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A full set of IRC-safe jet algorithms

Generalise inclusive-type sequential recombination with

dij = min(k2pti , k
2p
tj )∆R2

ij/R
2 diB = k2pti

Alg. name Comment time
p = 1 kt Hierarchical in rel. kt

CDOSTW ’91-93; ES ’93 N lnN exp.

p = 0 Cambridge/Aachen Hierarchical in angle
Dok, Leder, Moretti, Webber ’97 Scan multiple R at once N lnN
Wengler, Wobisch ’98 ↔ QCD angular ordering

p = −1 anti-kt Cacciari, GPS, Soyez ’08 Hierarchy meaningless, jets
∼ reverse-kt Delsart like CMS cone (IC-PR) N3/2

SC-SM SISCone Replaces JetClu, ATLAS
GPS Soyez ’07 + Tevatron run II ’00 MidPoint (xC-SM) cones N2 lnN exp.

Compromise between having a limited set of algs.
and a good range of complementary properties
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Towards an understanding of jets

How a jet is and isn’t like a parton —

quantitatively

And how this relationship is affected by the jet

radius
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Small v. large jet radius (R) ≡ HSBC[Understanding jets]

Small jet radius Large jet radius

single parton @ LO: jet radius irrelevant
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Small v. large jet radius (R) ≡ HSBC[Understanding jets]

Small jet radius

θ

Large jet radius

θ

perturbative fragmentation: large jet radius better
(it captures more)
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Small v. large jet radius (R) ≡ HSBC[Understanding jets]
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Small v. large jet radius (R) ≡ HSBC[Understanding jets]

Small jet radius

UE
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Large jet radius
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underlying ev. & pileup “noise”: small jet radius better
(it captures less)
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Small v. large jet radius (R) ≡ HSBC[Understanding jets]

Small jet radius Large jet radius

multi-hard-parton events: small jet radius better
(it resolves partons more effectively)
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Parton pt v. jet pt

3 physical effects:

1. Gluon radiation from the parton
2. Hadronisation

3. Underlying Event

One important consideration:

Whether the parton is a quark or a gluon
[quarks radiate with colour factor CF = 4/3
gluons radiate with colour factor CA = 3]
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Jet pt v. parton pt : perturbatively?
[Understanding jets]

[Parton pt v. jet pt ]

The question’s dangerous: a “parton” is an ambiguous concept

Three limits can help you:

◮ Threshold limit e.g. de Florian & Vogelsang ’07

◮ Parton from color-neutral object decay (Z ′)

◮ Small-R (radius) limit for jet

One simple result (small-R limit)

〈pt,jet − pt,parton〉
pt

=
αs

π
lnR ×

{

1.01CF quarks
0.94CA + 0.07nf gluons

+O (αs)

only O (αs) depends on algorithm & process

cf. Dasgupta, Magnea & GPS ’07
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Jet pt v. parton pt : hadronisation?
[Understanding jets]

[Parton pt v. jet pt ]

Hadronisation: the “parton-shower” → hadrons transition

Method:

◮ “infrared finite αs” à la Dokshitzer & Webber ’95

◮ prediction based on e+e− event shape data

◮ could have been deduced from old work Korchemsky & Sterman ’95

Seymour ’97

Main result

〈pt,jet − pt,parton−shower 〉 ≃ −0.4 GeV

R
×

{

CF quarks
CA gluons

cf. Dasgupta, Magnea & GPS ’07

coefficient holds for anti-kt; see Dasgupta & Delenda ’09 for kt alg.
Jets lecture 2 (Gavin Salam) MC tools for LHC school September 2011 7 / 30



Underlying Event (UE)[Understanding jets]

[Parton pt v. jet pt ]

“Naive” prediction (UE ≃ colour dipole between pp):

∆pt ≃ 0.4 GeV × R2

2
×

{

CF qq̄ dipole
CA gluon dipole

Modern Monte Carlo tunes tell you (
√
s = 7 TeV):

∆pt ≃ 8 GeV × R2

2
≃ 1.2 GeV × (πR2)

This big coefficient motivates special effort to understand interplay
between jet algorithm and UE: “jet areas”

How does coefficient depend on algorithm?

How does it depend on jet pt? How does it fluctuate?

cf. Cacciari, GPS & Soyez ’08
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[Parton pt v. jet pt ]
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Modern Monte Carlo tunes tell you (
√
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A qualitative example: top
reconstruction
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Robustness: Mtop varies with R?[Top reconstruction]
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Pythia 6.325, mt = 175 GeV/c2

R=0.4
tt -> bqq+bµνµ

no UE

with UE

Mtop

Game: measure top mass to 1 GeV
example for Tevatron

mt = 175 GeV

◮ Small R : lose 6 GeV to PT
radiation and hadronisation, UE
and pileup irrelevant

◮ Large R : hadronisation and PT
radiation leave mass at
∼ 175 GeV, UE adds 2− 4 GeV.

Is the final top mass (after W jet-energy-scale and Monte Carlo unfolding)
independent of R used to measure jets?

Flexibility in jet finding gives powerful cross-check of systematic effects

cf. Seymour & Tevlin ’06
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Robustness: Mtop varies with R?[Top reconstruction]
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Robustness: Mtop varies with R?[Top reconstruction]
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Robustness: Mtop varies with R?[Top reconstruction]
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Robustness: Mtop varies with R?[Top reconstruction]
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with UE Game: measure top mass to 1 GeV
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◮ Small R : lose 6 GeV to PT
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◮ Large R : hadronisation and PT
radiation leave mass at
∼ 175 GeV, UE adds 2− 4 GeV.

