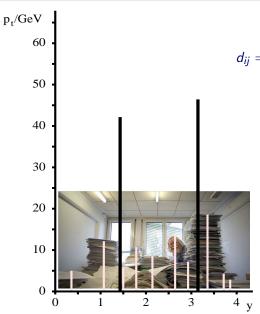
Example clustering with k_t algorithm, R = 1.0



$$d_{ij} = \min(k_{ti}^2, k_{tj}^2) \frac{\Delta R_{ij}^2}{R^2}, \quad d_{iB} = k_{ti}^2$$

- ▶ If *d_{ij}* recombine
- ▶ if d_{iB} , i is a jet

Example clustering with k_t algorithm, R = 1.0



$$d_{ij} = \min(k_{ti}^2, k_{tj}^2) \frac{\Delta R_{ij}^2}{R^2}, \quad d_{iB} = k_{ti}^2$$

- ▶ If *d_{ij}* recombine
- ▶ if d_{iB} , i is a jet

Example clustering with k_t algorithm, R = 1.0

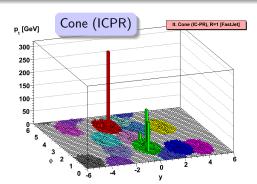
The k_t algorithms form one of several "families" of sequential recombination jet algorithm

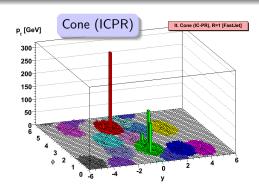
Others differ in:

- 1. the choice distance measure between pairs of particles [i.e. the relative priority given to soft and collinear divergences, e.g. Cambridge/Aachen (C/A), which uses just angular distance]
 - 2. using 3 \rightarrow 2 clustering rather than 2 \rightarrow 1 [ARCLUS; not used at hadron colliders, so won't discuss it more]

The k_t family of algorithms was widely used at LEP (e^+e^-) and HERA $(ep \text{ and } \gamma p)$.

Tevatron instead used **cone** algorithms, as did the LHC experiments during the design and planning stages.



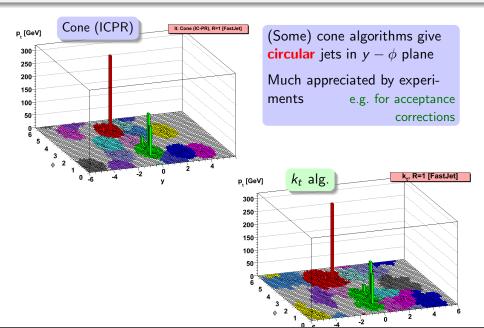


(Some) cone algorithms give circular jets in $y-\phi$ plane

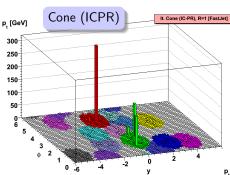
Much appreciated by experiments

e.g. for acceptance corrections

Essential characteristic of cones?



Essential characteristic of cones?



(Some) cone algorithms give circular jets in $y - \phi$ plane

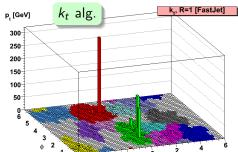
Much appreciated by experiments e.g. for acceptance corrections

k_t jets are irregular

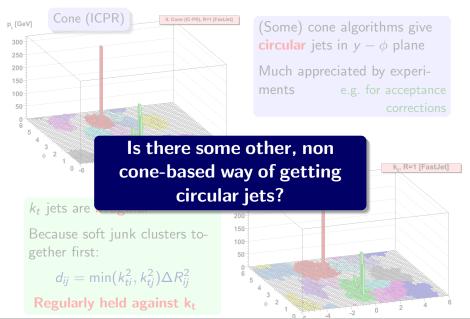
Because soft junk clusters together first:

$$d_{ij} = \min(k_{ti}^2, k_{tj}^2) \Delta R_{ij}^2$$

Regularly held against kt

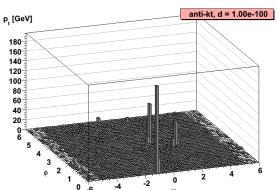


Essential characteristic of cones?

