Introduction to Event Generators

Frank Krauss

Institute for Particle Physics Phenomenology Durham University

MCNet school Kyoto, 5.-8.9.2011

< 17 ▶

IPPP

Introduction to Event Generators

F Krauss

MC techniques	Quadratures	Monte Carlo		
Topics of	of the lectures			
 Lect 	ure 1: <i>The Mont</i>	e Carlo Princip	le	
2 Lect	ure 2: Parton lev	vel event genera	ation	
Sector	ure 3: <i>Dressing t</i>	the Partons		
4 Lect	ure 4: Modelling	beyond Pertur	bation Theory	
Thanks to				
- My fello P.Richar	w MC authors, especially S.Gie dson, M.Seymour, T.Sjostrand	eseke, K.Hamilton, L.Lonnbl , B.Webber.	ad, F.Maltoni, M.Mangano,	

- the other Sherpas: J.Archibald, S.Höche, S.Schumann, F.Siegert, M.Schönherr, J.Winter, and K.Zapp.

2

・ロト ・回ト ・ヨト ・ヨト

MC techniques	Quadratures	Monte Carlo	

Menu of lecture 1

- Prelude: Selecting from a distribution
- Standard textbook numerical integration (quadratures)
- Monte Carlo integration
- A basic simulation example

F Krauss

Prelude: Selecting from a distribution

The problem

- A typical Monte Carlo/simulation problem: Distribution of "usual" random numbers #: "flat" in [0, 1].
- But: Want random numbers x ∈ [x_{min}, x_{max}], distributed according to (probability) density f(x).

MC techniques	Quadratures	Monte Carlo	

The exact solution

- The first method applies if both the integral of the density f(x) and its inverse are known (i.e. practically never).
- To see how it works realise that the diff. probability P(x ∈ [x', x' + dx']) = f(x')dx'.
- Therefore: x given by

$$\int_{in}^{x} \mathrm{d}x' f(x') = \# \int_{x_{\min}}^{x_{\max}} \mathrm{d}x' f(x').$$

Since everything known:

$$x = F^{-1} \left[F(x_{\min}) + \# \left(F(x_{\max}) - F(x_{\min}) \right) \right]$$

MC te	chniques	Quadratures	Monte Carlo	Simulation	
	The wo	rk-around solu	ition: "Hit-or	r-miss"	
		(S	olution, if exact	case does not v	vork.)
	• Buil	ds on "over-estir $g(x) > f(x)$	$\begin{array}{l} \text{nator'' } g(x) \ (G \\ (x) \ \forall x \in [x_{\min}, \end{array}) \end{array}$	and G^{-1} known x_{\max}].):
	 Selection (with 	ct an <i>x</i> according	g to g);	A 1 1	
	 Acce (with 	ept with probabil another randor	ity $f(x)/g(x)$ n number);	3	*fmax - 4(x)
	 Obvi 	ous fall-back cho	bice for $g(x)$:	× _{min} × _{max}	→
	g(x	$(x) = \operatorname{Max}_{[x_{\min}, x_{\max}]}$	$x_{x}]{f(x)}.$		
				(口) <問) <是) <3	⇒ ≣ ୬৭৫
F. Kra	uss				IPPP
Introd	uction to Event G	enerators			

Quadratures: standard numerical integration

Reminder: Basic techniques

- Typical problem: Need to evaluate an integral, cannot do it in closed form.
- Example: nonlinear pendulum. Can calculate period T from E.o.M. $\ddot{\theta} = -g/I \sin \theta$:

$$T = \sqrt{\frac{8I}{g}} \int_{0}^{\theta_{\max}} \frac{\mathrm{d}\theta}{\sqrt{\cos\theta - \cos\theta_{\max}}}$$

Elliptic integral, no closed solution known \implies entering (again) the realm of numerical solutions.

(ロ) (四) (三) (三)

MC t		Quadratures	Monte Carlo		
	Nur	nerical integration	: Newton-Co	otes method	
	۲	Nomenclature now: N	Nant to evaluat	the $I_f^{(a,b)} = \int_a^b \mathrm{d}x f(x)$	(x).
	٥	Basic idea: Divide in $\Delta x = (b - a)/N \text{ and}$ $I_f^{(a,b)} = \int_a^b \mathrm{d}x f(x)$	terval $[a, b]$ in I l approximate $\approx \sum_{i=0}^{N-1} f(x_i) \Delta x$	V subintervals of = $\sum_{i=0}^{N-1} f(a + i\Delta x)$	size x)∆x,
		i.e. replace integratio	n by sum over	rectangular pane	ls.
	٠	Obvious issue: What parametrically with " function calls)? Answ	is the error? H step-size" (or, I ver: It is linear	ow does it scale better, number c in Δx .	of

