
Beyond SM 
Monte Carlo with

FeynRules
 

Claude Duhr

2011 IPMU-YITP School on Monte Carlo Tools for LHC
YITP, 08 September 2011

Mittwoch, 7. September 2011



Going Beyond SM

• So far in this School:

➡ How to use/run Monte Carlo event generators to 
obtain physics results.

➡ Focus was mostly on SM physics.

• Aim of this lecture:

➡ How to obtain events for a BSM model that is not yet 
implemented into any of the existing MC codes.

➡ In other words, what is an efficient way to implement 
a BSM model into a matrix element generator?

Mittwoch, 7. September 2011



                      

YITP Kyoto March 2009 Fabio Maltoni

1. High-Q  Scattering2 2. Parton Shower 

3. Hadronization 4. Underlying Event 

a SHERPA artist

Going Beyond SM

Mittwoch, 7. September 2011



                      

YITP Kyoto March 2009 Fabio Maltoni

1. High-Q  Scattering2 2. Parton Shower 

3. Hadronization 4. Underlying Event 

a SHERPA artist

Going Beyond SM

New Physics is 
supposed to show up 

here.

Mittwoch, 7. September 2011



Going Beyond SM                      

YITP Kyoto March 2009 Fabio Maltoni

1. High-Q  Scattering2 2. Parton Shower 

3. Hadronization 4. Underlying Event 

a SHERPA artist New Physics is 
supposed to show up 

here.

Mittwoch, 7. September 2011



Going Beyond SM
                      

YITP Kyoto March 2009 Fabio Maltoni

1. High-Q  Scattering2 2. Parton Shower 

3. Hadronization 4. Underlying Event 

a SHERPA artist New Physics is 
supposed to show up 

here.

• Parton Shower Monte Carlo Codes
➡ Herwig

➡ Pythia

➡ Sherpa

• Multi-purpose LO matrix element generators (parton level)

➡ CalcHep / CompHep

➡ MadGraph / MadEvent

➡ Sherpa (AMEGIC++, Comix)

➡ Whizard / Omega

Mittwoch, 7. September 2011



Going Beyond SM
                      

YITP Kyoto March 2009 Fabio Maltoni

1. High-Q  Scattering2 2. Parton Shower 

3. Hadronization 4. Underlying Event 

a SHERPA artist New Physics is 
supposed to show up 

here.

• Parton Shower Monte Carlo Codes
➡ Herwig

➡ Pythia

➡ Sherpa

• Multi-purpose LO matrix element generators (parton level)

➡ CalcHep / CompHep

➡ MadGraph / MadEvent

➡ Sherpa (AMEGIC++, Comix)

➡ Whizard / Omega

Mittwoch, 7. September 2011



Going Beyond SM

• A BSM model can be defined via

➡ The particles appearing in the model.

➡ The values of the parameters (‘Benchmark point’).

➡ The interactions among the particles, usually dictated 
by some symmetry group, and quantified in the 
Lagrangian of the model.

• All this information needs to be implemented into the MC 
codes, usually in the form of text files that contain the 
definitions of the particles, the parameters and the 
vertices.

Mittwoch, 7. September 2011



• This can be a very tedious exercise.

• Most of these codes have only a very limited amount of 
models implemented by default (~ SM and MSSM).

• However, still these codes do not work at the level of 
Lagrangians, but need explicit vertices.

• The process of implementing Feynman rules can be 
particularly tedious and painstaking:
➡ Each code has its own conventions (signs, factors of i, ...).

➡ Vertices need to be implemented one at the time.

• Most codes can only handle a limited amount of color and / 
or Lorentz structures (~ SM and MSSM)

Going Beyond SM

Mittwoch, 7. September 2011



• Example: SUSY model

➡ Choose a gauge group (+ additional internal symmetries).

➡ Choose the matter content (= chiral superfields in some 
representation).

➡ Write down the most general superpotential.

➡ Write down the soft-SUSY breaking terms.

➡ (+ check validity of the model)

Introduction FeynRules-superfields Extensions Supersymmetric models in FeynRules Summary

Full SUSY Lagrangian (1).

