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Jets[Introduction]

[Background knowledge]

Jets are everywhere in QCD
Our window on partons

But not the same as partons:
Partons ill-defined; jets well-definable
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Why do we see jets? Parton fragmentation[Introduction]

[Background knowledge]

quark

Gluon emission:

∫
αs

dE

E

dθ

θ
≫ 1

At low scales:

αs → 1
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Gluon emission:

∫
αs

dE

E

dθ

θ
≫ 1

At low scales:

αs → 1

High-energy partons unavoidably lead to

collimated bunches of hadrons

Jets lecture 1 (Gavin Salam) MC tools for LHC school September 2011 3 / 30



Jets from scattering of partons[Introduction]

[Background knowledge]

Jets are unavoidable at hadron
colliders, e.g. from parton scat-
tering
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Jet cross section: data and theory agree over many orders of magnitude ⇔
probe of underlying interaction
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Jets from scattering of partons[Introduction]

[Background knowledge]

Jets are unavoidable at hadron
colliders, e.g. from parton scat-
tering
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ATLAS results

Jet cross section: data and theory agree over many orders of magnitude ⇔
probe of underlying interaction
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Jets from heavy decays[Introduction]

[Background knowledge]

Heavy objects: multi-jet final-states

◮ 107 tt̄ pairs for 1 fb−1 @ 14 TeV

◮ Vast # of QCD multijet events

# jets # events for 1 fb−1

3 2 · 1010

4 5 · 109

5 1 · 109

6 3 · 108

7 1 · 108

8 4 · 107

Tree level

pt(jet) > 20 GeV, ∆Rij > 0.4, |yij | < 2.5

Gleisman & Höche ’08
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Seeing v. defining jets[Introduction]

[Background knowledge]

Jets are what we see.
Clearly(?) 2 jets here

How many jets do you see?
Do you really want to ask yourself
this question for 109 events?
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Seeing v. defining jets[Introduction]

[Background knowledge]

A jet definition is a fully specified set of rules for projecting information from
an event’s partons or hadrons onto a handful of parton-like objects (jets):

jet 1 jet 2

LO partons

Jet Def  n

jet 1 jet 2

Jet Def  n

NLO partons

jet 1 jet 2

Jet Def  n

parton shower

jet 1 jet 2

Jet Def  n

hadron level

π π

K

p φ

Projection to jets should be resilient to QCD effects
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QCD jets flowchart[Introduction]

[Background knowledge]

Jet (definitions) provide central link between expt., “theory” and theory

And jets are an input to almost all analyses

Jets lecture 1 (Gavin Salam) MC tools for LHC school September 2011 8 / 30



QCD jets flowchart[Introduction]

[Background knowledge]

Jet (definitions) provide central link between expt., “theory” and theory

And jets are an input to almost all analyses

Jets lecture 1 (Gavin Salam) MC tools for LHC school September 2011 8 / 30



These lectures[Introduction]

[Background knowledge]

Aims: to provide you with

◮ the “basics” needed to understand what goes into current jet-based
measurements;

◮ some insight into the issues that are relevant when thinking about a jet
measurement

Structure:

◮ General considerations

◮ Common jet definitions at LHC Today

◮ Physics with jets Tomorrow
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Defining jets
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There is no unique jet definition[Introduction]

[General considerations]

The construction of a jet is unavoidably ambiguous. On at least two fronts:

1. which particles get put together into a common jet? Jet algorithm

+ parameters

2. how do you combine their momenta? Recombination scheme

Most commonly used: direct 4-vector sums (E -scheme)

Taken together, these different elements specify a choice of jet
definition
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Not all ambiguity is allowed[Introduction]

[General considerations]

Jets should be invariant with respect to certain modifications of the event:

◮ collinear splitting

◮ infrared emission

Why?

◮ Because otherwise lose real-virtual cancellation in NLO/NNLO QCD
calculations → divergent results

◮ Hadron-level ‘jets’ would become fundamentally non-perturbative

◮ Detectors can resolve neither full collinear nor full infrared event structure

Known as infrared and collinear safety
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Two main classes of jet alg.[Introduction]

[General considerations]

Sequential recombination (kt , etc.)

