Orientation	Matrix elements	Detour: New models	Survey of tools	ME Limitations	Detour: NLO

Introduction to Event Generators

Frank Krauss

Institute for Particle Physics Phenomenology Durham University

MCNet school Kyoto, 5.-8.9.2011

IPPP

.⊒ →

< 17 ▶

Introduction to Event Generators

F Krauss

Orient		Matrix elements	Detour: New models	Survey of tools	ME Limitations	Detour: NLO
	Тор	ics of the	lectures			
	1	Lecture 1:	The Monte Carlo	o Principle		
	2	Lecture 2:	Parton level ever	nt generation	n	
	3	Lecture 3:	Dressing the Par	tons		
	4	Lecture 4:	Modelling beyon	d Perturbati	on Theory	

Thanks to

- My fellow MC authors, especially S.Gieseke, K.Hamilton, L.Lonnblad, F.Maltoni, M.Mangano, P.Richardson, M.Seymour, T.Sjostrand, B.Webber.
- the other Sherpas: J.Archibald, S.Höche, S.Schumann, F.Siegert, M.Schönherr, J.Winter, and K.Zapp.

2

Orientation	Matrix elements	Detour: New models	Survey of tools	ME Limitations	Detour: NLO

Menu of lecture 2

- Prelude: Orientation
- Stating the problem: Factorial growth
- Efficient matrix element calculation and phase space evaluation at leading order (tree-level)
- Survey of leading order tools
- Next-to leading order

Prelude: Orientation

Event generator paradigm

Divide event into stages, separated by different scales.

• Signal/background:

Exact matrix elements.

• QCD-Bremsstrahlung:

Parton showers (also in initial state).

• Multiple interactions:

Beyond factorisation: Modelling.

• Hadronisation:

Non-perturbative QCD: Modelling.

- ▲ ロ > ▲ 圖 > ▲ 圖 > ▲ 圖 > 今 Q @

F. Krauss

Orientation	Matrix elements	Detour: New models	Survey of tools	ME Limitations	Detour: NLO

Simulation of the hard bits (signals & backgrounds)

• Simple example: $t \to bW^+ \to b\bar{l}\nu_l$:

$$|\mathcal{M}|^2 = \frac{1}{2} \left(\frac{8\pi\alpha}{\sin^2\theta_W}\right)^2 \frac{p_t \cdot p_\nu p_b \cdot p_l}{(p_W^2 - M_W^2)^2 + \Gamma_W^2 M_W^2}$$

(D) < **(()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **(**) < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < **()** < (**)** < **()** < **()** < **()** < **(**

• Phase space integration (5-dim):

$$\Gamma = rac{1}{2m_t}rac{1}{128\pi^3}\int \mathrm{d}p_W^2 rac{\mathrm{d}^2\Omega_W}{4\pi}rac{\mathrm{d}^2\Omega}{4\pi}\left(1-rac{p_W^2}{m_t^2}
ight)|\mathcal{M}|^2$$

- 5 random numbers \implies four-momenta \implies "events".
- Apply smearing and/or arbitrary cuts.
- Simply histogram any quantity of interest no new calculation for each observable

Orientation

Availability of exact calculations (hadron colliders)

- Fixed order matrix elements ("parton level") are exact to a given perturbative order. (and often quite a pain!)
- Important to understand limitations: Only tree-level fully automated, 1-loop-level ongoing.

F. Krauss

Introduction to Event Generators

Parton level simulations

Stating the problem(s)

- Multi-particle final states for signals & backgrounds.
- Need to evaluate $d\sigma_N$:

$$\int_{\text{uts}} \left[\prod_{i=1}^{N} \frac{\mathrm{d}^{3} q_{i}}{(2\pi)^{3} 2 E_{i}} \right] \delta^{4} \left(p_{1} + p_{2} - \sum_{i} q_{i} \right) \left| \mathcal{M}_{p_{1} p_{2} \to N} \right|^{2}$$

- Problem 1: Factorial growth of number of amplitudes.
- Problem 2: Complicated phase-space structure.
- Solutions: Numerical methods.

