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Orientation An analog Gluon radiation Quantum effects

Topics of the lectures
@ Lecture 1: The Monte Carlo Principle

© Lecture 2: Parton level event generation
© Lecture 3: Dressing the Partons
© Lecture 4: Modelling beyond Perturbation Theory

Thanks to

- My fellow MC authors, especially S.Gieseke, K.Hamilton, L.Lonnblad, F.Maltoni, M.Mangano,
P.Richardson, M.Seymour, T.Sjostrand, B.Webber.

- the other Sherpas: J.Archibald, S.Hoche, S.Schumann, F.Siegert, M.Schénherr, J.Winter, and K.Zapp.
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Menu of lecture 3

@ Prelude: Orientation
Why we need parton showers

@ An analogy: Radioactive decays
@ Gluon radiation, to all orders

@ Improving the accuracy: Quantum effects

@ New showers
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Prelude: Orientation

Event generator paradigm | Sketch of an event

Divide event into stages, g

separated by different scales.
® Signal/background:

Exact matrix elements.

@ QCD-Bremsstrahlung:

Parton showers (also in initial state).

@ Multiple interactions:

Beyond factorisation: Modelling.

*J

Non-perturbative QCD: Modelling.
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Orientation An analog Gluon radiation Quantum effects

Motivation: Why parton showers?

Common wisdom
@ Well-known: Accelerated charges radiate

@ QED: Electrons (charged) emit photons
Photons split into electron-positron pairs
@ QCD: Quarks (coloured) emit gluons
Gluons split into quark pairs

@ Difference: Gluons are coloured (photons are not charged)
Hence: Gluons emit gluons!

@ Cascade of emissions: Parton shower

F. Krauss

Introduction to Event Generators



Orientation An analogy Gluon radiatio Quantum e

Some more refined reasons
@ Experimental definition of jets based on hadrons.

@ But: Hadronisation through phenomenological models

(need to be tuned to data).

@ Wanted: Universality of hadronisation parameters

(independence of hard process important).

Link to fragmentation needed: Model softer radiation

(inner jet evolution).

Similar to PDFs (factorisation) just the other way around

(fragmentation functions at low scale,

parton shower connects high with low scale).
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An analogy Gluon radiation Quantum effects

An analogy: Radioactive decays

The form of the solution

@ Consider the radioactive decay of an unstable isotope
W|th half—hfe T. (Ignore factors of In 2.)

@ “Survival” probability after time t is given by
S(t) = Puodec(t) = exp[—t/T].
(Note “unitarity relation”: Pyec(t) =1 — Ppodec(t).)

@ Probability for an isotope to decay at time t:

dp ec dPnO ec
WPaec(t) — _ DPoodeclt) _ 1 oyp(—t/7),

@ Now: Connect half-life with width ' = 1/7.

@ Probability for the isotope to decay at any fixed time t is
determined by I'.
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Orientation An analogy Gluon radiation Quantum effects

Adding a non-trivial time dependence

t
@ Rewrite I't in the exponential as [ dt'T.
0

(This allows to make life more interesting, see below.)
@ Allows to have a time-dependent decay probability '(t').
@ Then decay-probability at a given time t is given by

el — (1) exp | [ AET(1)] = Tlt) Pre(t)

dt
(Unitarity strikes again: dPgec(t)/dt = —dPpodec(t)/dt.)
@ Interpretation of I.h.s.:
o First term is for the actual decay to happen.
o Second term is to ensure that no decay before t
= Conservation of probabilities.
The exponential is called the Sudakov form factor.
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Orientation An analog Gluon radiation Quantum effects

A detour: The Altarelli-Parisi equation

The form of the equation for one parton type g

@ AP describes the scaling behaviour of the parton
dlStI’IbUtIOﬂ fu nCtIOI’] (which depends on Bjorken-parameter and scale Qz)

5 1
908 = [ 2 [ay(Q?)Py(x/y)] aly, Q)

@ Here the term in square brackets determines the
probability that the parton emits another parton at scale
Q? and Bjorken-parameter y. (efir i i, ¢ — g4 (@ — ppe)

@ Driving term: Splitting function P,(x).

