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Matching Fixed Order and Parton Showers

Outline 1

• Parton Shower Monte Carlo (PSMC)

• Matching PSMC to Next-to-Leading Order (NLOPS)

✤ Toy Model

✤ MC@NLO

✤ POWHEG

• Summary
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Parton Shower Monte Carlo

• MC Sudakov form factor:

• Unitarity:

• Expanded to NLO:
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∆MC (pT ) = exp

�
−
�

dΦR
RMC (ΦB ,ΦR)

B (ΦB)
θ (kT (ΦB ,ΦR)− pT )

�

dσMC = B (ΦB) dΦB

�
∆MC (0) +

RMC (ΦB ,ΦR)

B (ΦB)
∆MC (kT (ΦB ,ΦR)) dΦR

��
LO (Born) No (resolvable) emission One emission

�
dσMC =

�
B (ΦB) dΦB

dσMC =

�
B (ΦB)−

�
RMC (ΦB ,ΦR) dΦR

�
dΦB +RMC (ΦB ,ΦR) dΦB dΦR

Distribution of first (resolvable) emission:
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Parton Shower Monte Carlo

• Parton shower approximation

✤ Bad for hard, wide-angle emission

• Hard matrix element correction: Z0+parton

✤ Not exact NLO

4
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Toy Model

! Consider first a toy model that allows simple discussion of key features of

NLO, of MC, and of matching between the two.

" Assume a system can radiate massless “photons”, energy x, with

0 ≤ x ≤ xs ≤ 1, xs being energy of system before radiation.

" After radiation, energy of system is x
�
s = xs − x.

" System can undergo further emissions, but photons themselves cannot

radiate.

! Task of predicting an infrared-safe observable O to NLO amounts to

computing the quantity

�O� = lim
�→0

� 1

0
dxx

−2�
O(x)

��
dσ

dx

�

B

+

�
dσ

dx

�

V

+

�
dσ

dx

�

R

�

where Born, virtual and real contributions are respectively

�
dσ

dx

�

B,V,R

= Bδ(x) , a

�
B

2�
+ V

�
δ(x) , a

R(x)

x
,

a is coupling constant, and limx→0 R(x) = B.
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! In subtraction method, real contribution is written as:

�O�R = aBO(0)

� 1

0
dx

x
−2�

x
+ a

� 1

0
dx

O(x)R(x) − BO(0)

x1+2�
.

Second integral is non-singular, so we can set � = 0:

�O�R = −a
B

2�
O(0) + a

� 1

0
dx

O(x)R(x) − BO(0)

x

! Therefore NLO prediction is:

�O�sub = BO(0) + a

�
V O(0) +

� 1

0
dx

O(x)R(x) − BO(0)

x

�

! We rewrite this in a slightly different form:

�O�sub =

� 1

0
dx

�
O(x)

aR(x)

x
+ O(0)

�
B + aV − aB

x

��
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Toy Monte Carlo

! In a treatment based on Monte Carlo methods, the system can undergo an
arbitrary number of emissions (branchings), with probability controlled by the
Sudakov form factor, defined for our toy model as follows:

∆(x1, x2) = exp
�
−a

� x2

x1

dz
Q(x)

x

�

where Q(x) is a monotonic function with the following properties:

0 ≤ Q(x) ≤ 1, lim
x→0

Q(x) = 1, lim
x→1

Q(x) = 0

∆(x1, x2) is the probability that no photon be emitted with energy x such that
x1 ≤ x ≤ x2.
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Modified Subtraction
! We want to interface NLO to MC. Naive first try:

O(0) ⇒ start MC with 0 real emissions: F (0)
MC

O(x) ⇒ start MC with 1 emission at x: F (1)
MC(x)

so that overall generating functional is

� 1

0
dx

�
F (0)

MC

�
B + aV − aB

x

�
+ F (1)

MC(x)
aR(x)

x

�

! This is wrong: MC starting with no emissions will generate emission, with

NLO distribution �
dσ

dx

�

MC

= aB
Q(x)

x

We must subtract this from second term, and add to first:

FMC@NLO =

� 1

0
dx

�
F (0)

MC

�
B + aV +

aB[Q(x)− 1]

x

�

+F (1)
MC(x)

a[R(x)−BQ(x)]

x

�
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FMC@NLO =

� 1

0
dx

�
F

(0)
MC

�
B + aV +

aB[Q(x)− 1]

x

�

+F
(1)
MC(x)

a[R(x)−BQ(x)]

x

�

This prescription has several good features:

! F
(0)
MC = F

(1)
MC to O(1), so added and subtracted terms are equal to O(a);

! Coefficients of F
(0)
MC and F

(1)
MC are now separately finite;

! Same resummation of large logs in F
(0)
MC and F

(1)
MC ⇒ FMC@NLO gives same

resummation as F
(0)
MC , renormalised to correct NLO cross section.

