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Going Beyond SM

• So far in this School:

➡ How to use/run Monte Carlo event generators to 
obtain physics results.

➡ Focus was mostly on SM physics.

• Aim of this lecture:

➡ How to obtain events for a BSM model that is not yet 
implemented into any of the existing MC codes.

➡ In other words, what is an efficient way to implement 
a BSM model into a matrix element generator?
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• Parton Shower Monte Carlo Codes
➡ Herwig

➡ Pythia

➡ Sherpa

• Multi-purpose LO matrix element generators (parton level)
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Going Beyond SM

• A BSM model can be defined via

➡ The particles appearing in the model.

➡ The values of the parameters (‘Benchmark point’).

➡ The interactions among the particles, usually dictated 
by some symmetry group, and quantified in the 
Lagrangian of the model.

• All this information needs to be implemented into the MC 
codes, usually in the form of text files that contain the 
definitions of the particles, the parameters and the 
vertices.
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• This can be a very tedious exercise.

• Most of these codes have only a very limited amount of 
models implemented by default (~ SM and MSSM).

• However, still these codes do not work at the level of 
Lagrangians, but need explicit vertices.

• The process of implementing Feynman rules can be 
particularly tedious and painstaking:
➡ Each code has its own conventions (signs, factors of i, ...).

➡ Vertices need to be implemented one at the time.

• Most codes can only handle a limited amount of color and / 
or Lorentz structures (~ SM and MSSM)

Going Beyond SM
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• Example: SUSY model

➡ Choose a gauge group (+ additional internal symmetries).

➡ Choose the matter content (= chiral superfields in some 
representation).

➡ Write down the most general superpotential.

➡ Write down the soft-SUSY breaking terms.

➡ (+ check validity of the model)

Introduction FeynRules-superfields Extensions Supersymmetric models in FeynRules Summary

Full SUSY Lagrangian (1).

Complete Lagrangian for a model.

L = Φ†e−2gV Φ|
θ2θ̄2

+
1

16g2τR
Tr(W αWα)|

θ2
+

1

16g2τR
Tr(W̄α̇W̄ α̇)|

θ̄2

+ W (Φ)|
θ2

+ W �(Φ†)|
θ̄2

+ Lsoft

* Chiral superfields kinetic terms: automatic.

* Vector superfield strengths: automatic.

* Superpotential: model dependent.

* Soft SUSY-breaking Lagrangian model dependent.

SUSY Lagrangian

SF2Components[Getkins[]][[2,9]] +

SF2Components[GetSuperFS[] + SuperPot][[2,5]] +

SF2Components[GetSuperFS[] + HC[SuperPot]][[2,6]] +

LSoft

Supersymmetry with FeynRules Benjamin Fuks - MadGraph 2010 Workshop @ V.U. Brussels - 06.10.2010 - 25

• Very easy ‘theory description’

Going Beyond SM
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• Example: SUSY model

➡ Express superfields in terms of component fields.

➡ Express everything in terms of 4-component fermions 
(beware of the Majoranas!).

➡ Express everything in terms of mass eigenstates.

➡ Integrate out D and F terms.

➡ Implement vertices one-by-one (beware of factors of i, etc!)

Introduction FeynRules-superfields Extensions Supersymmetric models in FeynRules Summary

Full SUSY Lagrangian (1).

Complete Lagrangian for a model.

L = Φ†e−2gV Φ|
θ2θ̄2

+
1

16g2τR
Tr(W αWα)|

θ2
+

1

16g2τR
Tr(W̄α̇W̄ α̇)|

θ̄2

+ W (Φ)|
θ2

+ W �(Φ†)|
θ̄2

+ Lsoft

* Chiral superfields kinetic terms: automatic.

* Vector superfield strengths: automatic.

* Superpotential: model dependent.

* Soft SUSY-breaking Lagrangian model dependent.

SUSY Lagrangian

SF2Components[Getkins[]][[2,9]] +

SF2Components[GetSuperFS[] + SuperPot][[2,5]] +

SF2Components[GetSuperFS[] + HC[SuperPot]][[2,6]] +

LSoft

Supersymmetry with FeynRules Benjamin Fuks - MadGraph 2010 Workshop @ V.U. Brussels - 06.10.2010 - 25

• ‘Monte Carlo description’

Going Beyond SM
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• The aim of this lecture is to present a code that automatizes 
all these steps, and allows to implement the model in MC 
codes starting directly from the Lagrangian.

