

INTRODUCTION TO MADGRAPH/MADEVENT 5 PART 2

Rikkert Frederix University of Zurich

2011 IPMU-YITP School on Monte Carlo Tools for the LHC, Kyoto, Japan, September 5-9, 2011

OUTLINE

- MadGraph/MadEvent beginner
- Advanced user
 - Interface to parton shower
 - Under the hood
 - New physics
 - # Future

PARTON SHOWERING

For the description of any exclusive final state (that can be passed to a hadronization model and detector simulation) partons need to be showered

- MadGraph has no in-house parton shower
 - The LHE events that can be downloaded from the MadGraph website follow the Les Houches standard, and can therefore be showered by any parton shower available
- From the MadGraph website, interface to Pythia is available

POSSIBLE DOUBLE COUNTING

Possible double counting between partons from matrix elements and parton shower

Use MLM prescription

NEED FOR MATCHING

Transverse momentum of the 2-nd extra jet in top pair production without matching: (too) much room for tuning

NEED FOR MATCHING

This uncertainty is greatly reduced with the matrix-element parton-shower matching

PARTON SHOWER & DETECTOR SIMULATION

- When using the MadGraph interface to Pythia, the multi-particle matrix-element parton-shower matching is available (MLM)
 - Directly available from the MadGraph websites
- Interface to (simplified) detector simulation also directly available from the MadGraph websites:
 - % PGS ("pretty good simulations")

MATCHING IS AUTOMATED

- Matching is automatically done when running through the MadEvent/Pythia interface
 - * Example: simulation of e^+e^- with 0, 1, 2, 3 ME jets

EXECISES IV

- Generate events for the signal for Higgs boson production via gluon fusion at the LHC, p p > H, H -> e- ve~ mu+ vm
- Generate the backgrounds with the same final state ("non-reducible backgrounds")
- Run Pythia and the PGS detector simulation
- Compare the differences between the results at parton and detector level
- Think about which other (reducible) backgrounds might be important

OUTLINE

- MadGraph/MadEvent beginner
- Advanced user
 - Interface to parton shower
 - Under the hood
 - New physics
 - # Future

UNDER THE HOOD

ÅLGORITHMS

- Let us have a closer look at 2 crucial internal algorithms
 - Diagram generation
 - Writing of the amplitudes

DIAGRAM GENERATION

- 1. Generate hash maps (called libraries in Python) to map possible combinations of particles to their corresponding interactions
- 2. Start from external particles, and create all possible groupings of these particles
 - ✤ If all particles can be grouped → a diagram has been formed
 - If only two (the same) particles left \rightarrow a diagram has been formed
 - The grouped particles form new "external" particles
 - Only keep combinations in which at least two groupings where performed in this step
- **3**. Iterate step 2

EXAMPLE: DIAGRAM GENERATION

1st iteration	Groupings	After replacements	Result		
	(a^{-},a^{+}) (a^{-},a^{+})	$(\gamma), u, ar{u}, g$	Failed (only 1 FG=True)		
	$(e^{-},e^{+}),u,u,g$	$(Z), u, \bar{u}, g$	Failed (only 1 FG=True)		
		$e^-, e^+, (\gamma), g$	Failed (only 1 FG=True)		
	$e^-, e^+, (u, \overline{u}), g$	$e^-, e^+, (Z), g$	Failed (only 1 FG=True)		
		$e^-, e^+, (g), g$	Failed (only 1 FG=True)		
	$e^-, e^+, (u, g), \bar{u}$	$e^-, e^+, (u), \bar{u}$	Failed (only 1 FG=True)		
	$e^-, e^+, u, (\bar{u}, g)$	$e^-, e^+, u, (\bar{u})$	Failed (only 1 FG=True)		
	$(e^{-}, e^{+}), (u, \bar{u}), g$	$(\gamma),(\gamma),g$	Failed (no vertex)		
$e^-, e^+, u, \overline{u}, g$		$(\gamma), (Z), g$	Failed (no vertex)		
		$(\gamma),(g),g$	Failed (no vertex)		
		$(Z),(\gamma),g$	Failed (no vertex)		
		(Z), (Z), g	Failed (no vertex)		
		(Z), (g), g	Failed (no vertex)		
	$(e^{-}, e^{+}), (u, g), \bar{u}$	$(\gamma),(u),ar{u}$	Diagram 1		
		$(Z), (u), \bar{u}$	Diagram 2		
	$(e^{-}, e^{+}), u, (\bar{u}, g)$	$(\gamma), u, (ar{u})$	Diagram 3		
		$(Z), u, (\bar{u})$	Diagram 4		