◮ bottom-up

◮ successively undoes QCD branching

Cone

◮ top-down

◮ centred around idea of an ‘invariant’, directed energy flow

Cones: most widely used at Tevatron
Seq. rec.: most widely used at LHC and HERA

In this lecture we’ll concentrate on the
sequential recombination algorithms
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Sequential recombination

jet algorithms

starting with a classic e+e− algorithm
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Motivating sequential recombination algorithms[Sequential recombination]

[kt in e+e−]

It’s a good approximation to think of the development of a jet as a
consequence of the repeated 1 → 2 branching of quarks and gluons.

E.g. this is how Pythia and Herwig have long modelled events

Sequential recombination algorithms try to work their way backwards
through this branching, repeatedly combining pairs of particles into a single
one.
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Motivating sequential recombination algorithms[Sequential recombination]

[kt in e+e−]

It’s a good approximation to think of the development of a jet as a
consequence of the repeated 1 → 2 branching of quarks and gluons.

E.g. this is how Pythia and Herwig have long modelled events

Sequential recombination algorithms try to work their way backwards
through this branching, repeatedly combining pairs of particles into a single
one.

The main questions are:

◮ How do you choose which pair of
particles to combine at any given
stage?

◮ When do you stop combining them?
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kt/Durham algorithm[Sequential recombination]

[kt in e+e−]

Majority of QCD branching is soft & collinear, with following divergences:

[dkj ]|M
2
g→gigj

(kj )| ≃
2αsCA

π

dEj

min(Ei ,Ej )

dθij

θij
, (Ej ≪ Ei , θij ≪ 1) .

To invert branching process, take pair with strongest divergence between
them — they’re the most likely to belong together.

This is basis of kt/Durham algorithm (e+e−):

1. Calculate (or update) distances between all particles i and j :

yij =
2min(E 2

i ,E
2
j )(1− cos θij)

Q2

NB: relative kt between particles2. Find smallest of yij
◮ If > ycut , stop clustering
◮ Otherwise recombine i and j , and repeat from step 1

Catani, Dokshitzer, Olsson, Turnock & Webber ’91
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The algorithm has one parameter

◮ ycut: sets minimal relative transverse momentum between
any pair of jets



kt/Durham algorithm features[Sequential recombination]

[kt in e+e−]

◮ Gives hierarchy to event and jets
Event can be charaterised

by y23, y34, y45.

◮ Resolution parameter related to
minimal transverse momentum
between jets

Most widely-used jet algorithm in e+e−

◮ Collinear safe: collinear particles recombined early on

◮ Infrared safe: soft particles have no impact on rest of clustering seq.
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kt alg. at hadron colliders[Sequential recombination]

[kt for hadron colliders]

1st attempt

◮ Lose absolute normalisation scale Q. So use unnormalised dij rather than
yij :

dij = 2min(E 2
i ,E

2
j )(1− cos θij)

◮ Now also have beam remnants (go down beam-pipe, not measured)
Account for this with particle-beam distance

diB = 2E 2
i (1 − cos θiB)

squared transv. mom. wrt beam
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kt alg. at hadron colliders[Sequential recombination]

[kt for hadron colliders]

2nd attempt: make it longitudinally boost-invariant
Catani, Dokshitzer, Seymour & Webber ’93

◮ Formulate in terms of rapidity (y), azimuth (φ), pt

dij = min(p2ti , p
2
tj)∆R2

ij , ∆R2
ij = (yi − yj)

2 + (φi − φj)
2

NB: not ηi , Eti

◮ Beam distance becomes
diB = p2ti

squared transv. mom. wrt beam

Apart from measures, just like e+e− alg.
Known as exclusive kt algorithm.