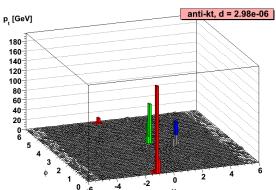


$$k_t$$
: $d_{ij} = \min(k_{ti}^2, k_{tj}^2) \Delta R_{ij}^2 \longrightarrow \text{anti-k}_t$: $d_{ij} = \frac{\Delta R_{ij}^2}{\max(k_{ti}^2, k_{tj}^2)}$

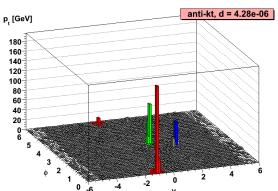
$$k_t$$
: $d_{ij} = \min(k_{ti}^2, k_{tj}^2) \Delta R_{ij}^2 \longrightarrow ext{anti-k}_{\mathbf{t}}$: $d_{ij} = \frac{\Delta R_{ij}^2}{\max(k_{ti}^2, k_{tj}^2)}$



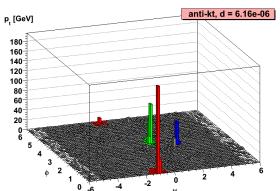
$$k_t$$
: $d_{ij} = \min(k_{ti}^2, k_{tj}^2) \Delta R_{ij}^2 \longrightarrow \text{anti-k}_t$: $d_{ij} = \frac{\Delta R_{ij}^2}{\max(k_{ti}^2, k_{tj}^2)}$



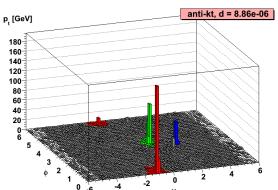
$$k_t$$
: $d_{ij} = \min(k_{ti}^2, k_{tj}^2) \Delta R_{ij}^2 \longrightarrow \text{anti-k}_t$: $d_{ij} = \frac{\Delta R_{ij}^2}{\max(k_{ti}^2, k_{tj}^2)}$



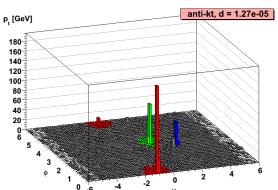
$$k_t$$
: $d_{ij} = \min(k_{ti}^2, k_{tj}^2) \Delta R_{ij}^2 \longrightarrow \text{anti-k}_t$: $d_{ij} = \frac{\Delta R_{ij}^2}{\max(k_{ti}^2, k_{tj}^2)}$



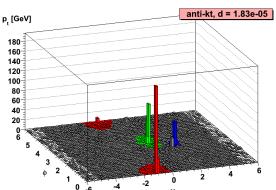
$$k_t$$
: $d_{ij} = \min(k_{ti}^2, k_{tj}^2) \Delta R_{ij}^2 \longrightarrow \text{anti-k}_t$: $d_{ij} = \frac{\Delta R_{ij}^2}{\max(k_{ti}^2, k_{tj}^2)}$



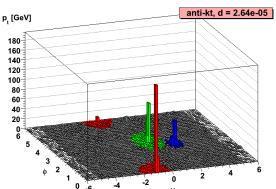
$$k_t$$
: $d_{ij} = \min(k_{ti}^2, k_{tj}^2) \Delta R_{ij}^2 \longrightarrow ext{anti-k}_{\mathbf{t}}$: $d_{ij} = \frac{\Delta R_{ij}^2}{\max(k_{ti}^2, k_{tj}^2)}$



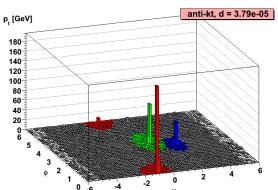
$$k_t$$
: $d_{ij} = \min(k_{ti}^2, k_{tj}^2) \Delta R_{ij}^2 \longrightarrow ext{anti-k}_{\mathbf{t}}$: $d_{ij} = \frac{\Delta R_{ij}^2}{\max(k_{ti}^2, k_{tj}^2)}$



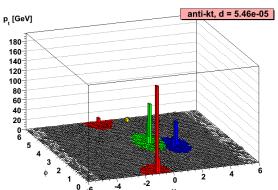
$$k_t$$
: $d_{ij} = \min(k_{ti}^2, k_{tj}^2) \Delta R_{ij}^2 \longrightarrow \text{anti-k}_t$: $d_{ij} = \frac{\Delta R_{ij}^2}{\max(k_{ti}^2, k_{tj}^2)}$



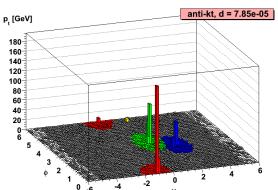
$$k_t$$
: $d_{ij} = \min(k_{ti}^2, k_{tj}^2) \Delta R_{ij}^2 \longrightarrow \text{anti-k}_t$: $d_{ij} = \frac{\Delta R_{ij}^2}{\max(k_{ti}^2, k_{tj}^2)}$



$$k_t$$
: $d_{ij} = \min(k_{ti}^2, k_{tj}^2) \Delta R_{ij}^2 \longrightarrow ext{anti-k}_{\mathbf{t}}$: $d_{ij} = \frac{\Delta R_{ij}^2}{\max(k_{ti}^2, k_{tj}^2)}$