➡ Define your particles and parameters.

➡ Enter your Lagrangian.

➡ Let the code compute the Feynman rules.

➡ Output all the information in the format required by your 
favorite MC code.

Going Beyond SM

• Workflow:
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• A quick overview of FeynRules

Plan of the Lecture

• Getting started:

➡      theory

➡ Adding gauge interactions (scalar QCD)

• Towards LHC phenomenology: Extending the SM

• Time permitting: Some advanced topics

N.B.: Tutorial this afternoon!

φ4
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FeynRules: a quick overview

• FeynRules is a Mathematica package that allows to derive 
Feynman rules from a Lagrangian.

• The only requirements on the Lagrangian are:

➡ All indices need to be contracted (Lorentz and gauge 
invariance)

➡ Locality

➡ Supported field types: spin 0, 1/2, 1, 2 & ghosts
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cp3

Introduction
From FeynRules to FeynArts so far

The new FeynRules interface to FeynArts
Conclusion

Welcome in the FeynRules era

C. Degrande The new FeynRules interface

• FeynRules comes with a set of interfaces, that allow to 
export the Feynman rules to various matrix element 
generators.

• Interfaces coming with current public version 

➡ CalcHep / CompHep

➡ FeynArts / FormCalc

➡ MadGraph 4 & 5

➡ Sherpa

➡ Whizard / Omega
© C. Degrande

FeynRules: a quick overview
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cp3

Introduction
From FeynRules to FeynArts so far

The new FeynRules interface to FeynArts
Conclusion

For each tool, the right input

C. Degrande The new FeynRules interface

• FeynRules comes with a set of interfaces, that allow to 
export the Feynman rules to various matrix element 
generators.

• Interfaces coming with current public version: 

➡ CalcHep / CompHep

➡ FeynArts / FormCalc

➡ MadGraph 4 & 5

➡ Sherpa

➡ Whizard / Omega
© C. Degrande

FeynRules: a quick overview
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• The input requested form the user is twofold.

F[1]  ==  
   {ClassName     ->   q,
    SelfConjugate ->  False,
    Indices            ->  {Index[Colour]},
    Mass               ->  {MQ,  200},
    Width              ->  {WQ, 5}   }

L = 
-1/4 FS[G,mu,nu,a] FS[G,mu,nu,a]  
+ I qbar.Ga[mu].del[q,mu] 
- MQ qbar.q

• The Model File:
Definitions of particles and 
parameters (e.g., a quark)

• The Lagrangian:

L = −1
4
Ga

µν Gµν
a + iq̄ γµ Dµq −Mq q̄ q

FeynRules: a quick overview
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• Once this information has been provided, FeynRules can 
be used to compute the Feynman rules for the model:

FeynmanRules[ L ]

• Equivalently, we can export the Feynman rules to a 
matrix element generator, e.g., for MadGraph 4,

WriteMGOutput[ L ]

• This produces a set of files that can be directly used in the 
matrix element generator (“plug ‘n’ play”).

FeynRules: a quick overview
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Lagrangian

FeynArts

Translation Interfaces

TeX Feynman Rules

Model-file
Particles, parameters, ...

FeynRules

MadGraph CalcHep Sherpa

Whizard Golem Herwig

FeynRules: a quick overview
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Getting Started:
phi4 theory
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phi4 theory

• Let us consider a model consisting of two complex scalar 
fields, interacting with each other:

L = ∂µφ†
i∂

µφi −m2φ†
iφi + λ(φ†

iφi)2

• We need to implement into a FeynRules model file
➡ The two fields      and      , or rather one field carrying 

an index.
➡ The two new parameters m and     .

φ1 φ2

λ

• In a second step, we need to implement the Lagrangian 
into Mathematica.
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How to write a model file

• A model file is simply a text file (with extension .fr).

• The syntax is Mathematica.

• General structure:

Preamble 
(Author info, model info, index definitions, ... )

Particle Declarations 
(Particle class definitions, spins, quantum numbers, ...)