PERFORMANCE

- The algorithm described above essentially uses only the "dictionary" syntax of Python
 - # Highly optimized Python code
 - Trivially extended to include higher dimension (multiplicity) vertices

Process	MadGraph 4	MADGRAPH 5	Subprocesses	Diagrams
pp ightarrow jjj	29.0 s	$25.8 \mathrm{s}$	34	307
$pp ightarrow jj l^+ l^-$	341 s	103 s	108	1216
$pp ightarrow jjje^+e^-$	1150 s	$134 \mathrm{s}$	141	9012
$u \bar{u} ightarrow e^+ e^- e^+ e^- e^+ e^-$	772 s	242 s	1	3474
gg ightarrow ggggg	2788 s	1050 s	1	7245
$pp ightarrow jj(W^+ ightarrow l^+ u_l)$	146 s	25.7 s	82	304
$pp \rightarrow t\bar{t}$ +full decays	$5640 \mathrm{s}$	15.7 s	27	45
pp o ilde q/ ilde g ilde q/ ilde g	222 s	107 s	313	475
7 particle decay chain	383 s	13.9 s	1	<mark>6</mark>
$gg ightarrow (ilde{g} ightarrow u ar{u} ilde{\chi}_1^0) (ilde{g} ightarrow u ar{u} ilde{\chi}_1^0)$	70 s	$13.9 \mathrm{\ s}$	1	48
$pp \rightarrow (\tilde{g} \rightarrow jj\tilde{\chi}_1^0)(\tilde{g} \rightarrow jj\tilde{\chi}_1^0)$		251 s	144	11008

WRITING OF THE AMPLITUDES

MadGraph uses the helicity method for computing diagrams

С

С

- Completely numerical method
- Build on the HELAS library

BEGIN CODE CALL IXXXXX(P(0,1),ZERO,NHEL(1),+1*IC(1),W(1,1)) CALL 0XXXXX(P(0,2),ZERO,NHEL(2),-1*IC(2),W(1,2)) CALL IXXXXX(P(0,3),ZERO,NHEL(3),-1*IC(3),W(1,3)) CALL 0XXXXX(P(0,4),ZERO,NHEL(4),+1*IC(4),W(1,4)) CALL VXXXXX(P(0,5),ZERO,NHEL(5),+1*IC(5),W(1,5)) CALL FFV1_2(W(1,1),W(1,5),GC_5,ZER0, ZER0, W(1,6)) CALL FFV1_3(W(1,3),W(1,4),GC_3,ZER0, ZER0, W(1,7)) Amplitude(s) for diagram number 1 CALL FFV1_0(W(1,6),W(1,2),W(1,7),GC_2,AMP(1)) CALL FFV2_4_3(W(1,3),W(1,4),GC_21,GC_24,MZ, WZ, W(1,8)) Amplitude(s) for diagram number 2 CALL FFV2_5_0(W(1,6),W(1,2),W(1,8),GC_22,GC_23,AMP(2)) CALL FFV1_1(W(1,2),W(1,5),GC_5,ZER0, ZER0, W(1,9)) Amplitude(s) for diagram number 3 CALL FFV1_0(W(1,1),W(1,9),W(1,7),GC_2,AMP(3)) Amplitude(s) for diagram number 4 CALL FFV2_5_0(W(1,1),W(1,9),W(1,8),GC_22,GC_23,AMP(4)) JAMP(1) = +AMP(1) + AMP(2) + AMP(3) + AMP(4)MATRIX1 = 0.D0 DO I = 1, NCOLOR ZTEMP = (0.D0, 0.D0)DO J = 1, NCOLOR ZTEMP = ZTEMP + CF(J,I)*JAMP(J)ENDDO MATRIX1=MATRIX1+ZTEMP*DCONJG(JAMP(I))/DENOM(I) ENDDO AMP2(1)=AMP2(1)+AMP(1)*DCONJG(AMP(1)) AMP2(2)=AMP2(2)+AMP(2)*DCONJG(AMP(2)) AMP2(3)=AMP2(3)+AMP(3)*DCONJG(AMP(3)) AMP2(4) = AMP2(4) + AMP(4) * DCONJG(AMP(4))DO I = 1, NCOLOR JAMP2(I)=JAMP2(I)+JAMP(I)*DCONJG(JAMP(I)) ENDDO