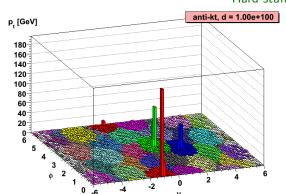


$$k_t$$
: $d_{ij} = \min(k_{ti}^2, k_{tj}^2) \Delta R_{ij}^2 \longrightarrow \text{anti-k}_t$: $d_{ij} = \frac{\Delta R_{ij}^2}{\max(k_{ti}^2, k_{tj}^2)}$

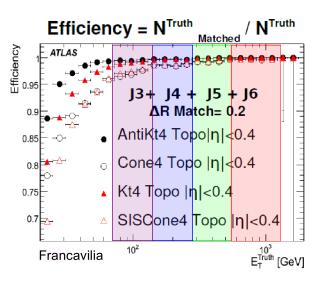


$$k_t$$
: $d_{ij} = \min(k_{ti}^2, k_{tj}^2) \Delta R_{ij}^2 \longrightarrow ext{anti-k}_{\mathbf{t}}$: $d_{ij} = \frac{\Delta R_{ij}^2}{\max(k_{ti}^2, k_{tj}^2)}$

Hard stuff clusters with nearest neighbour



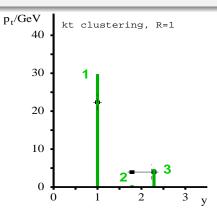
anti-k_t gives cone-like jets without using stable cones

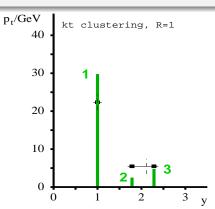


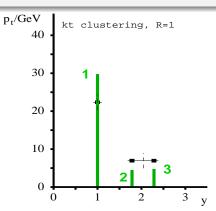
As good as, or better than all previous experimentallyfavoured algorithms.

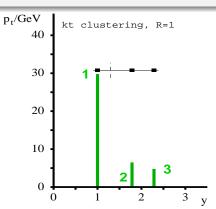
Essentially because anti- k_t has linear response to soft particles.

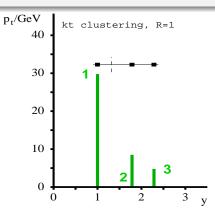
And it's also infrared and collinear safe (needed for theory calcs.)