Note, however, that some events may have negative weight.
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MC@NLO

• Expanding gives NLO result 
10

finite virtual divergent

dσMC = B (ΦB) dΦB

�
∆MC (0) +

RMC (ΦB ,ΦR)

B (ΦB)
∆MC (kT (ΦB ,ΦR)) dΦR

�

≡ B dΦB [∆MC (0) + (RMC/B) ∆MC (kT ) dΦR]

dσNLO =

�
B (ΦB) + V (ΦB)−

� �

i

Ci (ΦB ,ΦR) dΦR

�
dΦB +R (ΦB ,ΦR) dΦB dΦR

≡
�
B + V −

�
C dΦR

�
dΦB +R dΦB dΦR

dσMC@NLO =

�
B + V +

�
(RMC − C) dΦR

�
dΦB [∆MC (0) + (RMC/B) ∆MC (kT ) dΦR]

+ (R−RMC) ∆MC (kT ) dΦB dΦR

>finite   0<
MC starting from no emission

MC starting from one emission

S Frixione & BW, JHEP 06(2002)029
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MC@NLO:  W Production

• N.B. MC@NLO is MC-specific

11

Pythia (no MEC) Pythia (no MEC)

MC@NLO+PythiaMC@NLO+Pythia

MC@NLO+Herwig MC@NLO+Herwig

pp @14 TeV W pt Hardest jet pt
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Pythia (no MEC)

Pythia (no MEC)

MC@NLO+PythiaMC@NLO+Pythia
MC@NLO
+Herwig MC@NLO

+Herwig

pp @14 TeV

• N.B. NLO is only LO at high pt

S Frixione & P Torrielli, JHEP 04(2010)110

MC@NLO:  W Production
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POWHEG

• NLO with (almost) no negative weights

• High pt enhanced by

13

∆R (pT ) = exp

�
−
�

dΦR
R (ΦB ,ΦR)

B (ΦB)
θ (kT (ΦB ,ΦR)− pT )

�

B (ΦB) = B (ΦB) + V (ΦB) +

� �
R (ΦB ,ΦR)−

�

i

Ci (ΦB ,ΦR)

�
dΦR

dσPH = B (ΦB) dΦB

�
∆R (0) +

R (ΦB ,ΦR)

B (ΦB)
∆R (kT (ΦB ,ΦR)) dΦR

�
P Nason, JHEP 11(2004)040

K = B/B = 1 +O(αS)

arbitrary NNLO
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POWHEG: Higgs Production

• Large enhancement at high pT

✤ due to B/B

• NNLO correction is indeed large (in this case ...)

14

Figure 17: Comparison between POWHEG, MC@NLO and the NLO calculation, for mH = 120 GeV at
the LHC. All calculations are performed in the mt → ∞ approximation. Shower and hadronization
are included in the MC results. The POWHEG result is also presented without shower and hadroniza-
tion, and with a fixed-scale choice.

this calculation is shown in comparison with the NLO curve in fig. 18. Since, as shown in

fig. 17, the shower and hadronization are irrelevant for this distribution, we do not include

them in the figure. In fig. 18 we have chosen to use pT independent renormalization and

factorization scales, in order to perform a consistent comparison. Notice that, with this

choice of scales, the NLO distribution is harder than the one shown in fig. 17. This is

easily explained by the fact that the NLO process is proportional to α3
S(µR), and thus a pT

dependent renormalization scale can alter significantly the pT distribution.

At this point, we can ask whether the higher order terms included in POWHEG with the

mechanism illustrated above do in fact give a reasonable estimate of true NNLO effects.

We thus include in fig. 18 the NNLO result, obtained from the HNNLO program of ref. [16].

The result shows a rather good agreement between the NNLO result and POWHEG. Thus,

our seemingly large corrections to the Higgs boson pT distributions are in fact very similar

in size to the full NNLO result. Observe that in fig. 18 we have used a fixed scale choice

for all the results. We were forced to do this, since the HNNLO program does not allow for

other choices. However, because of the good agreement of the two POWHEG results in fig. 17,

and because of the smaller scale dependence of the NNLO result, this should not make a

severe difference.