Is the final top mass (after W jet-energy-scale and Monte Carlo unfolding)
independent of R used to measure jets?
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6 partons v. 6 jets?[Top reconstruction]

Alpgen pp → t̄t → 6q
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pp, 7 TeV

Alpgen partons

no pt cut on quarks
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6 partons v. 6 jets?[Top reconstruction]

Alpgen pp → t̄t → 6q
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6 partons v. 6 jets?[Top reconstruction]

Alpgen pp → t̄t → 6q
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6 partons v. 6 jets?[Top reconstruction]

Alpgen pp → t̄t → 6q
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fraction of pp→tt→6q events with all Rqq > R

pp, 7 TeV

Alpgen partons

require all ptq > 30 GeV
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6 partons v. 6 jets?[Top reconstruction]

Alpgen pp → t̄t → 6q
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Distribution of number of jets
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pt,jet > 20 GeV
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Using our understanding to help discover a
dijet resonance, qq̄ → X → qq̄.
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What R is best for an isolated jet?[Dijet resonances]

PT radiation:

q : 〈∆pt〉 ≃
αsCF

π
pt lnR

Hadronisation:

q : 〈∆pt〉 ≃ −CF

R
· 0.4 GeV

Underlying event:

q, g : 〈∆pt〉 ≃
R2

2
·2.5−15 GeV

Minimise fluctuations in ptptpt

Use crude approximation:

〈∆p2t 〉 ≃ 〈∆pt〉2

E.g. to reconstruct mX ∼ (ptq + ptq̄)

X
pp

q

q

q

q

in small-R limit (!)

NB: full calc, correct fluct: Soyez ’10
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What R is best for an isolated jet?[Dijet resonances]

PT radiation:

q : 〈∆pt〉 ≃
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π
pt lnR

Hadronisation:

q : 〈∆pt〉 ≃ −CF

R
· 0.4 GeV

Underlying event:

q, g : 〈∆pt〉 ≃
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2
·2.5−15 GeV

Minimise fluctuations in ptptpt

Use crude approximation:

〈∆p2t 〉 ≃ 〈∆pt〉2
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in small-R limit (!)

NB: full calc, correct fluct: Soyez ’10
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What R is best for an isolated jet?[Dijet resonances]

PT radiation:

q : 〈∆pt〉 ≃
αsCF

π
pt lnR

Hadronisation:

q : 〈∆pt〉 ≃ −CF

R
· 0.4 GeV

Underlying event:

q, g : 〈∆pt〉 ≃
R2

2
·2.5−15 GeV

Minimise fluctuations in ptptpt

Use crude approximation:

〈∆p2t 〉 ≃ 〈∆pt〉2
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in small-R limit (!)

NB: full calc, correct fluct: Soyez ’10
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What R is best for an isolated jet?[Dijet resonances]

PT radiation:

q : 〈∆pt〉 ≃
αsCF

π
pt lnR

Hadronisation:

q : 〈∆pt〉 ≃ −CF

R
· 0.4 GeV

Underlying event:

q, g : 〈∆pt〉 ≃
R2

2
·2.5−15 GeV

Minimise fluctuations in ptptpt

Use crude approximation:

〈∆p2t 〉 ≃ 〈∆pt〉2
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NB: full calc, correct fluct: Soyez ’10
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At low pt, small RRR limits relative impact of UE

At high pt, perturbative effects dominate over
non-perturbative → RbestRbestRbest ∼ 1.



Dijet mass: scan over R [Pythia 6.4][Dijet resonances]
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Dijet mass: scan over R [Pythia 6.4][Dijet resonances]
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Dijet mass: scan over R [Pythia 6.4][Dijet resonances]
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Dijet mass: scan over R [Pythia 6.4][Dijet resonances]
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Dijet mass: scan over R [Pythia 6.4][Dijet resonances]

R = 0.7
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Dijet mass: scan over R [Pythia 6.4][Dijet resonances]
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Dijet mass: scan over R [Pythia 6.4][Dijet resonances]
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Dijet mass: scan over R [Pythia 6.4][Dijet resonances]
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Dijet mass: scan over R [Pythia 6.4][Dijet resonances]
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Dijet mass: scan over R [Pythia 6.4][Dijet resonances]
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Dijet mass: scan over R [Pythia 6.4][Dijet resonances]
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f=0.24 = 42.3 GeV

Resonance X → dijets

X
pp

q

q

q

q

jet

jet
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Dijet mass: scan over R [Pythia 6.4][Dijet resonances]

R = 1.3
1/

N
 d

n/
db

in
 / 

2

dijet mass [GeV]

qq, M = 100 GeV

arX
iv:0810.1304

 0

 0.02

 0.04

 0.06

 0.08

 60  80  100  120  140

SISCone, R=1.3, f=0.75
Qw

f=0.24 = 42.3 GeV

 1

 1.5

 2

 2.5

 3

 0.5  1  1.5
ρ L

 fr
om

 Q
w f=

0.
24

R

qq, M = 100 GeV

arX
iv:0810.1304

SISCone, f=0.75

After scanning, summarise “quality” v. RRR. Minimum ≡ BEST
picture not so different from crude analytical estimate
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Scan through qq̄ mass values[Dijet resonances]

mqq = 100 GeV

 1

 1.5

 2

 2.5

 3

 0.5  1  1.5

ρ L
 fr

om
 Q

w f=
0.