MC techniques	Quadratures	Monte Carlo	

Improving on the error: Trapezoid, Simpson and all that

- A careful error estimate suggests that by replacing rectangles with trapezoids the error can be reduced to quadratic in Δx.
- This boils down to including a term [f(b) f(a)]/2: $I_f^{(a,b)} \approx \sum_{i=1}^{N-1} f(x_i) \Delta x + \frac{\Delta x}{2} [f(a) + f(b)]$
- Repeating the error-reducing exercise replaces the trapezoids by parabola: The Simpson rule. In so doing, the error decreases to (Δx)⁴.

F Krauss

A B A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

IPPP

F. Krauss

MC techniques	Quadratures	Monte Carlo	

Convergence of numerical integration: Summary

• First observation: Numerical integrations only yield estimators of the integral, with an estimated accuracy given by the error.

(Proviso: the function is sufficiently well behaved.)

(日) (同) (三) (三)

- Scaling behaviour of the error translates into scaling behaviour for the number of function calls necessary to achieve a certain precision.
- In one dimension/per dimension, therefore, the convergence scales like
 - Trapezium rule: $\simeq 1/N^2$
 - Simpson's rule $\simeq 1/N^4$

with the number N of function calls.

Monte Carlo integration

- The underlying idea: Determination of π
 - Use random number generator!

Throw random points (x,y), with x, y in [0,1] For hits: $(x^2+y^2) < r^2 = 1$

< 17 ▶

3

MC techniques	Quadratures	Monte Carlo	

IPPP

F. Krauss

Introduction to Event Generators

MC te		Quadratures	Monte Carlo		
	Error es	stimate in Mo	nte Carlo inte	egration	
	MC	integration: Esti	imate integral by	y N probes	
		$I_f^{(a,b)}$	$= \int^{b} \mathrm{d}x f(x)$)	
		$\longrightarrow \langle I_f^{(a,b)} \rangle$	$\rangle = \frac{b-a}{N} \sum_{i=1}^{N} f$	$f(x_i) = \langle f \rangle_{a,b},$	
	whe	re x _i homogeneo	usly distributed	in [<i>a</i> , <i>b</i>]	
	 Basi 	c idea for error e	estimate: statist	ical sample	
	\Rightarrow	use standard de	viation as error	estimate	
		$\langle E_{f}^{(a,b)}(N) \rangle$	$= \sigma = \left[\frac{\langle t \rangle}{2}\right]$	$\left[\frac{f^2\rangle_{a,b}-\langle f\rangle_{a,b}^2}{N}\right]^{1/2}$.	
	Inde	pendent of the r	number of integr	ration dimensions	;!

 \implies Method of choice for high-dimensional integrals.

2

・ロト ・回ト ・ヨト ・ヨト

MC techniques	Quadratures	Monte Carlo	

Determination of π : Errors

F. Krauss

Introduction to Event Generators

MC tec	hniques	Quadratures	Monte Carlo		
	Improve	convergence:	Importance	sampling	
	Wan	t to minimise nu	mber of functio	on calls.	
				(They are potentially CPU-e	expensive.)
	\implies	Need to improve	convergence o	f MC integratior	ı.
	 First 	basic idea: Sam	ples in regions,	where f largest	
			(\Longrightarrow corresponds to	a Jacobian transformation o	f integral.)
	Algo	rithm:			
	۹	Assume a functio	n $g(x)$ similar to	o f(x).	
	٩	Obviously $f(x)/g$	(x) is smooth =	$\Rightarrow \langle E(f/g) angle$ is sr	nall.
	٩	Must sample acco	ording to $dx g(x)$) rather than dx :	
		g(x) plays role of	probability distr	ibution; we know	
		already how to de	eal with this!		
	Wor	ks, if <i>f</i> (x) is well	-known. Hard t	o generalise.	J

• Consider $f(x) = \cos \frac{\pi x}{2}$ and $g(x) = 1 - x^2$:

IPPP

F. Krauss

Introduction to Event Generators

MC te	chniques	Quadratures	Monte Carlo		
	Improve	e convergence:	Stratified sa	ampling	
	Wan	it to minimise nu	mber of functio	on calls.	
				(They are potentially CPU-e	expensive.)
	\implies	Need to improve	convergence o	f MC integratior	ı.
	 Basi 	c idea here: Deco	ompose integra	l in <i>M</i> sub-integ	rals
		$\langle I(f) \rangle = \sum_{j=1}^{M} \langle I_j(f) \rangle$	$)\rangle, \langle E(f)\rangle^2 =$	$\sum_{j=1}^{M} \langle E_j(f) angle^2$	
	The	n: Overall variand	ce smallest, if '	equally distribut	ed".