PERFORMANCE

Generation time for 10000 unweighted events

Drogogg	Subpro	oc. dirs.	Chai	Channels Directory size		Event gen. time		
1 TOCESS	MG 4	MG 5	MG 4	MG 5	MG 4	MG 5	MG 4	MG 5
$pp \to W^+ j$	6	2	12	4	79 MB	$35 \mathrm{MB}$	$3:15 \min$	$1:55 \min$
$pp \to W^+ jj$	41	4	138	24	438 MB	$64 \mathrm{MB}$	$9:15 \min$	$4:19 \min$
$pp \to W^+ jjj$	73	5	1164	120	842 MB	110 MB	$21:41 \text{ min}^*$	$8:14 \min^{*}$
$pp \to W^+ jjjj$	296	7	15029	609	3.8 GB	$352 \mathrm{MB}$	$2:54 h^*$	$46:50 \text{ min}^*$
$pp \to W^+ j j j j j$	-	8	-	2976	-	$1.5~\mathrm{GB}$	-	$11:39 h^*$
$pp \rightarrow l^+ l^- j$	12	2	48	8	149 MB	$44 \mathrm{MB}$	$21:46 \min$	$3:00 \min$
$pp \rightarrow l^+ l^- jj$	54	4	586	48	612 MB	83 MB	$2{:}40~{\rm h}$	$11:52 \min$
$pp \rightarrow l^+ l^- j j j$	86	5	5408	240	1.2 GB	151 MB	$49:18 \text{ min}^*$	$16:38 \text{ min}^*$
$pp \rightarrow l^+ l^- j j j j$	235	7	65472	1218	$5.3~\mathrm{GB}$	662 MB	$7:16 h^{*}$	$2:45 h^{*}$
$pp \to t\bar{t}$	3	2	5	3	49 MB	$39 \mathrm{MB}$	$2:39 \min$	$1:55 \min$
$pp \to t\bar{t}j$	7	3	45	17	97 MB	$56 \mathrm{MB}$	$10:24 \min$	$3:52 \min$
$pp \to t\bar{t}jj$	22	5	417	103	274 MB	$98 \mathrm{MB}$	$1{:}50~{ m h}$	$32:37 \min$
$pp \to t\bar{t}jjj$	34	6	3816	545	620 MB	209 MB	$2:45 h^*$	$23:15 \text{ min}^*$

* run on a cluster

BSM WITH ÅLOHA

- * For BSM physics that includes interactions between particles for which the Lorentz structure is not SM-like, new HELAS subroutines need to be written
- In theory a simple task, but in practice it's very dull and it needs a lot of debugging to get it correct
- Aloha can generate these new HELAS subroutine automatically starting from the Model file
- Any Lorentz structure allowed for spin-0, 1/2, 1 and 2 particles (also higher dimensional)

EXERCISES V

- Download the MadGraph 5 code, untar it and execute
 - ./bin/mg5
 - This will enter the interactive mode of the MadGraph 5 code
- Start the tutorial and follow it... (note that there is tab-completion, like in a standard linux shell)

OUTLINE

- MadGraph/MadEvent beginner
- Advanced user
 - Interface to parton shower
 - # Under the hood
 - New physics
 - Future

Rikkert Frederix, University of Zurich

WHY NEW PHYICS?