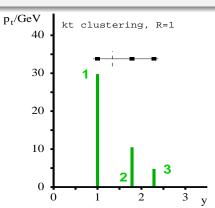


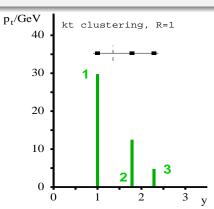


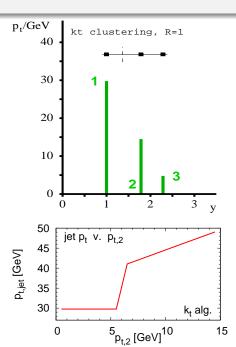


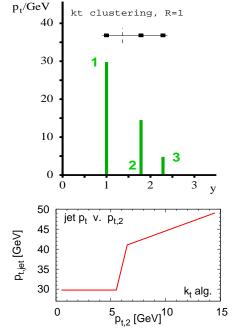


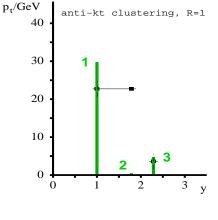








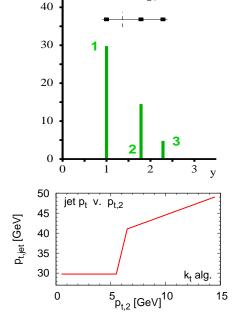




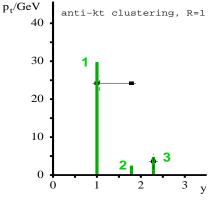
p_t/GeV

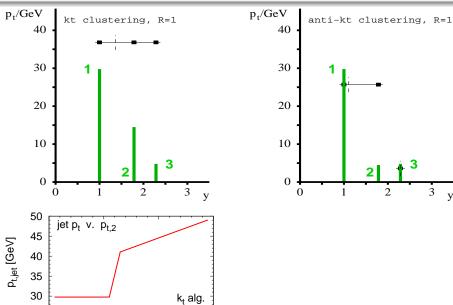
Linearity: k_t v. anti- k_t

anti-kt clustering, R=1



kt clustering, R=1



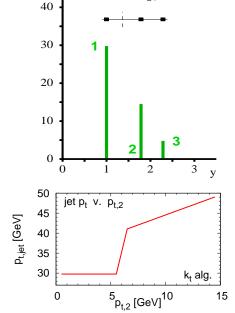


15

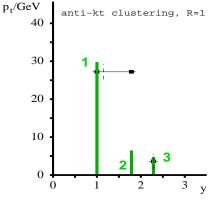
 $^{5}p_{t,2} \left[\text{GeV} \right]^{10}$

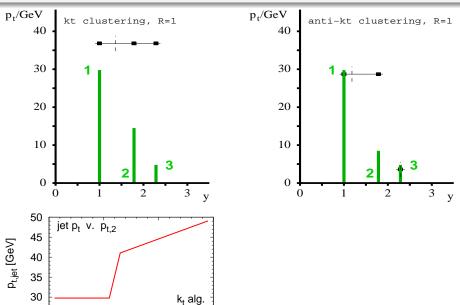
p_t/GeV

Linearity: k_t v. anti- k_t



kt clustering, R=1



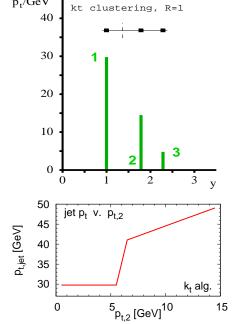


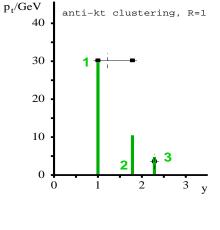
15

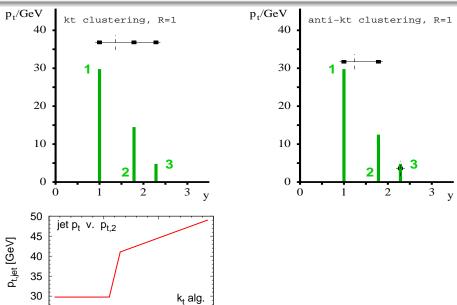
 $^{5}p_{t,2} \left[\text{GeV} \right]^{10}$

p_t/GeV

Linearity: k_t v. anti- k_t

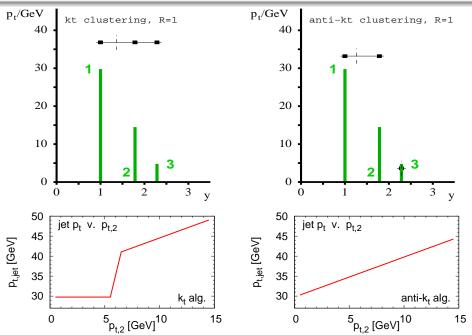


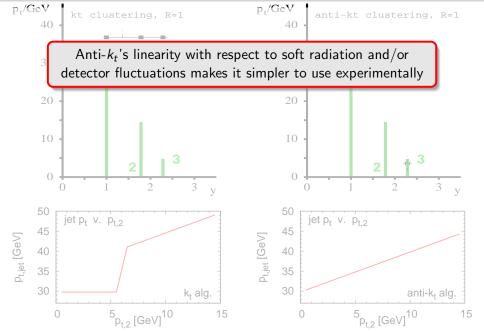




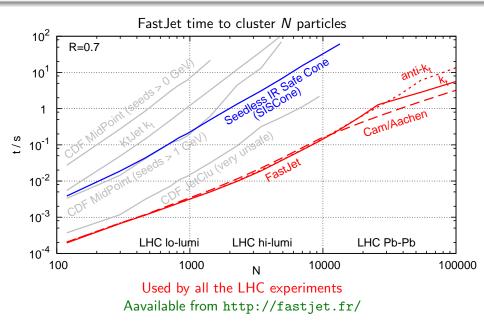
15

 $^{5}p_{t,2} \left[\text{GeV} \right]^{10}$





Nearly all algorithms available in FastJet



Today we've examined why we need jets and looked at some of the logic behind the way they're defined.

Of the different algorithms we've discussed, the one that's most widely used at LHC today is anti- k_t .

But the other algorithms we've seen will also play a role at the LHC.

Tomorrow's subject will be making the best use of jets.