E. Krauss

æ

э

・ロト ・日下 ・ 日下

Orientation	Matrix elements	Detour: New models	Survey of tools	ME Limitations	Detour: NLO

12

Basic ideas of efficient ME calculation

Need to evaluate
$$|\mathcal{M}|^2 = \left|\sum\limits_i \mathcal{M}_i\right|$$

- Obvious: Traditional textbook methods (squaring, completeness relations, traces) fail
 - \implies result in proliferation of terms $(\mathcal{M}_i \mathcal{M}_i^*)$
 - \implies Better: Amplitudes are complex numbers,
 - \implies add them before squaring!
- Remember: spinors, gamma matrices have explicit form could be evaluated numerically (brute force)
 But: Rough method, lack of elegance, CPU-expensive

F Krauss

Orientation	Matrix elements	Detour: New models	Survey of tools	ME Limitations	Detour: NLO

Helicity method

- Introduce basic helicity spinors (needs to "gauge"-vectors)
- Write everything as spinor products, e.g. $\bar{u}(p_1, h_1)u(p_2, h_2) = \text{complex numbers.}$

Completeness rel'n: $(\not p + m) \implies \frac{1}{2} \sum_{\nu} \left[\left(1 + \frac{m^2}{p^2} \right) \bar{u}(p, h) u(p, h) + \left(1 - \frac{m^2}{p^2} \right) \bar{v}(p, h) v(p, h) \right]$

- There are other genuine expressions ...
- Translate Feynman diagrams into "helicity amplitudes": complex-valued functions of momenta & helicities.
- Spin-correlations etc. nearly come for free.

F Krauss

Orientation	Matrix elements	Detour: New models	Survey of tools	ME Limitations	Detour: NLO

Taming the factorial growth

- In the helicity method
 - Reusing pieces: Calculate only once!
 - Factoring out: Reduce number of multiplications!

Implemented as a-posteriori manipulations of amplitudes.

Better method: Recursion relations (recycling built in).
 Best candidate so far: Off-shell recursions

(Dyson-Schwinger, Berends-Giele etc.)

Colour-dressing: Fighting factorial growth in colour

• In principle: sampling over colours improves situation.

(But still, e.g. naively $\simeq (n-1)!$ permutations/colour-ordering for n external gluons).

Improved scheme: colour dressing.

F.Maltoni, K.Paul, T.Stelzer & S.Willenbrock Phys. Rev. D67 (2003) 014026

Works very well with Berends-Giele recursions:

Final	BG		BO	7F	CSW	
State	CO	CD	CO	CD	CO	CD
2g	0.24	0.28	0.28	0.33	0.31	0.26
3g	0.45	0.48	0.42	0.51	0.57	0.55
4g	1.20	1.04	0.84	1.32	1.63	1.75
5g	3.78	2.69	2.59	7.26	5.95	5.96
6g	14.2	7.19	11.9	59.1	27.8	30.6
7g	58.5	23.7	73.6	646	146	195
8g	276	82.1	597	8690	919	1890
9g	1450	270	5900	127000	6310	29700
10g	7960	864	64000	-	48900	-

C.Duhr, S.Hoche & F.Maltoni, JHEP 0608 (2006) 062

Time [s] for the evaluation of 10^4 phase space points, sampled over helicities & colour.

Introduction to Event Generators

IPPP

(日) (同) (三) (三)

Efficient phase space integration

("Amateurs study strategy, professionals study logistics")

- Democratic, process-blind integration methods:
 - Rambo/Mambo: Flat & isotropic

R.Kleiss, W.J.Stirling & S.D.Ellis, Comput. Phys. Commun. 40 (1986) 359;

• HAAG/Sarge: Follows QCD antenna pattern

A.van Hameren & C.G.Papadopoulos, Eur. Phys. J. C 25 (2002) 563.