24

R

qq, M = 100 GeV

arX
iv:0810.1304

SISCone, f=0.75

Best R is at minimum of curve

◮ Best R depends strongly on
mass of system

◮ Increases with mass
can reproduce this anayltically

Soyez ’10

Message received by CMS: they
combine all R = 0.5 jets (pt >
10 GeV) within ∆R = 1.1 of two
hardest to improve resolution.

ATLAS ’11 still just use R = 0.6

NB: 100,000 plots for various jet algorithms, narrow qq and gg resonances
from http://quality.fastjet.fr Cacciari, Rojo, GPS & Soyez ’08

Other related work: Krohn, Thaler & Wang ’09
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Scan through qq̄ mass values[Dijet resonances]

mqq = 150 GeV

 1

 1.5
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 0.5  1  1.5

ρ L
 fr

om
 Q

w f=
0.

24

R

qq, M = 150 GeV

arX
iv:0810.1304

SISCone, f=0.75

Best R is at minimum of curve

◮ Best R depends strongly on
mass of system

◮ Increases with mass
can reproduce this anayltically

Soyez ’10

Message received by CMS: they
combine all R = 0.5 jets (pt >
10 GeV) within ∆R = 1.1 of two
hardest to improve resolution.

ATLAS ’11 still just use R = 0.6

NB: 100,000 plots for various jet algorithms, narrow qq and gg resonances
from http://quality.fastjet.fr Cacciari, Rojo, GPS & Soyez ’08

Other related work: Krohn, Thaler & Wang ’09
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Scan through qq̄ mass values[Dijet resonances]

mqq = 200 GeV

 1

 1.5

 2

 2.5

 3

 0.5  1  1.5

ρ L
 fr

om
 Q

w f=
0.

24

R

qq, M = 200 GeV

arX
iv:0810.1304

SISCone, f=0.75

Best R is at minimum of curve

◮ Best R depends strongly on
mass of system

◮ Increases with mass
can reproduce this anayltically

Soyez ’10

Message received by CMS: they
combine all R = 0.5 jets (pt >
10 GeV) within ∆R = 1.1 of two
hardest to improve resolution.

ATLAS ’11 still just use R = 0.6

NB: 100,000 plots for various jet algorithms, narrow qq and gg resonances
from http://quality.fastjet.fr Cacciari, Rojo, GPS & Soyez ’08

Other related work: Krohn, Thaler & Wang ’09
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Scan through qq̄ mass values[Dijet resonances]

mqq = 300 GeV

 1

 1.5

 2

 2.5

 3

 0.5  1  1.5

ρ L
 fr

om
 Q

w f=
0.

24

R

qq, M = 300 GeV

arX
iv:0810.1304

SISCone, f=0.75

Best R is at minimum of curve

◮ Best R depends strongly on
mass of system

◮ Increases with mass
can reproduce this anayltically

Soyez ’10

Message received by CMS: they
combine all R = 0.5 jets (pt >
10 GeV) within ∆R = 1.1 of two
hardest to improve resolution.

ATLAS ’11 still just use R = 0.6

NB: 100,000 plots for various jet algorithms, narrow qq and gg resonances
from http://quality.fastjet.fr Cacciari, Rojo, GPS & Soyez ’08

Other related work: Krohn, Thaler & Wang ’09
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Scan through qq̄ mass values[Dijet resonances]

mqq = 500 GeV

 1
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 0.5  1  1.5

ρ L
 fr

om
 Q

w f=
0.

24

R

qq, M = 500 GeV

arX
iv:0810.1304

SISCone, f=0.75

Best R is at minimum of curve

◮ Best R depends strongly on
mass of system

◮ Increases with mass
can reproduce this anayltically

Soyez ’10

Message received by CMS: they
combine all R = 0.5 jets (pt >
10 GeV) within ∆R = 1.1 of two
hardest to improve resolution.

ATLAS ’11 still just use R = 0.6

NB: 100,000 plots for various jet algorithms, narrow qq and gg resonances
from http://quality.fastjet.fr Cacciari, Rojo, GPS & Soyez ’08

Other related work: Krohn, Thaler & Wang ’09
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Scan through qq̄ mass values[Dijet resonances]

mqq = 700 GeV

 1

 1.5

 2

 2.5

 3

 0.5  1  1.5

ρ L
 fr

om
 Q

w f=
0.

24

R

qq, M = 700 GeV

arX
iv:0810.1304

SISCone, f=0.75

Best R is at minimum of curve

◮ Best R depends strongly on
mass of system

◮ Increases with mass
can reproduce this anayltically

Soyez ’10

Message received by CMS: they
combine all R = 0.5 jets (pt >
10 GeV) within ∆R = 1.1 of two
hardest to improve resolution.

ATLAS ’11 still just use R = 0.6

NB: 100,000 plots for various jet algorithms, narrow qq and gg resonances
from http://quality.fastjet.fr Cacciari, Rojo, GPS & Soyez ’08

Other related work: Krohn, Thaler & Wang ’09
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Scan through qq̄ mass values[Dijet resonances]

mqq = 1000 GeV

 1

 1.5

 2

 2.5

 3

 0.5  1  1.5

ρ L
 fr

om
 Q

w f=
0.

24

R

qq, M = 1000 GeV

arX
iv:0810.1304

SISCone, f=0.75

Best R is at minimum of curve

◮ Best R depends strongly on
mass of system

◮ Increases with mass
can reproduce this anayltically

Soyez ’10

Message received by CMS: they
combine all R = 0.5 jets (pt >
10 GeV) within ∆R = 1.1 of two
hardest to improve resolution.