Complete Lagrangian for a model.

L = Φ†e−2gV Φ|
θ2θ̄2

+
1

16g2τR
Tr(W αWα)|

θ2
+

1

16g2τR
Tr(W̄α̇W̄ α̇)|

θ̄2

+ W (Φ)|
θ2

+ W �(Φ†)|
θ̄2

+ Lsoft

* Chiral superfields kinetic terms: automatic.

* Vector superfield strengths: automatic.

* Superpotential: model dependent.

* Soft SUSY-breaking Lagrangian model dependent.

SUSY Lagrangian

SF2Components[Getkins[]][[2,9]] +

SF2Components[GetSuperFS[] + SuperPot][[2,5]] +

SF2Components[GetSuperFS[] + HC[SuperPot]][[2,6]] +

LSoft

Supersymmetry with FeynRules Benjamin Fuks - MadGraph 2010 Workshop @ V.U. Brussels - 06.10.2010 - 25

• Very easy ‘theory description’

Going Beyond SM

Mittwoch, 7. September 2011



• Example: SUSY model

➡ Express superfields in terms of component fields.

➡ Express everything in terms of 4-component fermions 
(beware of the Majoranas!).

➡ Express everything in terms of mass eigenstates.

➡ Integrate out D and F terms.

➡ Implement vertices one-by-one (beware of factors of i, etc!)

Introduction FeynRules-superfields Extensions Supersymmetric models in FeynRules Summary

Full SUSY Lagrangian (1).

Complete Lagrangian for a model.

L = Φ†e−2gV Φ|
θ2θ̄2

+
1

16g2τR
Tr(W αWα)|

θ2
+

1

16g2τR
Tr(W̄α̇W̄ α̇)|

θ̄2

+ W (Φ)|
θ2

+ W �(Φ†)|
θ̄2

+ Lsoft

* Chiral superfields kinetic terms: automatic.

* Vector superfield strengths: automatic.

* Superpotential: model dependent.

* Soft SUSY-breaking Lagrangian model dependent.

SUSY Lagrangian

SF2Components[Getkins[]][[2,9]] +

SF2Components[GetSuperFS[] + SuperPot][[2,5]] +

SF2Components[GetSuperFS[] + HC[SuperPot]][[2,6]] +

LSoft

Supersymmetry with FeynRules Benjamin Fuks - MadGraph 2010 Workshop @ V.U. Brussels - 06.10.2010 - 25

• ‘Monte Carlo description’

Going Beyond SM

Mittwoch, 7. September 2011



• The aim of this lecture is to present a code that automatizes 
all these steps, and allows to implement the model in MC 
codes starting directly from the Lagrangian.

➡ Define your particles and parameters.

➡ Enter your Lagrangian.

➡ Let the code compute the Feynman rules.

➡ Output all the information in the format required by your 
favorite MC code.

Going Beyond SM

• Workflow:

Mittwoch, 7. September 2011



• A quick overview of FeynRules

Plan of the Lecture

• Getting started:

➡      theory

➡ Adding gauge interactions (scalar QCD)

• Towards LHC phenomenology: Extending the SM

• Time permitting: Some advanced topics

N.B.: Tutorial this afternoon!

φ4

Mittwoch, 7. September 2011



FeynRules: a quick overview

• FeynRules is a Mathematica package that allows to derive 
Feynman rules from a Lagrangian.

• The only requirements on the Lagrangian are:

➡ All indices need to be contracted (Lorentz and gauge 
invariance)

➡ Locality

➡ Supported field types: spin 0, 1/2, 1, 2 & ghosts

Mittwoch, 7. September 2011



cp3

Introduction
From FeynRules to FeynArts so far

The new FeynRules interface to FeynArts
Conclusion

Welcome in the FeynRules era

C. Degrande The new FeynRules interface

• FeynRules comes with a set of interfaces, that allow to 
export the Feynman rules to various matrix element 
generators.