 $(\implies$ Sample, where the fluctuations are.)

- Algorithm:
 - Divide interval in bins (variable bin-size or weight);
 - adjust such that variance identical in all bins.

E. Krauss

IPPP

Introduction to Event Generators

E. Krauss

MC techniques	Quadratures	Monte Carlo	

Example for stratified sampling: VEGAS

- Good for Vegas: Singularity "parallel" to integration axes
- Bad for Vegas: Singularity forms ridge along integration axes

<ロト <回ト < 回ト < 回ト

MC techniques	Quadratures	Monte Carlo		
Impr	ove convergence:	Multichann	el sampling	
•	Want to minimise nu	mber of function	on calls.	
:	\Longrightarrow Need to improve	convergence of	(They are potentially CPU-exp of MC integration.	pensive.)
٩	Basic idea: Best of b Hybrid between impo stratified sampling.	oth worlds: rtance and		82
٩	Have "bins" – weight "eigenfunctions" – g_i $\implies g(\vec{x}) = \sum_{i=1}^{N} g_i$	$\alpha_i - of$ (x): $\alpha_i g_i(\vec{x}).$		- 34
۲	n particle physics, th	is is the metho	od of choice for pa	rton

level event generation!

F. Krauss

2

∢ ≣⇒

A = A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Basic simulation paradigm

 $\mathcal{H} = -J\sum s_i s_j$

An example from thermodynamics

• Consider two-dimensional Ising model:

(Spins fixed on 2-D lattice with nearest neighbour interactions.)

(a)

- Traditional model to understand (spontaneous) magnetisation & phase transitions.
- To evaluate an observable \mathcal{O} , sum over all micro states $\phi_{\{i\}}$, given by the individual spins. (Similar to path integral in QFT.) $\langle \mathcal{O} \rangle = \int \mathcal{D}\phi_{\{i\}} \operatorname{Tr} \left\{ \mathcal{O}(\phi_{\{i\}}) \exp \left[-\frac{\mathcal{H}(\phi_{\{i\}})}{k_B T} \right] \right\}$
- Typical problem in such calculations (integrations!):
 Phase space too large ⇒ need to sample.

MC techniques	Quadratures	Monte Carlo	Simulation	

Metropolis-Algorithm

- Metropolis algorithm simulates the canonical ensemble, summing/integrating over micro-states with MC method.
- Necessary ingredient: Interactions among spins in probabilistic language (will come back to us.)
- Algorithm will look like: Go over the spins, check whether they flip (compare $\mathcal{P}_{\mathrm{flip}}$ with random number), repeat to equilibrate.
- To calculate $\mathcal{P}_{\rm flip}$: Use energy of the two micro-states (before and after flip) and Boltzmann factors.
- While running, evaluate observables directly and take thermal average (average over many steps).

< ロ > < 同 > < 回 > < 回 >

Why Metropolis is correct: Detailed balance

- Consider one spin flip, connecting micro-states 1 and 2.
- $\bullet\,$ Rate of transitions given by the transition probabilities ${\cal W}$
- If $E_1 > E_2$ then $\mathcal{W}_{1 \to 2} = 1$ and $\mathcal{W}_{2 \to 1} = \exp\left(-\frac{E_1 E_2}{k_B T}\right)$
- In thermal equilibrium, both transitions equally often: $\mathcal{P}_2\mathcal{W}_{2\to1}=\mathcal{P}_1\mathcal{W}_{1\to2}$

This takes into account that the respective states are occupied according to their Boltzmann factors.

 $(\mathcal{P}_i \sim \exp(-E_i/k_BT))$

 In principle, all systems in thermal equilibrium can be studied with Metropolis - just need to write transition probabilities in accordance with detailed balance, as above
 ⇒ general simulation strategy in thermodynamics.

Introduction to Event Generators

MC techniques	Quadratures	Monte Carlo	Summary

Summary of lecture 1

- Discussed some basic numerical techniques.
- Introduced Monte Carlo integration as the method of choice for high-dimensional integration space (phase space).
- Introduced some standard improvement strategies to the convergence of Monte Carlo integration.
- Discussed connections between simulations and Monte Carlo integration with the example of the Ising model.