Parameter Declarations
(Numerical Values, ...)
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Preamble of the model file

• The preamble allows to ‘personalize’ the model file, and 
define all the indices that are carried by the fields
➡ In our case we have one index, taking the values 1 or 2.

M$ModelName =  “Phi_4_Theory“;

M$Information = {Authors -> {"C. Duhr"}, 
                    Version -> "1.0",

                                  Date -> "09. 09. 2011"};

IndexRange[ Index[Scalar] ] = Range[2];
IndexStyle[ Scalar, i];
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Particle Declaration

• Particles are defined as ‘classes’, grouping together particles 
with similar quantum numbers, but different masses 
(~multiplet).

M$ClassesDescription = {
    S[1] == {
             ClassName -> phi,
             ClassMembers -> {phi1,phi2},
             SelfConjugate -> False,
	        Indices -> {Index[Scalar]},
             FlavorIndex -> Scalar,
             Mass -> {MS, 100}
       }
};
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Particle Declaration

• Particles are defined as ‘classes’, grouping together particles 
with similar quantum numbers, but different masses 
(~multiplet).

M$ClassesDescription = {
    S[1] == {
             ClassName -> phi,
             ClassMembers -> {phi1,phi2},
             SelfConjugate -> False,
	        Indices -> {Index[Scalar]},
             FlavorIndex -> Scalar,
             Mass -> {MS, 100}
       }
};

Spin (S, F, V, U, T)
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Particle Declaration

• Particles are defined as ‘classes’, grouping together particles 
with similar quantum numbers, but different masses 
(~multiplet).

M$ClassesDescription = {
    S[1] == {
             ClassName -> phi,
             ClassMembers -> {phi1,phi2},
             SelfConjugate -> False,
	        Indices -> {Index[Scalar]},
             FlavorIndex -> Scalar,
             Mass -> {MS, 100}
       }
};

Symbol used for the 
particle in the Lagrangian.

         Antiparticle called 
phibar.
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Particle Declaration

• Particles are defined as ‘classes’, grouping together particles 
with similar quantum numbers, but different masses 
(~multiplet).

M$ClassesDescription = {
    S[1] == {
             ClassName -> phi,
             ClassMembers -> {phi1,phi2},
             SelfConjugate -> False,
	        Indices -> {Index[Scalar]},
             FlavorIndex -> Scalar,
             Mass -> {MS, 100}
       }
};

The field is complex, i.e., 
there is an antiparticle.
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Particle Declaration

• Particles are defined as ‘classes’, grouping together particles 
with similar quantum numbers, but different masses 
(~multiplet).

M$ClassesDescription = {
    S[1] == {
             ClassName -> phi,
             ClassMembers -> {phi1,phi2},
             SelfConjugate -> False,
	        Indices -> {Index[Scalar]},
             FlavorIndex -> Scalar,
             Mass -> {MS, 100}
       }
};

Symbol for the mass 
used in the Lagrangian,

+ numerical value in GeV.
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Parameter Declaration

• Parameter classes are defined in a similar way to the particle 
classes.
➡ In our case, we have two parameters, the mass m and 

the coupling    .
➡ The mass was already defined with the particle, no need 

to define it a second time.

M$Parameters = {
    lam == {
             Value -> 0.1
       }
};

λ
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The Mathematica session

• We now run FeynRules to obtain the Feynman rules of the 
model
➡ This is done in a Mathematica notebook.

• Step 1: Load FeynRules into Mathematica
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The Mathematica session

• We now run FeynRules to obtain the Feynman rules of the 
model
➡ This is done in a Mathematica notebook.

• Step 1: Load FeynRules into Mathematica
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The Mathematica session

• Step 2: Load the model file
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The Mathematica session

• Step 2: Load the model file
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The Mathematica session

• Step 3: Enter the Lagrangian

L = ∂µφ†
i∂

µφi −m2φ†
iφi + λ(φ†

iφi)2
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The Mathematica session

• Step 4: Computing the Feynman rules
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The Mathematica session

• Step 4: Computing the Feynman rules
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The Mathematica session

• Step 4: Computing the Feynman rules
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The Mathematica session

• Step 4: Computing the Feynman rules

Feynman rule for 
the particle class! 
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The Mathematica session

• Step 4: Computing the Feynman rules
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The Mathematica session

• Step 4: Computing the Feynman rules
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The Mathematica session

• Step 4: Computing the Feynman rules
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The Mathematica session

• Step 4: Computing the Feynman rules
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Summary

• We have now fully implemented our model, and have 
obtained the Feynman rules.