Because of a fortuitous circumstance, we did not need to worry about correcting for

– 22 –

Figure 18: Comparison between POWHEG and fixed NLO and NNLO distributions for the transverse-
momentum of the Higgs boson. Plots are done for mH = 120 GeV at the LHC.

the large difference between the POWHEG and the NLO result at large radiation transverse

momentum, since the known NNLO result seems to support the POWHEG one. We remark,

however, that, had this not been the case, it is very easy to modify the POWHEG algorithm

so to obtain a pT spectrum that agrees with the NLO calculation at large pT. This can be

done as follows. Instead of using the full real cross section for the computation of the B̄

function and of the Sudakov form factor, we can instead use a reduced real contribution

Rred = R × F , (4.5)

where F is a function of the real phase space, with F < 1 everywhere, such that F

approaches 1 for small transverse momenta, and approaches zero for large transverse mo-

menta. We perform the POWHEG generation using Rred instead of R, and treat the remaining

R × (1 − F ) contribution to the cross section with the same method that we used for the

Rqq̄ contribution. This can be done, since R × (1 − F ) is dumped by the 1 − F factor in

the singular region. It will then follow that, for large transverse momentum, the result

would agree with the NLO calculation, since it would be dominated by the R × (1 − F )

contribution. It turned out that, in all previous implementations, it was not necessary to

use such procedure. As remarked before, thanks to the known properties of the NNLO

result, this was not necessary even in this case. We have however performed such study,

just in order to illustrate the flexibility of the POWHEG method. We have chosen for F the

– 23 –

(14 TeV)

(14 TeV)

Alioli, Nason, Oleari, Re, JHEP 024(2009)002
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POWHEG variation

• RS has soft & collinear singularities of R

• No change at NLO

• Close to MC@NLO when RS=RMC

15

∆S (pT ) = exp

�
−
�

dΦR
RS (ΦB ,ΦR)

B (ΦB)
θ (kT (ΦB ,ΦR)− pT )

�

BS (ΦB) = B (ΦB) + V (ΦB) +

� �
RS (ΦB ,ΦR)−

�

i

Ci (ΦB ,ΦR)

�
dΦR

dσ�
PH

= BS (ΦB) dΦB

�
∆S (0) +

RS (ΦB ,ΦR)

B (ΦB)
∆S (kT (ΦB ,ΦR)) dΦR

�

+ [R (ΦB ,ΦR)−RS (ΦB ,ΦR)] dΦB dΦR
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POWHEG variation
• Use

• Varying h “tunes” NNLO

16

following form

F =
h2

p2
T + h2

. (4.6)

The resulting transverse-momentum distribution at the LHC, for a Higgs boson mass of

400 GeV, is shown in fig. 19 for h → ∞ (standard POWHEG), h = 120 GeV and h = 400 GeV.

One can see that it is not difficult to get distributions that undershoot the MC@NLO one in

Figure 19: Comparison of the predictions of MC@NLO, standard POWHEG (h → ∞) and POWHEG with
two different values of the parameter h (h = 120 GeV and h = mH = 400 GeV) in the function F
of eq. (4.6), for the transverse-momentum distributions of a Higgs boson, at the LHC pp collider.

the intermediate range of pT. We also observe that, with this procedure, no undesired

features of other distributions appear. In particular, the distribution in the rapidity of the

hardest jet, and in the rapidity difference between the hardest jet and the Higgs boson

remain qualitatively the same, as shown in fig. 20.

4.4 Next-to-leading logarithmic resummation

As explained in section (4.4) of ref. [9], one can reach next-to-leading logarithmic (NLL)

accuracy of soft gluon resummation if the number of coloured partons involved in the hard

scattering is less or equal to three. This can be obtained by replacing the strong coupling

constant in the Sudakov exponent with [29]

αS → A
(

αS

(

k2
T

))

, A(αS) = αS

{

1 +
αS

2π

[(

67

18
−

π2

6

)

CA −
5

9
nf

]}

, (4.7)

– 24 –

RS =
h2

p2T + h2
R
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Wbb in POWHEG

• Damping gives results close to NLO at high pT

17

Figure 2: Transverse momentum distributions for the W boson, pWT , and the hardest radiated non-
b jet, pjT , in W−bb̄ production at NLO in QCD, for both the LHC with

√
s = 14 TeV (upper plots)

and the Tevatron (lower plots). The different curves represent the results of the pure NLO QCD
calculation (dotted blue), and the results obtained with POWHEG with no damping (dashed black)
and with the damping (solid red) of hard-gluon radiation in the region collinear to the final-state
massive quarks.

the quark regularizes it, but it would be a singular region if the mass of the quark were

exactly zero. Since contributions to the differential cross section from this collinear region

would be further increased by the B̄/B ratio of eq. (3.5), we have decided to separate

out this region from the part of the real contribution that is treated by the Monte Carlo

shower techniques (i.e. generated through the Sudakov form factor), and to handle it with

standard NLO techniques, as described in sec. 3.3. In order to do this, we have chosen the

following form for the damping function F of eqs. (3.7) and (3.8)