Important property: Universal, process independent.
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Orientation An analog Gluon radiation Quantum effects

Splitting functions and large logarithms
ete” — jets
o Differential cross section:

2., 2
doee—3) Cras x{ + x5

= F7s A T2
dxydxy = (1 —x1)(1 — xp)

Singular for x; , — 1.

@ Rewrite with opening angle 64,
and gluon energy fraction x3 = 2E,/E .

= Oee—2j

doee—3) Cros 2 k(@ = X3)2 _x
d cos Oggdx3 T 3

sin2 Oqg X3

Singular for x3 — 0 (“soft”), sinfg, — 0 (“collinear”).
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Collinear singularities
o Use
2dcosfgg  dcosfgg dcosfgg  dcosfgg dcos Ogg ~d9§g d9§g
sin? qu 1 —cosl9qg 1+c050qg 1 —cosl9qg 1 —cosGag = Qgg e g
@ Independent evolution of two jets (g and @):
Cpas d‘92
~ g
daeeﬁ3j ~ Oee—2j Z o 0—2]/3(2) )
j{q,a} /8
)2 _ .
where P(z) = # (DGLAP splitting function)
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Orientation An analogy Gluon radiation Quantum effects

Expressing the collinear variable
@ Same form for any t o 6%
@ Transverse momentum k3 =~ z?(1 — z)2E20?

@ Invariant mass ¢° ~ z(1 — z) E20?

©

Parametrisation-independent observation:
(Logarithmically) divergent expression for t — 0.

Practical solution: Cut-off t.
= Divergence will manifest itself as log t.

Similar for P(z): Divergence for z — 0 cured by cut-off.
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Orientation An analogy Gluon radiation Quantum effects

Parton resolution

@ What is a parton? L e
Collinear pair/soft parton recombine!

@ Introduce resolution criterion k| > Qq.

@ Combine virtual contributions with unresolvable emissions:
Cancels infrared divergences = Finite at O(as)

(Kinoshita—Lee-Nauenberg, Bloch-Nordsieck theorems)

@ Unitarity: Probabilities add up to one
P(resolved) + P(unresolved) = 1.
+ -
+ — 00 =1.
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Orientation An analogy Gluon radiation Quantum effects

The Sudakov form factor
o Diff. probability for emission between ¢? and ¢° + dg:
dp = & dq f dzP(z) =: dg*T(¢?).

@ '(g?) often dubbed “integrated splitting” function.

(Terms like 1 "qZ may be pulled out in literature.)
@ No-emission prob. P,qec given by Sudakov form factor A.
@ From radioactive example: Evolution equation for A

2 2 dP
T = A(Q @)y = M@, )N (@)

— A(Q? ¢°) =exp [— ?2dkzr(k2)] :

>
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Orientation An analogy Gluon radiation Quantum effects

The Sudakov form factor (cont'd)

@ Remember: Sudakov form factor describes probabilities
for (no) branchings.

@ It has been derived here by analysing the structure of
gluon radiation off a gg pair in the (collinear)
approximation of large logarithms.

(In the splitting function we only took terms o< 1/z into account.)

@ |t can be shown that this structure factorises to all orders:

(c.f. proof of the AP equation)
dk2 d¢
%7 o —dzasP(z)doy

@ This allows the resummation of all large logs.

donyr =
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Gluon radiation Quantum effects

Orientation An analog

Many emissions

@ lterate emissions (jets)

Maximal result for t; > t, > ... t,:

th—1
dt1 dtz dt, . Q2
do x og e o log" —
Qs

O

@ How about Q?? Process-dependent!
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Gluon radiation

Ordering the emissions : Radiation pattern

E>@B>G >
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Gluon radiation Quantum effects

Improvement: Inclusion of quantum effects

Running coupling

o Effect of summing up higher orders (loops): a. — a.(k?)

X(R%)

@ Much faster parton proliferation, especially for small k2.