ATLAS ’11 still just use R = 0.6

NB: 100,000 plots for various jet algorithms, narrow qq and gg resonances
from http://quality.fastjet.fr Cacciari, Rojo, GPS & Soyez ’08

Other related work: Krohn, Thaler & Wang ’09
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Scan through qq̄ mass values[Dijet resonances]

mqq = 2000 GeV

 1

 1.5

 2

 2.5

 3

 0.5  1  1.5

ρ L
 fr

om
 Q

w f=
0.

24

R

qq, M = 2000 GeV

arX
iv:0810.1304

SISCone, f=0.75

Best R is at minimum of curve

◮ Best R depends strongly on
mass of system

◮ Increases with mass
can reproduce this anayltically

Soyez ’10

Message received by CMS: they
combine all R = 0.5 jets (pt >
10 GeV) within ∆R = 1.1 of two
hardest to improve resolution.

ATLAS ’11 still just use R = 0.6

NB: 100,000 plots for various jet algorithms, narrow qq and gg resonances
from http://quality.fastjet.fr Cacciari, Rojo, GPS & Soyez ’08

Other related work: Krohn, Thaler & Wang ’09
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Scan through qq̄ mass values[Dijet resonances]

mqq = 4000 GeV

 1

 1.5

 2

 2.5

 3

 0.5  1  1.5

ρ L
 fr

om
 Q

w f=
0.

24

R

qq, M = 4000 GeV

arX
iv:0810.1304

SISCone, f=0.75

Best R is at minimum of curve

◮ Best R depends strongly on
mass of system

◮ Increases with mass
can reproduce this anayltically

Soyez ’10

Message received by CMS: they
combine all R = 0.5 jets (pt >
10 GeV) within ∆R = 1.1 of two
hardest to improve resolution.

ATLAS ’11 still just use R = 0.6

NB: 100,000 plots for various jet algorithms, narrow qq and gg resonances
from http://quality.fastjet.fr Cacciari, Rojo, GPS & Soyez ’08

Other related work: Krohn, Thaler & Wang ’09
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Scan through qq̄ mass values[Dijet resonances]

mqq = 4000 GeV

 1

 1.5

 2

 2.5

 3

 0.5  1  1.5

ρ L
 fr

om
 Q

w f=
0.

24

R

qq, M = 4000 GeV

arX
iv:0810.1304

SISCone, f=0.75

Best R is at minimum of curve

◮ Best R depends strongly on
mass of system

◮ Increases with mass
can reproduce this anayltically

Soyez ’10

Message received by CMS: they
combine all R = 0.5 jets (pt >
10 GeV) within ∆R = 1.1 of two
hardest to improve resolution.

ATLAS ’11 still just use R = 0.6

NB: 100,000 plots for various jet algorithms, narrow qq and gg resonances
from http://quality.fastjet.fr Cacciari, Rojo, GPS & Soyez ’08

Other related work: Krohn, Thaler & Wang ’09
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Scan through qq̄ mass values[Dijet resonances]

mqq = 4000 GeV

 1

 1.5

 2

 2.5

 3

 0.5  1  1.5

ρ L
 fr

om
 Q

w f=
0.

24

R

qq, M = 4000 GeV

arX
iv:0810.1304

SISCone, f=0.75

Best R is at minimum of curve

◮ Best R depends strongly on
mass of system

◮ Increases with mass
can reproduce this anayltically

Soyez ’10

Message received by CMS: they
combine all R = 0.5 jets (pt >
10 GeV) within ∆R = 1.1 of two
hardest to improve resolution.

ATLAS ’11 still just use R = 0.6

NB: 100,000 plots for various jet algorithms, narrow qq and gg resonances
from http://quality.fastjet.fr Cacciari, Rojo, GPS & Soyez ’08

Other related work: Krohn, Thaler & Wang ’09
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http://quality.fastjet.fr/
[Dijet resonances]
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Fat jets
boosted massive hadronically decaying objects

E.g. when a known particle, W ,Z or a top → a single jet

or a new particle, Higgs, gluino, neutralino → a single jet

This will be common for electroweak-scale objects at LHC:
mW ,mt ≪ 14 TeV
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E.g. X → tt̄ resonances of varying difficulty[1 jet & 2 partons]

RS KK resonances → tt̄, from Frederix & Maltoni, 0712.2355

NB: QCD dijet spectrum is ∼ 103 times tt̄
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Boosted massive particles, e.g.: EW bosons[1 jet & 2 partons]

Hadronically decaying EW boson at high pt 6= two jets

single
jet

z

(1−z)

boosted X
R &

m

pt

1
√

z(1− z)

Rules of thumb: m = 100 GeV, pt = 500 GeV

◮ R <
2m

pt
: always resolve two jets R < 0.4

◮ R &
3m

pt
: resolve one jet in ∼75% of cases (18 < z < 7

8) R & 0.6
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Boosted ID strategies[1 jet & 2 partons]

q q
Select on the jet mass with one large (cone)
jet Can be subject to large bkgds

[high-pt jets have significant masses]

q q

Choose a small jet size (R) so as to resolve
two jets Easier to reject background

if you actually see substructure

[NB: must manually put in “right” radius]

q q Take a large jet and split it in two
Let jet algorithm establish correct division
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Jet masses[1 jet & 2 partons]