• Interfaces coming with current public version 

➡ CalcHep / CompHep

➡ FeynArts / FormCalc

➡ MadGraph 4 & 5

➡ Sherpa

➡ Whizard / Omega
© C. Degrande

FeynRules: a quick overview

Mittwoch, 7. September 2011



cp3

Introduction
From FeynRules to FeynArts so far

The new FeynRules interface to FeynArts
Conclusion

For each tool, the right input

C. Degrande The new FeynRules interface

• FeynRules comes with a set of interfaces, that allow to 
export the Feynman rules to various matrix element 
generators.

• Interfaces coming with current public version: 

➡ CalcHep / CompHep

➡ FeynArts / FormCalc

➡ MadGraph 4 & 5

➡ Sherpa

➡ Whizard / Omega
© C. Degrande

FeynRules: a quick overview

Mittwoch, 7. September 2011



• The input requested form the user is twofold.

F[1]  ==  
   {ClassName     ->   q,
    SelfConjugate ->  False,
    Indices            ->  {Index[Colour]},
    Mass               ->  {MQ,  200},
    Width              ->  {WQ, 5}   }

L = 
-1/4 FS[G,mu,nu,a] FS[G,mu,nu,a]  
+ I qbar.Ga[mu].del[q,mu] 
- MQ qbar.q

• The Model File:
Definitions of particles and 
parameters (e.g., a quark)

• The Lagrangian:

L = −1
4
Ga

µν Gµν
a + iq̄ γµ Dµq −Mq q̄ q

FeynRules: a quick overview

Mittwoch, 7. September 2011



• Once this information has been provided, FeynRules can 
be used to compute the Feynman rules for the model:

FeynmanRules[ L ]

• Equivalently, we can export the Feynman rules to a 
matrix element generator, e.g., for MadGraph 4,

WriteMGOutput[ L ]

• This produces a set of files that can be directly used in the 
matrix element generator (“plug ‘n’ play”).

FeynRules: a quick overview

Mittwoch, 7. September 2011



Lagrangian

FeynArts

Translation Interfaces

TeX Feynman Rules

Model-file
Particles, parameters, ...

FeynRules

MadGraph CalcHep Sherpa

Whizard Golem Herwig

FeynRules: a quick overview

Mittwoch, 7. September 2011



Getting Started:
phi4 theory

Mittwoch, 7. September 2011



phi4 theory

• Let us consider a model consisting of two complex scalar 
fields, interacting with each other:

L = ∂µφ†
i∂

µφi −m2φ†
iφi + λ(φ†

iφi)2

• We need to implement into a FeynRules model file
➡ The two fields      and      , or rather one field carrying 

an index.
➡ The two new parameters m and     .

φ1 φ2

λ

• In a second step, we need to implement the Lagrangian 
into Mathematica.

Mittwoch, 7. September 2011



How to write a model file

• A model file is simply a text file (with extension .fr).

• The syntax is Mathematica.

• General structure:

Preamble 
(Author info, model info, index definitions, ... )

Particle Declarations 
(Particle class definitions, spins, quantum numbers, ...)

Parameter Declarations
(Numerical Values, ...)

Mittwoch, 7. September 2011



Preamble of the model file

• The preamble allows to ‘personalize’ the model file, and 
define all the indices that are carried by the fields
➡ In our case we have one index, taking the values 1 or 2.

M$ModelName =  “Phi_4_Theory“;

M$Information = {Authors -> {"C. Duhr"}, 
                    Version -> "1.0",

                                  Date -> "09. 09. 2011"};

IndexRange[ Index[Scalar] ] = Range[2];
IndexStyle[ Scalar, i];

Mittwoch, 7. September 2011



Particle Declaration

• Particles are defined as ‘classes’, grouping together particles 
with similar quantum numbers, but different masses 
(~multiplet).

M$ClassesDescription = {
    S[1] == {
             ClassName -> phi,
             ClassMembers -> {phi1,phi2},
             SelfConjugate -> False,
	        Indices -> {Index[Scalar]},
             FlavorIndex -> Scalar,
             Mass -> {MS, 100}
       }
};

Mittwoch, 7. September 2011



Particle Declaration

• Particles are defined as ‘classes’, grouping together particles 
with similar quantum numbers, but different masses 
(~multiplet).