- Multi-channeling: Each Feynman diagram related to a phase space mapping (= "channel"), optimise their relative weights.
 R.Kleiss & R.Pittau, Comput. Phys. Commun. 83 (1994) 141.
- Main problem: practical only up to $\mathcal{O}(10k)$ channels.
- Some improvement by building phase space mappings recursively: More channels feasible, efficiency drops a bit.

Orientation	Matrix elements	Detour: New models	Survey of tools	ME Limitations	Detour: NLO

Monte Carlo integration: Unweighting efficiency

- Want to generate events "as in nature".
- Basic idea: Use hit-or-miss method;
 - Generate \vec{x} with integration method,
 - compare actual $f(\vec{x})$ with maximal value during sampling \implies "Unweighted events".

• Comments:

- unweighting efficiency, $w_{eff} = \langle f(\vec{x}_j) / f_{max} \rangle$ = number of trials for each event.
- Good measure for integration performance.
- Expect $\log_{10} w_{\rm eff} \approx 3-5$ for good integration of multi-particle final states at tree-level.
- Maybe acceptable to use $f_{\max, eff} = K f_{\max}$ with K < 1. Problem: what to do with events where $f(\vec{x}_j)/f_{\max, eff} > 1$? Answer: Add $\inf[f(\vec{x}_j)/f_{\max, eff}] = k$ events and perform hit-or-miss on $f(\vec{x}_j)/f_{\max, eff} - k$.

F Krauss

(日) (同) (三) (三)

Orientation	Matrix elements	Detour: New models	Survey of tools	ME Limitations	Detour: NLO

Best answer at the moment: COMIX (personal bias)

T.Gleisberg & S.Hoeche, JHEP 0812 (2008) 039

- Colour-dressed Berends-Giele amplitudes in the SM.
- Fully recursive phase space generation.
- Example results (cross sections):

		$gg \to ng$		Cross section [pb]					
		n		8	9	10	11	12	
		\sqrt{s} [G	ieV]	1500	2000	2500	3500	5000	
		Соміх	(0.755(3)	0.305(2)	0.101(7)	0.057(5)	0.019(2)	
		Malto	ni (2002)	0.70(4)	0.30(2)	0.097(6)			
		ALPGE	N	0.719(19)					
	σ [μb]				N	umber of jet	ts		
Ì	bb + QCI	D jets	0	1	2	3	4	5	6
ĺ	Соміх		470.8(5)	8.83(2)	1.826(8)	0.459(2)	0.1500(8)	0.0544(6)	0.023(2)
	ALPGEN		470.6(6)	8.83(1)	1.822(9)	0.459(2)	0.150(2)	0.053(1)	0.0215(8)
	AMEGIC++	F	470.3(4)	8.84(2)	1.817(6)				

IPPF

Best answer at the moment: COMIX (personal bias)

T.Gleisberg & S.Hoeche, JHEP 0812 (2008) 039

- Colour-dressed Berends-Giele amplitudes in the SM.
- Fully recursive phase space generation.
- Example results (phase space performance):

IPPP

Introduction to Event Generators

FEYNRULES: Implementing new models made easy

Aim

- Portable, transparent & reproducible implementation of (nearly arbitrary) new physics models.
- In most codes: New models given by new particles, their properties & interactions.
- Output to standard ME generators enabled (MADGRAPH, SHERPA, ...)

(ロ) (四) (三) (三)

• Various models already implemented & validated for a list: http://feynrules.phys.ucl.ac.be

Survey of existing parton-level tools

Comparison of tree-level tools

	Models	$2 \rightarrow n$	Ampl.	Integ.	public?	lang.
ALPGEN	SM	n = 8	rec.	Multi	yes	Fortran
AMEGIC++	SM,MSSM,ADD	<i>n</i> = 6	hel.	Multi	yes	C++
Соміх	SM	n = 8	rec.	Multi	yes	C++
COMPHEP	SM,MSSM	n = 4	trace	1Channel	yes	C
HELAC	SM	n = 8	rec.	Multi	yes	Fortran
MADEVENT	SM,MSSM,UED	<i>n</i> = 6	hel.	Multi	yes	Python/Fortran
WHIZARD	SM,MSSM,LH	n = 8	rec.	Multi	yes	O'Caml

▲ロ > ▲ □ > ▲ □ > ▲ □ > ▲ □ > ▲ □ >

IPPP

F. Krauss

Introduction to Event Generators

Limitations of parton level simulation

Factorial growth

... persists due to the number of colour configurations

(e.g. (n-1)! permutations for *n* external gluons).