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0.016

 0  50  100  150  200

1/
N

 d
N

/d
m

je
t [

G
eV

-1
]

mjet [GeV]

qq → qq events

pt,jets > 700 GeV

anti-kt, R = 0.7

Look at jet mass distribu-
tion for two leading jets in

◮ qq → qq events

◮ pp → W + jet events

◮ a mixture of the two
In roughly sensible

proportions

Jet mass gives clear sign of massive particles inside
the jet;
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Jet masses[1 jet & 2 partons]
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mjet [GeV]

Wj events

pt,jets > 700 GeV

anti-kt, R = 0.7

Look at jet mass distribu-
tion for two leading jets in

◮ qq → qq events

◮ pp → W + jet events

◮ a mixture of the two
In roughly sensible

proportions

Jet mass gives clear sign of massive particles inside
the jet;
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Jet masses[1 jet & 2 partons]

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0.016

 0  50  100  150  200

1/
N

 d
N

/d
m

je
t [

G
eV

-1
]

mjet [GeV]

qq → qq + Wj mixture

pt,jets > 700 GeV

anti-kt, R = 0.7

Look at jet mass distribu-
tion for two leading jets in

◮ qq → qq events

◮ pp → W + jet events

◮ a mixture of the two
In roughly sensible

proportions

Jet mass gives clear sign of massive particles inside
the jet; but QCD jets are massive too — must learn

to reject them
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QCD principle: soft divergence[1 jet & 2 partons]

Signal Background

z

(1−z)

boosted X
z

quark

(1−z)

Splitting probability for Higgs:

P(z) ∝ 1

Splitting probability for quark:

P(z) ∝ 1 + z2

1− z

1/(1− z) divergence enhances background

Remove divergence in bkdg with cut on z
Can choose cut analytically so as to maximise S/

√
B

Originally: cut on (related) kt-distance

Butterworth, Cox & Forshaw ’02
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Inside the jet mass[1 jet & 2 partons]

 0
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 d
N
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g(
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mjet [GeV]

QCD Jet Mass distribution
Pythia 6.4, qq→qq, no UE

anti-kt, R=0.7

LHC, 7 TeV

pt,jets > 700 GeV

QCD jet mass distribution has the
approximate

dN

d lnm
∼ αs ln

ptR

m
× Sudakov

Work from ’80s and ’90s

+ Almeida et al ’08

The logarithm comes from integral
over soft divergence of QCD:

∫ 1
2

m2

p2t R
2

dz

z

A hard cut on z reduces QCD back-
ground & simplifies its shape
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Inside the jet mass[1 jet & 2 partons]
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QCD Jet Mass distribution
Pythia 6.4, qq→qq, no UE

anti-kt, R=0.7

LHC, 7 TeV

pt,jets > 700 GeV
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mjet [GeV]
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2-body
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QCD jet mass distribution has the
approximate

dN

d lnm
∼ αs ln

ptR

m
× Sudakov

Work from ’80s and ’90s

+ Almeida et al ’08

The logarithm comes from integral
over soft divergence of QCD:

∫ 1
2

m2

p2t R
2

dz

z

A hard cut on z reduces QCD back-
ground & simplifies its shape
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Inside the jet mass[1 jet & 2 partons]
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QCD Jet Mass distribution
Pythia 6.4, qq→qq, no UE

anti-kt, R=0.7

LHC, 7 TeV

pt,jets > 700 GeV

after cut on z > 0.25

(a la BERS)

 10  100
mjet [GeV]
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2-body
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cut on z

keep

reject

QCD jet mass distribution has the
approximate

dN

d lnm
∼ αs ln

ptR

m
× Sudakov

Work from ’80s and ’90s

+ Almeida et al ’08

The logarithm comes from integral
over soft divergence of QCD:

∫ 1
2

m2

p2t R
2

dz

z

A hard cut on z reduces QCD back-
ground & simplifies its shape
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Inside the jet mass[1 jet & 2 partons]
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Inside the jet mass[1 jet & 2 partons]
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QCD Jet Mass distribution
Pythia 6.4, qq→qq, no UE

anti-kt, R=0.7

LHC, 7 TeV

pt,jets > 700 GeV

after cut on z > 0.25

(a la BERS)
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LHC, 7 TeV

pt,jets > 700 GeV

after cut on z > 0.25
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Identifying jet substructure: try out anti-kt
[1 jet & 2 partons]

anti-kt algorithm

p t/GeV

50

40

20

0
0 1 2 3 4 y

30

10

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).
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Identifying jet substructure: try out anti-kt
[1 jet & 2 partons]

anti-kt algorithm

p t/GeV

50

40

20

0
0 1 2 3 4 y

30

10

dmin is dij = 3.57137e−05

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).
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Identifying jet substructure: try out anti-kt
[1 jet & 2 partons]

anti-kt algorithm

p t/GeV

50

40

20

0
0 1 2 3 4 y

30

10

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).
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Identifying jet substructure: try out anti-kt
[1 jet & 2 partons]

anti-kt algorithm

p t/GeV

50

40

20

0
0 1 2 3 4 y

30

10

dmin is dij = 0.000496598

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).
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Identifying jet substructure: try out anti-kt
[1 jet & 2 partons]

anti-kt algorithm

p t/GeV

50

40

20

0
0 1 2 3 4 y

30

10

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).