M$ClassesDescription = {
    S[1] == {
             ClassName -> phi,
             ClassMembers -> {phi1,phi2},
             SelfConjugate -> False,
	        Indices -> {Index[Scalar]},
             FlavorIndex -> Scalar,
             Mass -> {MS, 100}
       }
};

Spin (S, F, V, U, T)

Mittwoch, 7. September 2011



Particle Declaration

• Particles are defined as ‘classes’, grouping together particles 
with similar quantum numbers, but different masses 
(~multiplet).

M$ClassesDescription = {
    S[1] == {
             ClassName -> phi,
             ClassMembers -> {phi1,phi2},
             SelfConjugate -> False,
	        Indices -> {Index[Scalar]},
             FlavorIndex -> Scalar,
             Mass -> {MS, 100}
       }
};

Symbol used for the 
particle in the Lagrangian.

         Antiparticle called 
phibar.

Mittwoch, 7. September 2011



Particle Declaration

• Particles are defined as ‘classes’, grouping together particles 
with similar quantum numbers, but different masses 
(~multiplet).

M$ClassesDescription = {
    S[1] == {
             ClassName -> phi,
             ClassMembers -> {phi1,phi2},
             SelfConjugate -> False,
	        Indices -> {Index[Scalar]},
             FlavorIndex -> Scalar,
             Mass -> {MS, 100}
       }
};

The field is complex, i.e., 
there is an antiparticle.

Mittwoch, 7. September 2011



Particle Declaration

• Particles are defined as ‘classes’, grouping together particles 
with similar quantum numbers, but different masses 
(~multiplet).

M$ClassesDescription = {
    S[1] == {
             ClassName -> phi,
             ClassMembers -> {phi1,phi2},
             SelfConjugate -> False,
	        Indices -> {Index[Scalar]},
             FlavorIndex -> Scalar,
             Mass -> {MS, 100}
       }
};

Symbol for the mass 
used in the Lagrangian,

+ numerical value in GeV.

Mittwoch, 7. September 2011



Parameter Declaration

• Parameter classes are defined in a similar way to the particle 
classes.
➡ In our case, we have two parameters, the mass m and 

the coupling    .
➡ The mass was already defined with the particle, no need 

to define it a second time.

M$Parameters = {
    lam == {
             Value -> 0.1
       }
};

λ

Mittwoch, 7. September 2011



The Mathematica session

• We now run FeynRules to obtain the Feynman rules of the 
model
➡ This is done in a Mathematica notebook.

• Step 1: Load FeynRules into Mathematica

Mittwoch, 7. September 2011



The Mathematica session

• We now run FeynRules to obtain the Feynman rules of the 
model
➡ This is done in a Mathematica notebook.

• Step 1: Load FeynRules into Mathematica

Mittwoch, 7. September 2011



The Mathematica session

• Step 2: Load the model file

Mittwoch, 7. September 2011



The Mathematica session

• Step 2: Load the model file

Mittwoch, 7. September 2011



The Mathematica session

• Step 3: Enter the Lagrangian

L = ∂µφ†
i∂

µφi −m2φ†
iφi + λ(φ†

iφi)2

Mittwoch, 7. September 2011



The Mathematica session

• Step 4: Computing the Feynman rules

Mittwoch, 7. September 2011



The Mathematica session

• Step 4: Computing the Feynman rules

Mittwoch, 7. September 2011



The Mathematica session

• Step 4: Computing the Feynman rules

Mittwoch, 7. September 2011



The Mathematica session

• Step 4: Computing the Feynman rules

Feynman rule for 
the particle class! 

Mittwoch, 7. September 2011



The Mathematica session

• Step 4: Computing the Feynman rules

Mittwoch, 7. September 2011



The Mathematica session

• Step 4: Computing the Feynman rules

Mittwoch, 7. September 2011



The Mathematica session

• Step 4: Computing the Feynman rules

Mittwoch, 7. September 2011



The Mathematica session

• Step 4: Computing the Feynman rules

Mittwoch, 7. September 2011



Summary

• We have now fully implemented our model, and have 
obtained the Feynman rules.