- Solution: Sampling over colours, but correlations with phase space
 - \implies Best recipe not (yet) found.
- New scheme for colour: colour dressing

(C.Duhr, S.Hoche and F.Maltoni, JHEP 0608 (2006) 062)

IPPF

Orientation	Matrix elements	Detour: New models	Survey of tools	ME Limitations	Detour: NLO

Efficient phase space integration

- Main problem: Adaptive multi-channel sampling translates "Feynman diagrams" into integration channels
 hence subject to growth.
- But it is practical only for 1000-10000 channels.
- Therefore: Need better sampling procedures \implies open question with little activity.

(Private suspicion: Lack of glamour)

Orientation	Matrix elements	Detour: New models	Survey of tools	ME Limitations	Detour: NLO

General

- Fixed order parton level (LO, NLO, ...) implies fixed multiplicity
- No control over potentially large logs (appear when two partons come close to each other).
- Parton level is parton level is parton level . . .
 experimental definitions rely on observable hadrons.

Therefore: Need hadron level event generators!

Nomenclature (example: $\gamma^* \rightarrow$ hadrons)

- In general: $\mathsf{N}^n\mathsf{LO}\leftrightarrow\mathcal{O}(\alpha_s^n)$
- But: only for inclusive quantities

(e.g.: total xsecs like $\gamma^* \rightarrow$ hadrons).

Counter-example: thrust distribution

- In general, distributions are HO.
- Distinguish real & virtual emissions: Real emissions → mainly distributions, virtual emissions → mainly normalisation.

イロン 不通 と イヨン イ

E. Krauss

Orientation	Matrix elements	Detour: New models	Survey of tools	ME Limitations	Detour: NLO
Ana	tomy: Virt	ual and real	corrections	5	
	5				
LO :					
	Virtual	NLO cor	rections [.] O((α_{-})	
NLO	:1 / Enc+2.				
		/ Virtual	corrections	= extra lo	ops
	17 71	A Real co	rrections	= extra le	νσς

• UV-divergences in virtual graphs \rightarrow renormalisation

~~+~~

 But also: IR-divergences in real & virtual contributions Must cancel each other, non-trivial to see: N vs. N + 1 particle FS, divergence in PS vs. loop

E. Krauss

A (1) > A (1) > A

Orientation	Matrix elements	Detour: New models	Survey of tools	ME Limitations	Detour: NLO

MC calculations at NLO QCD

- Calculate two separate, divergent integrals $\sigma_{NLO} = \int_{m+1} d\sigma_R + \int_m d\sigma_V$
- Real emission in $d\sigma_R$, virtual loop in $d\sigma_V$.
- Divergent structures due to soft/collinear particles.
- Combine before numerical integration to cancel divergences (KLN theorem guarantees cancellation).
- Two solutions: Phase space slicing and subtraction.

▲ @ ▶ ▲ ≥ ▶ ▲

Orientation	Matrix elements	Detour: New models	Survey of tools	ME Limitations	Detour: NLO

Illustrative 1-dim example

- $|\mathcal{M}_{m+1}^{R}|^{2} = \frac{1}{x}R(x)$, where x=gluon energy or similar.
- $|\mathcal{M}_m^V|^2 = \frac{1}{\epsilon}V$, regularised in $d = 4 2\epsilon$ dimensions.
- Cross section in *d* dimensions with jet measure F^{J} : $\sigma = \int_{0}^{1} \frac{dx}{x^{1+\epsilon}} R(x) F_{1}^{J}(x) + \frac{1}{\epsilon} V F_{0}^{J}$
- Infrared safety of jet measure: F^J₁(0) = F^J₀
 ⇒ "A soft/collinear parton has no effect." (Tricky issue - without it, no reliable NLO calculation!)
- KLN theorem: R(0) = V.