Problem: at hadron collider, no single fixed scale (as in Q in e+e−). So
how do you choose dcut? See e.g. Seymour & Tevlin ’06
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kt alg. at hadron colliders[Sequential recombination]

[kt for hadron colliders]

3rd attempt: inclusive kt algorithm

◮ Introduce angular radius R (NB: dimensionless!)

dij = min(p2ti , p
2
tj )

∆R2
ij

R2
, diB = p2ti

◮ 1. Find smallest of dij , diB
2. if ij , recombine them
3. if iB, call i a jet and remove from list of particles
4. repeat from step 1 until no particles left.

S.D. Ellis & Soper, ’93; the simplest to use

Jets all separated by at least R on y , φ cylinder.

NB: number of jets not IR safe (soft jets near beam); number of jets above
pt cut is IR safe.
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Two parameters to remember

◮ R: sets y−φ reach of the jet; minimal interjet separation

◮ pt cut on the jets

These parameters are common to all widely used hadron-
collider jet algorithms.



kt in action[Sequential recombination]

[kt for hadron colliders]

kt alg.: Find smallest of

dij = min(k2ti , k
2
tj )

∆R2
ij

R2
, diB = k2ti

◮ If dij recombine

◮ if diB , i is a jet

Example clustering with kt algo-
rithm, R = 1.0

φ assumed 0 for all towers
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kt in action[Sequential recombination]

[kt for hadron colliders]
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The kt algorithms form one of several “families” of

sequential recombination jet algorithm

Others differ in:

1. the choice distance measure between pairs of particles

[i.e. the relative priority given to soft and collinear divergences,

e.g. Cambridge/Aachen (C/A), which uses just angular distance]

2. using 3 → 2 clustering rather than 2 → 1
[ARCLUS; not used at hadron colliders, so won’t discuss it more]
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The kt family of algorithms was widely used at LEP
(e+e−) and HERA (ep and γp).

Tevatron instead used cone algorithms, as did the LHC
experiments during the design and planning stages.
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(Some) cone algorithms give
circular jets in y − φ plane

Much appreciated by experi-
ments e.g. for acceptance

corrections

kt jets are irregular

Because soft junk clusters to-
gether first:

dij = min(k2ti , k
2
tj )∆R2

ij

Regularly held against kt

Is there some other, non
cone-based way of getting

circular jets?



Adapting seq. rec. to give circular jets[Comparing algorithms]

Soft stuff clusters with nearest neighbour

kt : dij = min(k2
ti , k

2
tj)∆R2

ij −→ anti-kt: dij =
∆R2

ij

max(k2
ti , k

2
tj)
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Adapting seq. rec. to give circular jets[Comparing algorithms]

Soft stuff clusters with nearest neighbour

kt : dij = min(k2
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Hard stuff clusters with nearest neighbour

anti-kt gives
cone-like jets

without using stable
cones



Anti-kt experimental performance[Comparing algorithms]

As good as, or better
than all previous
experimentally-
favoured
algorithms.

Essentially because
anti-kt has linear
response to soft
particles.

And it’s also infrared
and collinear safe
(needed for theory
calcs.)
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Anti-kt ’s linearity with respect to soft radiation and/or
detector fluctuations makes it simpler to use experimentally



Nearly all algorithms available in FastJet[Comparing algorithms]

FastJet time to cluster N particles
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t /
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t k t
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idPoint (s
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 0 G

eV)

CDF MidPoint (s
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CDF JetClu (v
ery unsafe)

FastJet

Seedless IR
 Safe Cone

(SISCone)
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R=0.7

anti-k t

LHC lo-lumi LHC hi-lumi LHC Pb-Pb

k t

Used by all the LHC experiments
Aavailable from http://fastjet.fr/
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Summary[Comparing algorithms]

Today we’ve examined why we need jets and looked at some of the
logic behind the way they’re defined.

Of the different algorithms we’ve discussed, the one that’s most widely
used at LHC today is anti-kt .

But the other algorithms we’ve seen will also play a role at the LHC.

Tomorrow’s subject will be making the best use of jets.
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