• We also have all the information to implement the model 
into a matrix element generator.

• This can be done automatically using the FeynRules 
interfaces.

➡ Will discuss this a bit later.

➡ Let’s first learn a bit more how to implement models.

Mittwoch, 7. September 2011



Getting Started:
Gauging our model

Mittwoch, 7. September 2011



Gauging phi4 theory

• Let us gauge our model, say the scalar is in the adjoint of 
SU(3) (QCD octet).

• The change in the Lagrangian is very minor:
➡ add field strength tensor
➡ replace derivative by covariant derivative.

L = −1
4
F a

µνFµν
a + Dµφ†

iD
µφi −m2φ†

iφi + λ(φ†
iφi)2

Dµ = ∂µ − igsT
aGa

µ

• Technically speaking, we just added two new objects to 
our model:
➡ a new particle: the gluon G.
➡ a new parameter: the gauge coupling gs.

Mittwoch, 7. September 2011



Preamble of the model file

• The fields now carry an index in the adjoint index.
➡ Need to define this new index in the preamble.

M$ModelName =  “Phi_4_Theory_Octet“;

M$Information = {Authors -> {"C. Duhr"}, 
                    Version -> "1.0",

                                  Date -> "09. 09. 2011"};

IndexRange[ Index[Scalar] ] = Range[2];
IndexStyle[ Scalar, i];
IndexRange[ Index[Gluon] ] = Range[8];
IndexStyle[ Gluon, a];

Mittwoch, 7. September 2011



Particle Declaration

• The scalar is now an octet.

M$ClassesDescription = {
    S[1] == {
             ClassName -> phi,
             ClassMembers -> {phi1,phi2},
             SelfConjugate -> False,
	        Indices -> {Index[Scalar], Index[Gluon]},
             FlavorIndex -> Scalar,
             Mass -> {MS, 100}
       }
};

Mittwoch, 7. September 2011



Particle Declaration

• We also need to define the gluon field.

M$ClassesDescription = {
    S[1] == {...},

    V[1] == {
             ClassName -> G,
             SelfConjugate -> True,
	        Indices -> {Index[Gluon]},
             Mass -> 0
       }
};

Mittwoch, 7. September 2011



Parameter Declaration

• We also need to define the gauge coupling.

M$Parameters = {
    lam == {
             Value -> 0.1
       },

    gs == {
             Value -> 1.22
       }
};

Mittwoch, 7. September 2011



Gauge groups

• We have now defined the gauge coupling and the gauge 
boson.

• To gauge the theory we need however more:

➡ Structure constants.

➡ Representation matrices.

➡ ...

• FeynRules allows to define gauge group classes in a similar 
way to particle and parameter classes.

Mittwoch, 7. September 2011



Gauge groups

• FeynRules allows to define gauge group classes in a similar 
way to particle and parameter classes.

M$GaugeGroups = {

  SU3C == {
        Abelian -> False,
        GaugeBoson -> G,
        StructureConstant -> f,
        CouplingConstant -> gs
      }
}

• Could add other representations via 
      Representation -> {T, Colour}

Mittwoch, 7. September 2011



The Mathematica session

• Step 1: Load FeynRules into Mathematica

• Step 2: Load the model file

• Step 3: Enter the Lagrangian

L = −1
4
F a

µνFµν
a + Dµφ†

iD
µφi −m2φ†

iφi + λ(φ†
iφi)2

Mittwoch, 7. September 2011



The Mathematica session

• Step 4: Computing the Feynman rules

Mittwoch, 7. September 2011



The Mathematica session

• Step 4: Computing the Feynman rules

Mittwoch, 7. September 2011



The Mathematica session

• Step 4: Computing the Feynman rules

Mittwoch, 7. September 2011



The Mathematica session

• Step 4: Computing the Feynman rules

Mittwoch, 7. September 2011



The Mathematica session

• Step 4: Computing the Feynman rules

Mittwoch, 7. September 2011



The Mathematica session

• Step 4: Computing the Feynman rules

Mittwoch, 7. September 2011



Towards LHC phenomenology:
Extending the SM

Mittwoch, 7. September 2011



Extending the SM

• So far we have only considered our model standalone.

