Introduction to Event Generators

Frank Krauss

Institute for Particle Physics Phenomenology Durham University

MCNet school Kyoto, 5.-8.9.2011

rientation First considerations Hadronisation models Upshot

Topics of the lectures

1 Lecture 1: The Monte Carlo Principle

2 Lecture 2: Parton level event generation

1 Lecture 3: *Dressing the Partons*

Lecture 4: Modelling beyond Perturbation Theory

Thanks to

- My fellow MC authors, especially S.Gieseke, K.Hamilton, L.Lonnblad, F.Maltoni, M.Mangano, P.Richardson, M.Seymour, T.Sjostrand, B.Webber.
- the other Sherpas: J.Archibald, S.Höche, S.Schumann, F.Siegert, M.Schönherr, J.Winter, and K.Zapp.

Menu of lecture 4

- First considerations
- Hadronisation models

 Orientation
 First considerations
 Hadronisation models
 Upshot

Prelude: Orientation

Event generator paradigm

Divide event into stages, separated by different scales.

Signal/background:

Exact matrix elements.

QCD-Bremsstrahlung:
 Parton showers (also in initial state).

• Multiple interactions:

Beyond factorisation: Modelling.

• Hadronisation:

Non-perturbative QCD: Modelling.

Hadronisation

Some experimental facts \rightarrow naive parameterisations

• In $e^+e^- \to \text{hadrons}$: Limits p_\perp , flat plateau in y.

• Try "smearing": $ho(p_{\perp}^2) \sim \exp(-p_{\perp}^2/\sigma^2)$

Effect of naive parameterisations

Use parameterisation to "guesstimate" hadronisation effects:

$$\begin{split} E &= \int_0^Y \mathrm{d}y \mathrm{d}\rho_\perp^2 \, \rho(\rho_\perp^2) \rho_\perp \cosh y = \lambda \sinh Y \\ P &= \int_0^Y \mathrm{d}y \mathrm{d}\rho_\perp^2 \, \rho(\rho_\perp^2) \rho_\perp \sinh y = \lambda (\cosh Y - 1) \approx E - \lambda \\ \lambda &= \int \mathrm{d}\rho_\perp^2 \, \rho(\rho_\perp^2) \rho_\perp = \langle \rho_\perp \rangle \,. \end{split}$$

- Estimate $\lambda \sim 1/R_{\rm had} \approx m_{\rm had}$, with $m_{\rm had}$ 0.1-1 GeV.
- Effect: Jet acquire non-perturbative mass $\sim 2\lambda E$ ($\mathcal{O}(10 \, \mathrm{GeV})$) for jets with energy $\mathcal{O}(100 \, \mathrm{GeV})$).

n First considerations Hadronisation models Upshot

Implementation of naive parameterisations

• Feynman-Field independent fragmentation.

R.D.Field and R.P.Feynman, Nucl. Phys. B 136 (1978) 1

- ullet Recursively fragment q o q'+ had, where
 - Transverse momentum from (fitted) Gaussian;
 - longitudinal momentum arbitrary (hence from measurements);
 - flavour from symmetry arguments + measurements.
- Problems: frame dependent, "last quark", infrared safety, no direct link to perturbation theory,

Yoyo-strings as model of mesons

B.Andersson, G.Gustafson, G.Ingelman and T.Sjostrand, Phys. Rept. 97 (1983) 31.

- Light quarks connected by string: area law $m^2 \propto area$.
- L=0 mesons only have 'yo-yo' modes:

Dynamical strings in $e^+e^- o q\bar{q}$

B.Andersson, G.Gustafson, G.Ingelman and T.Sjostrand, Phys. Rept. 97 (1983) 31.

- Ignoring gluon radiation: Point-like source of string.
- Intense chromomagnetic field within string: More $q\bar{q}$ pairs created by tunnelling.
- Analogy with QED (Schwinger mechanism): $\mathrm{d}\mathcal{P} \sim \mathrm{d}x\mathrm{d}t\exp\left(-\pi m_q^2/\kappa\right)$, $\kappa=$ "string tension".

Gluons in strings = kinks

B.Andersson, G.Gustafson, G.Ingelman and T.Sjostrand, Phys. Rept. 97 (1983) 31.

- String model = well motivated model, constraints on fragmentation (Lorentz-invariance, left-right symmetry, ...)
- Gluon = kinks on string? Check by "string-effect"

• Infrared-safe, advantage: smooth matching with PS.

Preconfinement

- Underlying: Large N_c -limit (planar graphs).
- Follows evolution of colour in parton showers:
 at the end of shower colour singlets close in phase space.
- Mass of singlets: peaked at low scales $pprox Q_0^2$.

Primordial cluster mass distribution

- Starting point: Preconfinement;
- split gluons into qq-pairs;
- adjacent pairs colour connected, form colourless (white) clusters.
- Clusters ("≈ excited hadrons) decay into hadrons

First considerations Hadronisation models Upshot

Cluster model

B.R.Webber, Nucl. Phys. B 238 (1984) 492.

- Split gluons into $q\bar{q}$ pairs, form singlet clusters:
 - \implies continuum of meson resonances.
- Decay heavy clusters into lighter ones; (here, many improvements to ensure leading hadron spectrum hard enough, overall effect: cluster model becomes more string-like);
- if light enough, clusters → hadrons.
- Naively: spin information washed out, decay determined through phase space only → heavy hadrons suppressed (baryon/strangeness suppression).

rientation First considerations **Hadronisation models** Upshot

Colour reconnections in the cluster model

 Maybe toy with phenomenological models of non-perturbative colour reconnection?

Summary of lecture 4

- Hadronisation
 - Various phenomenological models;
 - tuned to LEP data, overall agreement satisfying;
 - validity for hadron data not quite clear.

(beam remnant fragmentation not in LEP.)