Orientation	Matrix elements	Detour: New models	Survey of tools	ME Limitations	Detour: NLO

Phase space slicing in 1-dim example

W.T.Giele and E.W.N.Glover, Phys. Rev. D 46 (1992) 1980.

・ロト ・回ト ・ ヨト ・

• Introduce arbitrary cutoff $\delta \ll 1$:

$$\begin{split} \sigma &= \int_{0}^{\delta} \frac{\mathrm{d}x}{x^{1+\epsilon}} R(x) F_{1}^{J}(x) + \frac{1}{\epsilon} V F_{0}^{J} + \int_{\delta}^{1} \frac{\mathrm{d}x}{x^{1+\epsilon}} R(x) F_{1}^{J}(x) \\ &\approx \int_{0}^{\delta} \frac{\mathrm{d}x}{x^{1+\epsilon}} V F_{0}^{J} + \frac{1}{\epsilon} V F_{0}^{J} + \int_{\delta}^{1} \frac{\mathrm{d}x}{x} R(x) F_{1}^{J}(x) \\ &= \log(\delta) V F_{0}^{J} + \int_{\delta}^{1} \frac{\mathrm{d}x}{x} R(x) F_{1}^{J}(x) \end{split}$$

Two separate finite integrals - both numerically large
 ⇒ error blows up (trial and error for stability)

F Krauss

Orientation	Matrix elements	Detour: New models	Survey of tools	ME Limitations	Detour: NLO

Subtraction method in 1-dim example

S.Catani and M.H.Seymour, Nucl. Phys. B 485 (1997) 291

A B > A
 A
 B > A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Rewrite

$$\begin{split} \sigma &= \int_{0}^{1} \frac{\mathrm{d}x}{x^{1+\epsilon}} R(x) F_{1}^{J}(x) - \int_{0}^{1} \frac{\mathrm{d}x}{x^{1+\epsilon}} V F_{0}^{J} + \int_{0}^{1} \frac{\mathrm{d}x}{x^{1+\epsilon}} V F_{0}^{J} + \frac{1}{\epsilon} V F_{0}^{J} \\ &= \int_{0}^{1} \frac{\mathrm{d}x}{x^{1+\epsilon}} \left(R(x) F_{1}^{J}(x) - V F_{0}^{J} \right) + \mathcal{O}(1) V F_{0}^{J} \,. \end{split}$$

- Two separate finite integrals, with no large numbers to be added/subtracted.
- Subtraction terms are universal (analytical bit can be calculated once and for all).

Orientation	Matrix elements	Detour: New models	Survey of tools	ME Limitations	Detour: NLO

Automated real subtraction algorithms

- Remaining major nuisance in NLO calculations: real contributions & subtraction ⇒ has been "solved", i.e. automated.
- In principle: simple ("only" tree-level) & general (process-independent subtraction schemes).
- A problem that begged for automation.
- Status by now:
 - CS subtraction in SHERPA, TEVJET, MADDIPOLE, ...
 - FKS subtraction in MADFKS

F Krauss

Parton level tools: Loop level

Specific solutions

- For a long time only process-specific codes, e.g.:
 - NLOJET++ (jets only),
 - VBFNLO (VBF-type processes),
 - and MCFM (the interesting rest)
- Recently: (semi-)automated codes:
 - BLACKHAT +SHERPA
 - HELAC +CUTTOOLS
 - ROCKET
 - MADLOOP

Orientation	Matrix elements	Detour: New models	Survey of tools	ME Limitations	Detour: NLO

Summary of lecture 2

- A first level of simulation: parton level.
- Brief review of state-of-the-art there.
- Discussed automated generation of matrix elements and their phase space integration.
- Many tools available for tree-level multi-leg.
- Going to loop-level in an automated way just started now: MADLOOP/MADDIPOLE, GOLEM/SAMURAI, HELAC, BLACKHAT +SHERPA, ...
- Discussed some intricacies of NLO calculations.

F Krauss