F =
(1/d)c

(1/d)c + (1/db)
c + (1/db̄)

c , (3.11)

where

d = E2
(

1− cos2 θ
)

, (3.12)

db =
EEb

(E + Eb)2
(E +mb)2

E2
k · kb = E2

b

(E +mb)2

(E + Eb)2

(

1−
|"kb|
Eb

cos θb

)

, (3.13)

– 8 –

Oleari & Reina, arXiv:1105.4488

RS=R

RS suppressing emission 
collinear to b’s
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Wbb in aMC@NLO

• aMC@NLO uses MADLOOP+MADFKS for NLO

• Always close to NLO at high pT

18

Frederix et al., arXiv:1106.6019

Figure 6: Transverse momentum (left panel) and rapidity (right panel) of the !ν and !+!− pairs
(i.e. of the virtual W and Z bosons respectively) in !νbb̄ and !+!−bb̄ production. The insets follow
the same patterns as those in fig. 2.

In the right panel of fig. 7, where we consider only leptons with positive electric charge

to be definite, we plot the ratio of the lepton transverse momentum over the same quantity,

obtained by imposing a phase-space (i.e., flat) decay of the parent vector boson; hence,

this ratio is a measure of the impact of spin correlations on the inclusive-lepton pT . We

see that differences between correlated and uncorrelated decays can be as large as 20%,

and vary across the kinematical range considered. This confirms that the inclusion of spin-

correlation effects is necessary when an accurate description of the production process is

required. We stress again that our computations feature spin correlations exactly at the

matrix-element level, including one-loop ones. It is interesting to observe that, while in the

case of Zbb̄ production all four calculations give similar results (see the lower inset), this

happens in Wbb̄ production only for pT (!+) ! 50 GeV (see the upper inset). At pT values

larger than this, aMC@NLO and NLO predict ratios that differ from the corresponding

aMC@LO and LO ones. Once again, this is a manifestation of the significant impact of

gluon-initiated, NLO partonic processes on Wbb̄ cross sections.

In figs. 8 and 9 the transverse momenta and the pseudorapidities of the two hardest

b-jets are shown. Differences in normalisation are consistent with what we expect on the

basis of inclusive K factors; differences in shapes are typically small, but visible. We point

out that for an event to contribute to the hardest-b-jet observables shown here it is sufficient

that one b-jet be present in the event; the other b quark emerging from the hard process

can have arbitrarily small momentum.

In the left panel of fig. 10, the ∆R separation between the two hardest b-hadrons

(for the MC-based simulations) or between the b and b̄ quarks (for the NLO and LO

computations) is shown. Differences between the Wbb̄ and Zbb̄ processes are manifest. In

the former case the two b’s originate from a final-state gluon splitting, and they will thus

tend to be quite close in pseudorapidity. On the other hand, the two b’s in Zbb̄ production

can arise from the uncorrelated branchings of the initial-state gluons in the gg channel, and

– 9 –

aMC@NLO/NLO

aMC@NLO/@MC@LO

aMC@NLO/LO
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Z0 pt at Tevatron

• NLO is only LO at high pt

19

Hamilton, Richardson, Tully JHEP10(2008)015 

Z

pT

pT pT pT

pT > 30 pT > 30 pT > 30

pT

pT

pT

pT > 30

Z pT

CDF Run I D0 Run II

Z

pT

αS 0.5ŝ 2ŝ B

0.5(M2
B + p2

T ) 2(M2
B + p2

T )

pT

pT

W Z

pT
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• All agree (tuned) at Tevatron

20

W

pT

D0 Run I

W pt at Tevatron
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Truncated shower

• POWHEG highest pt emission not always first

✤ must add ‘truncated’ shower at wider angles
21

D0 Run I CDF Run I
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 Z0 pt at LHC  (7 TeV)

• RESBOS = pT resummation (not EG) 

• NLOPS gives deficit at high pT ?
22
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Figure 3: The combined normalized differential cross section as a function of pZT for (a) the range pZT < 30 GeV and (b) the full range
compared to the predictions of Resbos, Pythia, and Fewz at O(α2

S). The error bars shown include statistical and systematic uncertainties.