Jets lecture 2 (Gavin Salam) MC tools for LHC school September 2011 24 / 30



Identifying jet substructure: try out anti-kt
[1 jet & 2 partons]

anti-kt algorithm

p t/GeV

50

40

20

0
0 1 2 3 4 y

30

10

dmin is dij = 0.000688842

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).
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Identifying jet substructure: try out anti-kt
[1 jet & 2 partons]

anti-kt algorithm

p t/GeV

50

40

20

0
0 1 2 3 4 y

30

10

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).
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Identifying jet substructure: try out anti-kt
[1 jet & 2 partons]

anti-kt algorithm

p t/GeV

50

40

20

0
0 1 2 3 4 y

30

10

dmin is dij = 0.000805103

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).

Anti-kt gradually makes its way
through the secondary blob → no
clear identification of substructure
associated with 2nd parton.
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Identifying jet substructure: try out anti-kt
[1 jet & 2 partons]

anti-kt algorithm

p t/GeV

50

40

20

0
0 1 2 3 4 y

30

10

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).

Anti-kt gradually makes its way
through the secondary blob → no
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Identifying jet substructure: try out kt
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Identifying jet substructure: try out kt
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kt clusters soft “junk” early on in the
clustering

Its last step is to merge two hard
pieces. Easily undone to identify un-
derlying kinematics

This meant it was the first algorithm
to be used for jet substructure.

Seymour ’93

Butterworth, Cox & Forshaw ’02
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Identifying jet substructure: Cam/Aachen[1 jet & 2 partons]

Cambridge/Aachen algorithm

p t/GeV

50

40

20

0
0 1 2 3 4 y

30

10

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

Jets lecture 2 (Gavin Salam) MC tools for LHC school September 2011 26 / 30



Identifying jet substructure: Cam/Aachen[1 jet & 2 partons]

Cambridge/Aachen algorithm

p t/GeV

50

40

20

0
0 1 2 3 4 y

30

10

DeltaR_{ij} = 0.142857

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

Jets lecture 2 (Gavin Salam) MC tools for LHC school September 2011 26 / 30



Identifying jet substructure: Cam/Aachen[1 jet & 2 partons]

Cambridge/Aachen algorithm

p t/GeV

50

40

20

0
0 1 2 3 4 y

30

10

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

Jets lecture 2 (Gavin Salam) MC tools for LHC school September 2011 26 / 30



Identifying jet substructure: Cam/Aachen[1 jet & 2 partons]

Cambridge/Aachen algorithm

p t/GeV

50

40

20

0
0 1 2 3 4 y

30

10

DeltaR_{ij} = 0.214286

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

Jets lecture 2 (Gavin Salam) MC tools for LHC school September 2011 26 / 30



Identifying jet substructure: Cam/Aachen[1 jet & 2 partons]

Cambridge/Aachen algorithm

p t/GeV

50

40

20

0
0 1 2 3 4 y

30

10

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

Jets lecture 2 (Gavin Salam) MC tools for LHC school September 2011 26 / 30



Identifying jet substructure: Cam/Aachen[1 jet & 2 partons]

Cambridge/Aachen algorithm

p t/GeV

50

40

20

0
0 1 2 3 4 y

30

10

DeltaR_{ij} = 0.415037

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

Jets lecture 2 (Gavin Salam) MC tools for LHC school September 2011 26 / 30



Identifying jet substructure: Cam/Aachen[1 jet & 2 partons]

Cambridge/Aachen algorithm

p t/GeV

50

40

20

0
0 1 2 3 4 y

30

10

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

Jets lecture 2 (Gavin Salam) MC tools for LHC school September 2011 26 / 30



Identifying jet substructure: Cam/Aachen[1 jet & 2 partons]

Cambridge/Aachen algorithm

p t/GeV

50

40

20

0
0 1 2 3 4 y

30

10

DeltaR_{ij} = 0.686928

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

Jets lecture 2 (Gavin Salam) MC tools for LHC school September 2011 26 / 30



Identifying jet substructure: Cam/Aachen[1 jet & 2 partons]

Cambridge/Aachen algorithm

p t/GeV

50

40

20

0
0 1 2 3 4 y

30

10

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

C/A identifies two hard blobs with
limited soft contamination

Jets lecture 2 (Gavin Salam) MC tools for LHC school September 2011 26 / 30



Identifying jet substructure: Cam/Aachen[1 jet & 2 partons]

Cambridge/Aachen algorithm

p t/GeV

50

40

20

0
0 1 2 3 4 y

30

10

DeltaR_{ij} = 1.20645

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

C/A identifies two hard blobs with
limited soft contamination, joins
them

Jets lecture 2 (Gavin Salam) MC tools for LHC school September 2011 26 / 30



Identifying jet substructure: Cam/Aachen[1 jet & 2 partons]

Cambridge/Aachen algorithm

p t/GeV

50

40

20

0
0 1 2 3 4 y

30

10

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

C/A identifies two hard blobs with
limited soft contamination, joins
them

Jets lecture 2 (Gavin Salam) MC tools for LHC school September 2011 26 / 30



Identifying jet substructure: Cam/Aachen[1 jet & 2 partons]

Cambridge/Aachen algorithm

p t/GeV

50

40

20

0
0 1 2 3 4 y

30

10

DeltaR_{ij} = 1.93202

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

C/A identifies two hard blobs with
limited soft contamination, joins
them, and then adds in remaining
soft junk

Jets lecture 2 (Gavin Salam) MC tools for LHC school September 2011 26 / 30



Identifying jet substructure: Cam/Aachen[1 jet & 2 partons]