• For LHC phenomenology, one usually wants a BSM 
model that is an extension of the SM.

• FeynRules offers the possibility to start form the SM 
model, and to add/change/remove particles and operators.

• For this, it is enough to load our new model together with 
the SM implementation:

LoadModel[ “SM.fr“, “Phi_4_Gauged“ ];

N.B.: In the SM implementation, the gluon and the QCD 
gauge group are already defined, so no need to redefine them.

Mittwoch, 7. September 2011



Running Interfaces

• We are now ready to do phenomenology!

• FeynRules contains interfaces to the following codes:
➡ CalcHep / CompHep

➡ FeynArts / FormCalc

➡ MadGraph 4 & 5

➡ Sherpa

➡ Whizard / Omega

• Each interface produces a set of text files that can be read 
into the existing generators.

Mittwoch, 7. September 2011



Running Interfaces

• The interfaces are called via the Mathematica commands

WriteCHOutput[ LSM, L ];                  (* CalcHep *)
WriteFeynArtsOutput[ LSM, L ];      (* FeynArts/FormCalc *)
WriteMGOutput[ LSM, L ];                 (*MadGraph 4 *)
WriteUFO[ LSM, L ];                             (* UFO / MadGraph 5 *)
WriteSHOutput[ LSM, L ];                  (* Sherpa *)
WriteWOOutput[ LSM, L];                  (* Whizard / Omega *)

• The files produced by FeynRules can then be processed 
by the matrix element generators.

page 1/1

Diagrams made by MadGraph5

t~

6

t 5
phis1~

t~
4

t

3

phis1

g

1

g

2

 diagram 1 QED=0, QCD=6

g

1

g

2

g

t~

6

t 5
phis1~

t~
4

t

3

phis1

 diagram 2 QED=0, QCD=6

t~
6

t

5

phis1~

t~

4

t 3
phis1

g

1

phis1~

g

2

 diagram 3 QED=0, QCD=6

t~

6

t 5
phis1~

g

1

phis1

t~
4

t

3

phis1

g

2

 diagram 4 QED=0, QCD=6

Mittwoch, 7. September 2011



Running Interfaces
• Some interfaces require/admit additional options that 

were not discussed.

• E.g., the SM input parameters should be named following 
some conventions that assure that, e.g., the strong 
coupling is recognized as such by the generator.

• Some interfaces to some generators have the colour and / 
or Lorentz structures hardwired:

Spins Lorentz Colour
CalcHep 0,1/2,1,2 ~all 1,3,8 (limited)
FeynArts 0,1/2,1 all all*

MadGraph 4 0,1/2,1 MSSM - like 1,3,8 (limited)
MadGraph 5 0,1/2,1,2 all 1,3,6,8

Sherpa 0,1/2,1 SM - like 1,3,8
Whizard 0,1/2,1,2 MSSM - like 1,3,8

Mittwoch, 7. September 2011



Other available models

• The same procedure can be used to extend any other 
models.

• Many models can be downloaded from the FeynRules 
web page, and can serve as a start to implement new 
models (http://feynrules.irmp.ucl.ac.be/).

➡ SM (+ extensions: 4th generation, diquarks, See-saw...).

➡ MSSM, NMSSM, RPV-MSSM.

➡ Extra dimensions: UED, LED, Higgsless, HEIDI.

➡ Minimal walking Technicolor.

Mittwoch, 7. September 2011

http://feynrules.irmp.ucl.ac.be
http://feynrules.irmp.ucl.ac.be


Advanced topics

Mittwoch, 7. September 2011



Complicated models

• The procedure described so far requires the Lagrangian to 
be written explicitly in terms of scalar, vector and 4-
component fermion fields.