- * The hierarchy problem, together with Dark Matter (and, to some extend, Grand Unification) have been the driving force behind New Physics model building in the past 30 years
 - Supersymmetry
 - Large extra dimensions
 - Randall-Sundrum (warped extra dimensions)
 - Little Higgs theories
 - ... (mostly variants/combinations)

SPECIFICATION OF A PHYSICS MODEL

A (new) physics model is normally defined by:

Field content + Lagrangian

Particle content + Feynman rules + coupling definitions

Suitable for Matrix Element generators

+ parameters, masses and decay widths

IMPLEMENTING NEW PHYSICS

- * Three ways to implement new physics in MadGraph
 - Modify an existing model (e.g. changing only a coupling or a mass)
 - User model framework (new particles/interactions)
 - 1. Add new particles
 - 2. Add new interactions
 - 3. Enter expressions for the new couplings
 - 4. A script generates all Fortran files
 - FeynRules

Mathematica package to translate Lagrangian into MadGraph (among others) friendly input

USER MODEL IMPLEMENTATION

User Model implementation

- # User model framework
 - % Start from the Standard Model (./models/usermod_v4)
 - Seasy and quick implementation when the complexity of the added sector is not too large
 - Only SM-like interactions
 - ** Example: A QCD t' pair production with $t' \rightarrow A_H t$ in Little Higgs model with T-parity

USER MODEL IMPLEMENTATION

User model framework

Specify particles and interactions

part	icles.d	at						
#Name a #xxx	anti_Name xxxx	Spin SFV	Linetype WSDC	Mass str	Width str	Color STO	Label str	Model PDG code
#MODEL	EXTENSION							
tp	tp~	F	S	TPMAS	SS TPWI	D T	TP	8
zp # END	zp	v	W	ZPMAS	SS ZPWI	ID S	ZP	32

interactions.dat # USRVertex tp tp g GG QCD tp t zp GTPZP QED t tp zp GTPZP QED

Run script; specify couplings

USER MODEL IMPLEMENTATION

User model framework

Specify particles and interactions

part	icles.d	at						
#Name a #xxx	anti_Name xxxx	Spin SFV	Linetype WSDC	Mass str	Width str	Color STO	Label str	Model PDG code
#MODEL tp zp # END	EXTENSION tp~ zp	F V	S W	TPMAS ZPMAS	SS TPWI	ID T ID S	TP ZP	8 32

interactions.dat # USRVertex tp tp g GG QCD

tp t zp GTPZP QED t tp zp GTPZP QED

Run script; specify couplings

couplings.f

c*************************************
<pre>GTPZP(1)=dcmplx(ee*param1,Zero) GTPZP(2)=dcmplx(ee*param1,Zero)</pre>

And you're ready to generate the process and study its properties

IMPLEMENTING NEW PHYSICS

- Three ways to implement new physics in MadGraph
 - Modify an existing model (e.g. changing only a coupling or a mass)
 - User model framework (new particles/interactions)
 - 1. Add new particles
 - 2. Add new interactions
 - 3. Enter expressions for the new couplings
 - 4. A script generates all Fortran files
 - FeynRules

Mathematica package to translate Lagrangian into MadGraph (among others) friendly input

Claude Duhr's lecture on Thursday

OUTLINE

- MadGraph/MadEvent beginner
- # Advanced user
 - Interface to parton shower
 - Under the hood
 - New physics

Future

INTO THE FUTURE Development

NLO COMPUTATIONS

AMC@NLO

- * Package to generate unweighted NLO events (using the MC@NLO method) within the Standard Model in a completely automatic way
- It uses MadLoop + CutTools to compute the virtual corrections
- MadFKS for the Real-emission corrections
- Working package in MadGraph v4
- Currently working on an improved implementation in MadGraph v5 --> we will only go public when this is done
- * website: http://amcatnlo.cern.ch

MADGOLEM

🖙 Kentarou Matawari's talk on Saturday

- Package to generate distributions for observables automatically for BSM physics
- MadDipole for the real-emission; Golem for the virtuals
- First results obtained for Squark-Neutralino production

SUMMARY

- MadGraph is a parton-level event generator interfaced to parton showers and detector simulation
- * Efficient code that can be run via the web on our clusters
- Running locally gives more freedom: implementing new Physics Models using usrmod or FeynRules made easy
- The new MadGraph version 5 is already a mature, welltested code
 - ** All core features of MadGraph 4 are available in MG5
- Publicly available automatic NLO event generation available soon