Cambridge/Aachen algorithm

p t/GeV

50

40

20

0
0 1 2 3 4 y

30

10

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

C/A identifies two hard blobs with
limited soft contamination, joins
them, and then adds in remaining
soft junk

Jets lecture 2 (Gavin Salam) MC tools for LHC school September 2011 26 / 30



Identifying jet substructure: Cam/Aachen[1 jet & 2 partons]

Cambridge/Aachen algorithm

p t/GeV

50

40

20

0
0 1 2 3 4 y

30

10

DeltaR_{ij} > 2

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

C/A identifies two hard blobs with
limited soft contamination, joins
them, and then adds in remaining
soft junk

Jets lecture 2 (Gavin Salam) MC tools for LHC school September 2011 26 / 30



Identifying jet substructure: Cam/Aachen[1 jet & 2 partons]

Cambridge/Aachen algorithm

p t/GeV

50

40

20

0
0 1 2 3 4 y

30

10

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

C/A identifies two hard blobs with
limited soft contamination, joins
them, and then adds in remaining
soft junk

Jets lecture 2 (Gavin Salam) MC tools for LHC school September 2011 26 / 30



Identifying jet substructure: Cam/Aachen[1 jet & 2 partons]

Cambridge/Aachen algorithm

p t/GeV

50

40

20

0
0 1 2 3 4 y

30

10

DeltaR_{ij} > 2

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

C/A identifies two hard blobs with
limited soft contamination, joins
them, and then adds in remaining
soft junk

Jets lecture 2 (Gavin Salam) MC tools for LHC school September 2011 26 / 30



Identifying jet substructure: Cam/Aachen[1 jet & 2 partons]
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How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

C/A identifies two hard blobs with
limited soft contamination, joins
them, and then adds in remaining
soft junk

The interesting substructure is buried
inside the clustering sequence — it’s
less contamined by soft junk, but
needs to be pulled out with special
techniques

Butterworth, Davison, Rubin & GPS ’08

Kaplan, Schwartz, Reherman & Tweedie ’08

Butterworth, Ellis, Rubin & GPS ’09

Ellis, Vermilion & Walsh ’09
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Example improvement from boosted regime[1 jet & 2 partons]

Search for main decay of light Higgs boson in W/Z+H, H → bb̄

ATLAS TDR
(unboosted)

(boosted)

restricting search to ptH > 200 GeV

using the method from Butterworth, Davison, Rubin & GPS ’08
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One of many applications of “boosted” searches,
using variety of techniques, many involving jet substructure

See proceedings proceedings of Boost 2010
and talks at http://boost2011.org

http://boost2011.org


Closing
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Conclusions[1 jet & 2 partons]

LHC events will cover 2 orders of magnitude in jet pt

Flexibility in the choice of jet definitions has potential to
bring significant gains

[there is no unique best definition;

anti-kt with R = 0.5 or 0.6 will sometimes be far from optimal]

EW-scale particles are “light” relative to the TeV scale

Using the full power of jet algorithms & their substructure
helps pull out signals that might otherwise be missed

[currently a very active research field]
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EXTRAS
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quality: 5 algorithms, 3 processes[1 jet & 2 partons]

[Quality]
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Other work → improving the methods[1 jet & 2 partons]

[Boosted objects]

◮ Using matrix-element methods for
the substructure Done analytically

Soper & Spannowsky ’11

Most “physically interesting”

◮ Using jet shapes. E.g. subjettiness:
break a jet into subjets 1, 2, . . .N

SN =
1

pt

∑

i

pti min(δRi1, . . . δRiN)

J-H Kim ’10; Thaler & Van Tilburg ’10

◮ Using boosted decision trees
Cui, Han & Schwartz ’10; seems powerful

Cui et al BDT v. BRDS

S
ε

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

B
ε

/ 
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Filtering +  Jet  Subst ructure

R= 1.2  Filtering +  m ass drop

R= 1.2 m ass

R= 0.4 m ass

Filtering +  m ass drop

(wide m ass window)

R=1.2 

R=1.2 

Biggest improvements are to be had at moderate signal efficiencies

Conclusion from Boost 2010 comparison study of top taggers

The method to be adopted depends on the signal efficiency you want



Pileup
high pt → requires high lumi → high pileup

& 10 events per bunch crossing
O (10 GeV) of extra pt per jet, with large fluctuations
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Subtracting noise from jets[1 jet & 2 partons]

[Pileup]

psubtractedt,jet = pt,jet − ρ× Ajet

Cacciari, GPS & Soyez ’08

Ajet = jet area

ρ = pt per unit area from pileup

(or “background”)

This procedure is intended to be common to pp (ρ ∼ 1−2 GeV), pp with
pileup (ρ ∼ 2− 15 GeV) and Heavy-Ion collisions (ρ ∼ 100− 300 GeV)

As proposed so far: jet-by-jet area determination,
event-by-event ρ determination
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Event-by-event ρ (background) estimation[1 jet & 2 partons]

[Pileup]

IN A SINGLE EVENT

 0

 20

 40

 60

 80

 0  1  2  3  4  5

P
t,j

et

jet area

dijet event
+ 10 minbias

(Kt-alg, R=1)

median (pt/area)

Most jets in event are “back-
ground”

Their pt is correlated with their
area.