For the combination, the ee (µµ) channel contributes with an integrated luminosity of 35 pb−1 (40 pb−1). At low pZT the Fewz prediction
diverges and is omitted.
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Sherpa. The Fewz predictions are shown with combined scale, αS, and PDF uncertainties. The data points are shown with combined
statistical and systematic uncertainty. At low pZT the O(αS) and O(α2

S) predictions of Fewz diverge and are omitted.
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Sherpa. The Fewz predictions are shown with combined scale, αS, and PDF uncertainties. The data points are shown with combined
statistical and systematic uncertainty. At low pZT the O(αS) and O(α2

S) predictions of Fewz diverge and are omitted.
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Matching Fixed Order and Parton Showers

 W pt at LHC  (7 TeV)

• Again, NLOPS deficit at high pT ?

23

W, Z boson pT reweighting

The modeling of

dσ/dpW/Z
T can have

significant effects on the
expected efficiency and
acceptance.
NLO generators MC@NLO
and POWHEG have
deficits at high pW/Z

T .
NLO effects are important

at high pW/Z
T because the

W/Z is polarized by higher
order QCD.  [GeV]W
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W boson pT measurement

Necessary for a future precision W mass measurement.

Detector and FSR effects removed by inverting a response
matrix parametrizing the probabilistic mapping of pRT to pWT .
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Matching Fixed Order and Parton Showers

 W & Z0 pt at LHC  (14 TeV)

• MC@NLO & POWHEG still 
in fair agreement at 14 TeV
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Matching Fixed Order and Parton Showers

Z0+1jet POWHEG

• Cut now needed on ‘underlying Born’ pt of Z0

• Good agreement with CDF (not so good with D0)

• First jet is now NLO, second is LO (times B/B ...)

25

Alioli, Nason, Oleari, Re, 1009.5594

v. The finite part of the virtual corrections computed in dimensional regularization or in

dimensional reduction.

vi. The Born squared amplitudes B, the colour correlated ones Bij and spin correlated

ones Bµν .

vii. The Born colour structures in the limit of a large number of colours.

For the case at hand, the list of processes is generated going through all possible

massless quarks and gluons that are compatible with the production of the vector boson

plus an extra parton.

The Born phase space for this process poses no challenges: we generate the momen-

tum of the vector boson distributed according to a Breit-Wigner function, plus one extra

light particle. The vector boson momentum is then further decayed into two momenta,

describing the final-state leptons. At this stage, the momentum fractions x1 and x2 are

also generated and the momenta of the incoming partons are computed.
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Figure 1: Sample graphs for the Born, virtual and real contributions to the Z/γ + 1j production
process.

A sample of Feynman diagrams that contribute to the Z+1j process at the Born level

(B) is depicted in panels (a) and (b) of fig. 1. Together with the Born diagrams, we have to

consider the one-loop corrections to the tree level graphs, and the diagrams with an extra

radiated parton. A sample of virtual and real contributions is depicted in panels (c)–(f) of

fig. 1.

We have computed the Born and real contributions ourselves, using the helicity-

amplitude technique of refs. [10, 11]. The amplitudes are computed numerically in a

– 3 –

Sample graphs

Figure 9: pT distributions of the hardest and next-to-hardest jet and the inclusive rapidity distri-
butions for events with at least one and two jets.

where y and η represent the rapidity and pseudorapidity of the specified particles, and

where R is the distance in the azimuth-rapidity plane.

We notice the good agreement between the POWHEG prediction and the data. It parallels

the agreement between data and the NLO MCFM result displayed in refs. [1, 28], despite the

fact that, when more than two jets are considered, MCFM has NLO accuracy, while our

generator is limited to leading order. However, we emphasize that the POWHEG results are

directly compared to data, while the MCFM ones are first corrected by parton-to-hadron

correction factors, as detailed in [1]. Notice also the dependence of the results from the

chosen tune of PYTHIA. The Perugia 0 tune seems to give a slightly better agreement with

data. We point out that the differences between the POWHEG results and the data is of

the same order of the differences between the two tunes, thus suggesting that, by directly

tuning the POWHEG results to data, one may get an even better agreement.

Z/γ (→ µ+µ−) + jets

Similar studies for the Z/γ decaying in the µ+µ− channel were also performed by CDF.

In figs. 10 and 11 we display the total cross section for inclusive jet production and the

inclusive pT and rapidity distributions for events with at least one and two jets. In order to

perform an analysis as close as possible to the CDF experimental settings, we have applied

– 15 –



Matching Fixed Order and Parton Showers

Summary of Lecture 1
• Matching PSMC & NLO means NLO must be modified to 

avoid double counting

• MC@NLO: modify subtraction method

✤ Some negative weights (“counter-events”)

✤ Close to NLO at high pT

• POWHEG: generate hardest emission at NLO

✤ (Almost) no negative weights

✤ May enhance high pT

• Both describe Tevatron data well

✤ Some high pT deficits at LHC?
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