Matching Fixed Order and Parton Showers

Bryan Webber University of Cambridge

 Lecture I: Matching Parton Showers to Next-to-Leading Order (NLOPS)

 Lecture 2: Merging Parton Showers with Multijet Matrix Elements (MEPS)

Matching Fixed Order and Parton Showers

MC Tools for LHC, YITP, Kyoto, Sept 2011

Outline 2

- Merging PSMC with Multijet Matrix Elements (MEPS)
 - CKKW-L
 - MLM
- Combining MEPS with NLOPS (MENLOPS)

MEPS

- Objective: merge n-jet MEs with PSMC such that
 - Multijet rates for k_t-resolution > Q_{cut} are correct to LO
 - PSMC generates jet structure below Q_{cut}
 - ✤ Q_{cut} dependence cancels to NLL accuracy

CKKW: Catani et al., JHEP 11(2001) -L: Lonnblad, JHEP 05(2002)063 MLM: Mangano et al., NP B632(2002)343

Example: e⁺e⁻→ hadrons

2 & 3-jet rates at scale Q_{cut}=Q₁

 $R_2(Q, Q_1) = [\Delta_q(Q, Q_1)]^2$, $R_{3}(Q,Q_{1}) = 2\Delta_{q}(Q,Q_{1}) \int_{Q_{1}}^{Q} dq \, \frac{\Delta_{q}(Q,Q_{1})}{\Delta_{q}(q,Q_{1})} \Gamma_{q}(Q,q)$ $\times \Delta_q(q,Q_1)\Delta_q(q,Q_1)$

CKKW reweighting

- Choose n according to $R_n(Q,Q_1)$ (LO)
 - use $[\alpha_{\mathrm{S}}(Q_1)]^n$
- Use exact LO ME to generate n partons
- Construct "equivalent shower history"
 - preferably using k_T-type algorithm
- Weight vertex at scale q by $\alpha_{\rm S}(q)/\alpha_{\rm S}(Q_1) < 1$
- Weight parton of type i from Q_j to Q_k by $\Delta_i(Q_j,Q_1)/\Delta_i(Q_k,Q_1)$

CKKW shower veto

- Shower n partons from "creation scales"
 - includes coherent soft emission
- Veto emissions at scales above Q₁
 - cancels leading (LL&NLL) Q1 dependence

Colour Structure

• But colour flow must obey angular ordering [(a) not (b)]

Z⁰+jets MEPS at Tevatron

Insensitive to Q_{cut}

Insensitive to $N_{max} > I$

Hoeche, Krauss, Schumann, Siegert, JHEP05(2009)053

Z⁰+jets MEPS at Tevatron

Differential jet rates (k_t-algorithm)

Hoeche, Krauss, Schumann, Siegert, JHEP05(2009)053

MLM Matching

- Use cone algorithm for jet definition:
- $R_{ij}^{2} = (\eta_{i} \eta_{j})^{2} + (\phi_{i} \phi_{j})^{2}$ $E_{Ti} > E_{Tmin}, R_{ij} > R_{min}$ • Generate n-parton configurations with (no Sudakov weights) $E_{Ti} > E_{Tmin}, R_{ij} > R_{min}$
- Generate showers (no vetos)
- Form jets using same jet definition

mimics Sudakov+veto

Reject event if n_{jets} ≠ n_{partons}^{*}

Mangano, Moretti, Piccinini, Treccani, JHEP01 (2007)013

Inclusive jet rates (anti-k_t-algorithm)

3

 $\geq N_{iet}$

2

1

0.6

30

40

50

60

70

80

90

Good agreement with MEPS predictions

PS alone starts to fail for $N_{jet} \ge 2$

N Makovec, Moriond 2011

100 110 120 p^{jet}₇ [GeV]

MENLOPS

 $d\sigma_{\text{TOT}} = d\sigma_{\text{NLOPS}}(0 \text{ jets}) + K_1 \, d\sigma_{\text{NLOPS}}(1 \text{ jet}) + K_2 \, d\sigma_{\text{MEPS}}(\geq 2 \text{ jets})$

● Assume ≥ 2 jets have K-factor

 $K_2 = \sigma_{\text{NLOPS}} (\geq 1 \text{ jets}) / \sigma_{\text{MEPS}} (\geq 1 \text{ jets})$

- To retain NLO accuracy we need $\sigma_{\text{TOT}} = \sigma_{\text{NLOPS}}(0 \text{ jets}) + \sigma_{\text{NLOPS}}(\geq 1 \text{ jets})$
- Therefore

$$K_{1} = \frac{\sigma_{\text{MEPS}}(1 \,\text{jet})}{\sigma_{\text{MEPS}}(\geq 1 \,\text{jets})} / \frac{\sigma_{\text{NLOPS}}(1 \,\text{jet})}{\sigma_{\text{NLOPS}}(\geq 1 \,\text{jets})}$$

Hamilton & Nason, JHEP06(2010)039

Hoeche, Krauss, Schumann, Siegert, 1009.1127

MENLOPS

 $d\sigma_{\text{TOT}} = d\sigma_{\text{NLOPS}}(0 \text{ jets}) + K_1 \, d\sigma_{\text{NLOPS}}(1 \text{ jet}) + K_2 \, d\sigma_{\text{MEPS}}(\geq 2 \text{ jets})$

$$K_{2} = \sigma_{\text{NLOPS}}(\geq 1 \text{ jets}) / \sigma_{\text{MEPS}}(\geq 1 \text{ jets})$$
$$K_{1} = \frac{\sigma_{\text{MEPS}}(1 \text{ jet})}{\sigma_{\text{MEPS}}(\geq 1 \text{ jets})} / \frac{\sigma_{\text{NLOPS}}(1 \text{ jet})}{\sigma_{\text{NLOPS}}(\geq 1 \text{ jets})}$$

- Choose Q_{cut} such that $\sigma_{MEPS}(\geq 2 \text{ jets}) \leq \mathcal{O}(\alpha_S)$
- Compute K₁, K₂ (in principle for each Born kinematics)
- Throw away MEPS 0- & I-jet samples
- Replace them by NLOPS 0- & I-jet samples

All treatments agree (MEPS rescaled)

Hoeche, Krauss, Schumann, Siegert, 1009.1127

• MENLOPS best for $\Delta \phi(Z, jet)$

MENLOPS good for N_{jet}=1,2,3 (no ME for 4)

MENLOPS best for jets 2 & 3

POWHEG best for pt(W), lacks ME for Njet>I

Hoeche, Krauss, Schumann, Siegert, 1009.1127

Again, POWHEG lacks ME for 2nd jet

Dashes are NLOPS & MEPS shapes

Crosses are contributions to MENLOPS

Hamilton & Nason, JHEP06(2010)039

Matching Fixed Order and Parton Showers

MC Tools for LHC, YITP, Kyoto, Sept 2011

W MENLOPS at LHC

NLOPS low for N_{jets}>I

W MENLOPS at LHC

• Again MEPS dominates at small $\Delta \phi_{J1,W}$ -

Summary of Lecture 2

- MEPS gives exclusive multijet rates to LO
 - Jet substructure generated with PS
 - CKKW-L uses Sudakov + PS veto
 - MLM uses jet matching
- Good agreement with multijet data
- MENLOPS also gives NLO cross section