Estimate ρρρ:

ρ ≃ median
{jets}

[

pt,jet

Ajet

]

Median limits bias

from hard jets

Cacciari & GPS ’07
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Comparing pileup estimation methods[1 jet & 2 partons]

[Pileup]

Compare FastJet median ρ to
Monte Carlo truth (ρDirect)
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A non-trivial issue: rapidity dependence[1 jet & 2 partons]

[Pileup]

The original method assumed
rapidity dependence was small

◮ In some sense it is, . 1.5 GeV

◮ Measure ρ globally, and include
a rapidity-dependent rescaling

psubt = pt − f (y)ρA

determine f (y) from min-bias

◮ Measure ρ “locally” in strips of
|∆y | < 1.5  0
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Conclusion: global ρ determination with fixed rapidity-dependent
rescaling is probably the most effective choice
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Hints from charged tracks[1 jet & 2 partons]

[Pileup]

Dispersion of offset gives another
measure of the subtraction “quality”

◮ several GeV without subtraction

◮ only partially reduced with FJ
subtraction

◮ alternative: use PF to remove
PU charged tracks in each jet

if PU is in-time

◮ scaling PU charged track in the
jet to correct also for neutrals

◮ or supplementing with FJ
subtraction for the neutrals

better still

 0

 1

 2

 3

 4

 5

 6

 7

 8

-5 -4 -3 -2 -1  0  1  2  3  4  5
re

si
du

al
 fl

uc
tu

at
io

ns
 [G

eV
]

y

dijets50, 15 PU

no subtraction

Jets lecture 2 (Gavin Salam) MC tools for LHC school September 2011 39 / 30



Hints from charged tracks[1 jet & 2 partons]

[Pileup]

Dispersion of offset gives another
measure of the subtraction “quality”

◮ several GeV without subtraction

◮ only partially reduced with FJ
subtraction

◮ alternative: use PF to remove
PU charged tracks in each jet

if PU is in-time

◮ scaling PU charged track in the
jet to correct also for neutrals

◮ or supplementing with FJ
subtraction for the neutrals

better still

 0

 1

 2

 3

 4

 5

 6

 7

 8

-5 -4 -3 -2 -1  0  1  2  3  4  5
re

si
du

al
 fl

uc
tu

at
io

ns
 [G

eV
]

y

dijets50, 15 PU

no subtraction
FJ global ρ (y-rescaled)

Jets lecture 2 (Gavin Salam) MC tools for LHC school September 2011 39 / 30



Hints from charged tracks[1 jet & 2 partons]

[Pileup]

Dispersion of offset gives another
measure of the subtraction “quality”

◮ several GeV without subtraction

◮ only partially reduced with FJ
subtraction

◮ alternative: use PF to remove
PU charged tracks in each jet

if PU is in-time

◮ scaling PU charged track in the
jet to correct also for neutrals

◮ or supplementing with FJ
subtraction for the neutrals

better still

 0

 1

 2

 3

 4

 5

 6

 7

 8

-5 -4 -3 -2 -1  0  1  2  3  4  5
re

si
du

al
 fl

uc
tu

at
io

ns
 [G

eV
]

y

dijets50, 15 PU

no subtraction
FJ global ρ (y-rescaled)

PUchg in jet/fchg

Jets lecture 2 (Gavin Salam) MC tools for LHC school September 2011 39 / 30



Hints from charged tracks[1 jet & 2 partons]

[Pileup]

Dispersion of offset gives another
measure of the subtraction “quality”

◮ several GeV without subtraction

◮ only partially reduced with FJ
subtraction

◮ alternative: use PF to remove
PU charged tracks in each jet

if PU is in-time

◮ scaling PU charged track in the
jet to correct also for neutrals

◮ or supplementing with FJ
subtraction for the neutrals

better still

 0

 1

 2

 3

 4

 5

 6

 7

 8

-5 -4 -3 -2 -1  0  1  2  3  4  5
re

si
du

al
 fl

uc
tu

at
io

ns
 [G

eV
]

y

dijets50, 15 PU

no subtraction
FJ global ρ (y-rescaled)

PUchg in jet/fchg
PUchg + fntrl*(FJ global [y-rscld])

Jets lecture 2 (Gavin Salam) MC tools for LHC school September 2011 39 / 30



Hints from charged tracks[1 jet & 2 partons]

[Pileup]

Dispersion of offset gives another
measure of the subtraction “quality”

◮ several GeV without subtraction

◮ only partially reduced with FJ
subtraction

◮ alternative: use PF to remove
PU charged tracks in each jet

if PU is in-time

◮ scaling PU charged track in the
jet to correct also for neutrals

◮ or supplementing with FJ
subtraction for the neutrals

better still

 0

 1

 2

 3

 4

 5

 6

 7

 8

-5 -4 -3 -2 -1  0  1  2  3  4  5
re

si
du

al
 fl

uc
tu

at
io

ns
 [G

eV
]

y

dijets50, 15 PU

no subtraction
FJ global ρ (y-rescaled)

PUchg in jet/fchg
PUchg + fntrl*(FJ global [y-rscld])

Direct knowledge of PU from tracks
can be beneficial

Detector impact harder to judge
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Jet masses etc.?[1 jet & 2 partons]

[Pileup]

Fat-jet studies need more than just
the jet pt . E.g. jet mass

There are methods to limit PU sen-
sitivity of jet masses.

Filtering: Butterworth et al ’08

Pruning: Ellis et al ’09

Trimming: Thaler et al ’09

4-vector subtraction can also help

p(sub)
µ

= pµ − f (y)ρAµ

“Automatically” corrects mass
as long as hadron masses set to zero

Many more things can be corrected for PU beyond jet pt
Tests are still in v. early stages / drawing board
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