@ Must avoid Landau pole: kT > Q5 > Ajcp
= Q2 = physical parameter.
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Gluon radiation Quantum effects

Soft logarithms : Angular ordering

@ Soft limit for single emission also universal

@ Problem: Soft gluons come from all over (not collinear!)
Quantum interference? Still independent evolution?

@ Answer: Not quite independent.
@ Assume photon into e e ™ at Hee and photon off electron at 6
@ Energy imbalance at vertex: k] ~ zpf, hence AE ~ k3 /zp ~ zp6?.
@ Time for photon emission: At ~ 1/AE. ~ i
Q@ ce-separation: Ab ~ fcelt > A/6 ~ 1/(zpb) oF
@ Thus: Bee/(2p62) > 1/(2p0) = Bee > 6
@ Thus: Angular ordering takes care of soft limit.
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Quantum effects

Soft logarithms : Angular ordering

G.Marchesini and B.R.Webber, Nucl. Phys. B 238 (1984) 1.

B

Gluons at large angle from combined colour charge!
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Quantum effects

Soft logarithms : Angular ordering

Experimental manifestation:
AR of 2nd & 3rd jet in multi-jet events in pp-collisions
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Orientation An analog Gluon radiation Quantum effects

Aside: Using the Sudakov form factor analytically

Resummed jet rates in ete~ — hadrons

S.Catani et al. Phys. Lett. B269 (1991) 432

@ Use Durham jet measure (k, -type):

kiij = 2min(E?, Ej2)(1 — cos ;) > j2et.

@ Remember prob. interpretation of Sudakov form factor.

@ Then:
R2(Qjet) = [Ag(Ecom., Qjet)}z 5
R3(Qjet) = 28g(Ec.m., Qjet) e
Ag(Ec.m.; Qjet) _ )
./dq [Fq(q)mAq(qﬂ Qjet)g(a, Qjet)}
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Orientation An analog Gluon radiation Quantum effects New showers

Aside: Recent improvements in Pythia

Improving the shower at large p|

@ Ambiguity in starting scale @2 can be used to tune
hardness of radiation (open phase space)

b 1" b - "
power” vs. “wimpy” showers

109 Pym D! n(;V:EeE;_
@ Introduce dampening factor 5
with tunable parameter k:
k2(\)2/(k2o2+k2) mj- o o
1 100 200 300 400 500 SUU 700 800 900 1000
@ checked with tt+jets etc.. RN L -

@ Allievated matching to HO caIcuIatlons

@ Also: interleaved showering and MPI
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Dipole shower(s)

First implemented in Ariadne ( L.Lonnblad, Comput. Phys. Commun. 71, 15 (1992)).

Upshot

@ Essentially the same as parton shower (benefit: particles
always on-shell)
__ Cras(k?) dk?
do = 00—27r F
@ Always colour-connected partners (recoil of emission)
—> emission: 1 dipole — 2 dipoles.

Y
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Orientation An analogy Gluon radiation Quantum effects New showers

Features of dipole showers

@ Quantum coherence on similar grounds for angular and
kr-ordering, typical ordering in dipole showers by k| .

@ Many new shower formulations in past few years, many
(nearly all) based on dipoles in one way or the other.

@ Seemingly closer link to NLO calculations: Use
subtraction kernels like
antennae (implemented for FSR in VINCIA) or
Catani-Seymour kernels (implemented in SHERPA).

@ Typically: First emission fully accounted for.
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Orientation An analogy Gluon radiation Quantum effects New showers

Survey of existing showering tools

’ Tools H evolution \ AO/Coherence
Ariadne k -ordered (dipole) by construction
Herwig angular ordering by construction
Herwig+-+ || improved angular ordering | by construction

Pythia old: virtuality ordered by hand
new: k-ordered by construction
Sherpa k -ordering (dipole) by construction
Vincia k -ordered (dipole) by construction
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Summary of lecture 3
@ Parton showers as simulation tools.

@ Discussed theoretical background: Universal
approximation to full matrix elements in the collinear
limit.

@ Highlighted some systematic improvements.

@ Hinted at close relation to resummation.
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