• For some models, this is not the most convenient way to 
write the Lagrangian:

➡ Supersymmetric models are very compact in terms of 
superfields.

➡ Extra-dimensional models naturally live in a D > 4 
dimensional space.

• FeynRules, together with the underlying Mathematica 
engine, allows to write down compact Lagrangians, even 
for complicated models.

Mittwoch, 7. September 2011



Model Restrictions

• A model restriction is a model that is obtained from a bigger 
model by putting some of its parameters to zero (or 1, 
etc.).

• Example:

Mittwoch, 7. September 2011



Model Restrictions

• A model restriction is a model that is obtained from a bigger 
model by putting some of its parameters to zero (or 1, 
etc.).

• Example:

SM

Mittwoch, 7. September 2011



Model Restrictions

• A model restriction is a model that is obtained from a bigger 
model by putting some of its parameters to zero (or 1, 
etc.).

• Example:

SM

SM
where e, mu, u,d,s,c 

masses are zero

Mittwoch, 7. September 2011



Model Restrictions

• A model restriction is a model that is obtained from a bigger 
model by putting some of its parameters to zero (or 1, 
etc.).

• Example:

SM

SM
where e, mu, u,d,s,c 

masses are zero

SM
with diagonal CKM

Mittwoch, 7. September 2011



Model Restrictions

• A model restriction is a model that is obtained from a bigger 
model by putting some of its parameters to zero (or 1, 
etc.).

• Example:

SM

SM
where e, mu, u,d,s,c 

masses are zero

SM
with diagonal CKM

SM
where e, mu, u,d,s,c 
masses are zero and

diagonal CKM

Mittwoch, 7. September 2011



Model Restrictions

• A model restriction is a model that is obtained from a bigger 
model by putting some of its parameters to zero (or 1, 
etc.).

• Example:

Mittwoch, 7. September 2011



Model Restrictions

• A model restriction is a model that is obtained from a bigger 
model by putting some of its parameters to zero (or 1, 
etc.).

• Example: MSSM
105 parameters

Mittwoch, 7. September 2011



Model Restrictions

• A model restriction is a model that is obtained from a bigger 
model by putting some of its parameters to zero (or 1, 
etc.).

• Example: MSSM
105 parameters

CMSSM
mSuGra

5 parameters

Mittwoch, 7. September 2011



Model Restrictions

• A model restriction is a model that is obtained from a bigger 
model by putting some of its parameters to zero (or 1, 
etc.).

• Example: MSSM
105 parameters

CMSSM
mSuGra

5 parameters
MFV-MSSM

Mittwoch, 7. September 2011



Model Restrictions

• In phenomenological applications one generally does not 
need the full model, but only a subset.

• Keeping the full model is ok, but it might make the MC 
unnecessarily slow.
➡ Example: for generic CKM, lots of flavor-violating 

vertices, that lead to diagrams that are numerically 
subleading.

• We want a way to get rid of the ‘undesired’ vertices!

Mittwoch, 7. September 2011



Model Restrictions

• Restriction files allow to achieve this by using simple 
Mathematica replacement rules.

M$Restrictions = {
            CKM[i_,i_] -> 1,
            CKM[i_?NumericQ, j_?NumericQ] :> 0 /; (i =!= j),
}

• If one or more restrictions are loaded after loading a 
model file, the corresponding replacement rules are 
applied at runtime when computing the vertices.

LoadRestriction[ “DiagonalCKM.rst“ ];

Mittwoch, 7. September 2011



Supersymmetric models

• FeynRules allows to use the superfield formalism for 
supersymmetric theories.

• The code then 

➡ expands the superfields in the Grassmann variables and 
integrates them out.

➡ Weyl fermions are transformed into 4-component 
spinors.

➡ auxiliary fields are integrated out.

• As a result, we obtain a Lagrangian that can be exported 
to matrix element generators!

Mittwoch, 7. September 2011



Supersymmetric models

• Example: SUSY QCD
➡ 1 octet vector superfield 

➡ 1 triplet left-handed chiral superfield

➡ 1 triplet right-handed chiral superfield

• The physical spectrum contains

V a = (g̃a, Ga
µ, Da)

➡ a gauge boson, the gluon

➡ two complex triplet scalars

➡ an octet Majorana fermion

➡ a triplet Dirac fermion, the quark

Qi
R = (q̃i

R, ξ̄i, F i
R)

Qi
L = (q̃i

L, χi, F i
L)

qi = (χi, ξ̄i)

Mittwoch, 7. September 2011



Supersymmetric models

• Interactions (almost) entirely fixed by SUSY

• The gauge sector is already rather complicated in terms of 
component fields...

Q†
L e−2gsV QL + Q†

R e−2gsV QR +
1

8g2
s

Tr(WαWα) +
1

8g2
s

Tr(W α̇W
α̇)

+W (QL, Q†
R) + W �(Q†

L, QR)

Mittwoch, 7. September 2011



Supersymmetric models

• Interactions (almost) entirely fixed by SUSY

• The gauge sector is already rather complicated in terms of 
component fields...

Q†
L e−2gsV QL + Q†

R e−2gsV QR +
1

8g2
s

Tr(WαWα) +
1

8g2
s

Tr(W α̇W
α̇)

+W (QL, Q†
R) + W �(Q†

L, QR)

Mittwoch, 7. September 2011



Supersymmetric models

• Interactions (almost) entirely fixed by SUSY

• The gauge sector is already rather complicated in terms of 
component fields...

Q†
L e−2gsV QL + Q†

R e−2gsV QR +
1

8g2
s

Tr(WαWα) +
1

8g2
s

Tr(W α̇W
α̇)

+W (QL, Q†
R) + W �(Q†

L, QR)

Mittwoch, 7. September 2011



Supersymmetric models

• Interactions (almost) entirely fixed by SUSY

• The gauge sector is already rather complicated in terms of 
component fields...

Q†
L e−2gsV QL + Q†

R e−2gsV QR +
1

8g2
s

Tr(WαWα) +
1

8g2
s

Tr(W α̇W
α̇)

+W (QL, Q†
R) + W �(Q†

L, QR)

Mittwoch, 7. September 2011



Defining superfields

  VSF[1] == { ClassName   -> GSF, 
                      GaugeBoson  -> G,  
                      Gaugino     -> gow, 
                      Indices     -> {Index[Gluon]}},

  CSF[1] == { ClassName     -> QL, 
                       Chirality     -> Left, 
                       Weyl          -> qLw, 
                       Scalar        -> QLs, 
                       Indices->{Index[Colour]}},

V a = (g̃a, Ga
µ, Da)

Qi
L = (q̃i

L, χi, F i
L)

• The component fields are defined separately.

• Auxiliary F and D fields could be added, but can be left 
out, and are created on the fly.

Mittwoch, 7. September 2011



Using superfields

• A set of functions allows to transform the superspace 
action into a component field Lagrangian.

WS = ...
SL = VSFKineticTerms[] + CSFKineticTerms[] + WS + HC[WS];

➡ SF2Components: expansion in the Grassmann parameters

➡ ThetaThetabarComponent etc.: selects the desired 
coefficient in the Grassmann expansion.

➡ SolveEqMotionF/SolveEqMotionD: solves the equations of 
motion for the F and D terms.

➡ WeylToDirac: Transforms Weyl fermions into 4-component 
fermions.

Mittwoch, 7. September 2011



Using superfields

Mittwoch, 7. September 2011



Summary

• Implementing a New Physics into a matrix element 
generator can be a tedious and error-prone task.

• FeynRules tries to remedy this situation by providing a 
Mathematica framework where a new model can be 
implemented starting directly from the Lagrangian.

• There are no restrictions on the model, except

➡ Lorentz and gauge invariance
➡ Locality

➡ Spins: 0, 1/2, 1, 2, ghosts  (3/2 to come in the future)

• Try it out on your favorite model!
      http://feynrules.irmp.ucl.ac.be/

Mittwoch, 7. September 2011

http://feynrules.irmp.ucl.ac.be
http://feynrules.irmp.ucl.ac.be