• We also have all the information to implement the model 
into a matrix element generator.

• This can be done automatically using the FeynRules 
interfaces.

➡ Will discuss this a bit later.

➡ Let’s first learn a bit more how to implement models.
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Getting Started:
Gauging our model
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Gauging phi4 theory

• Let us gauge our model, say the scalar is in the adjoint of 
SU(3) (QCD octet).

• The change in the Lagrangian is very minor:
➡ add field strength tensor
➡ replace derivative by covariant derivative.

L = −1
4
F a

µνFµν
a + Dµφ†

iD
µφi −m2φ†

iφi + λ(φ†
iφi)2

Dµ = ∂µ − igsT
aGa

µ

• Technically speaking, we just added two new objects to 
our model:
➡ a new particle: the gluon G.
➡ a new parameter: the gauge coupling gs.
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Preamble of the model file

• The fields now carry an index in the adjoint index.
➡ Need to define this new index in the preamble.

M$ModelName =  “Phi_4_Theory_Octet“;

M$Information = {Authors -> {"C. Duhr"}, 
                    Version -> "1.0",

                                  Date -> "09. 09. 2011"};

IndexRange[ Index[Scalar] ] = Range[2];
IndexStyle[ Scalar, i];
IndexRange[ Index[Gluon] ] = Range[8];
IndexStyle[ Gluon, a];
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Particle Declaration

• The scalar is now an octet.

M$ClassesDescription = {
    S[1] == {
             ClassName -> phi,
             ClassMembers -> {phi1,phi2},
             SelfConjugate -> False,
	        Indices -> {Index[Scalar], Index[Gluon]},
             FlavorIndex -> Scalar,
             Mass -> {MS, 100}
       }
};
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Particle Declaration

• We also need to define the gluon field.

M$ClassesDescription = {
    S[1] == {...},

    V[1] == {
             ClassName -> G,
             SelfConjugate -> True,
	        Indices -> {Index[Gluon]},
             Mass -> 0
       }
};
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Parameter Declaration

• We also need to define the gauge coupling.

M$Parameters = {
    lam == {
             Value -> 0.1
       },

    gs == {
             Value -> 1.22
       }
};
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Gauge groups

• We have now defined the gauge coupling and the gauge 
boson.

• To gauge the theory we need however more:

➡ Structure constants.

➡ Representation matrices.

➡ ...

• FeynRules allows to define gauge group classes in a similar 
way to particle and parameter classes.
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Gauge groups

• FeynRules allows to define gauge group classes in a similar 
way to particle and parameter classes.

M$GaugeGroups = {

  SU3C == {
        Abelian -> False,
        GaugeBoson -> G,
        StructureConstant -> f,
        CouplingConstant -> gs
      }
}

• Could add other representations via 
      Representation -> {T, Colour}
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The Mathematica session

• Step 1: Load FeynRules into Mathematica

• Step 2: Load the model file

• Step 3: Enter the Lagrangian

L = −1
4
F a

µνFµν
a + Dµφ†

iD
µφi −m2φ†

iφi + λ(φ†
iφi)2
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The Mathematica session

• Step 4: Computing the Feynman rules
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The Mathematica session

• Step 4: Computing the Feynman rules
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The Mathematica session

• Step 4: Computing the Feynman rules
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The Mathematica session

• Step 4: Computing the Feynman rules
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The Mathematica session

• Step 4: Computing the Feynman rules
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The Mathematica session

• Step 4: Computing the Feynman rules
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Towards LHC phenomenology:
Extending the SM
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Extending the SM

• So far we have only considered our model standalone.

• For LHC phenomenology, one usually wants a BSM 
model that is an extension of the SM.

• FeynRules offers the possibility to start form the SM 
model, and to add/change/remove particles and operators.

• For this, it is enough to load our new model together with 
the SM implementation:

LoadModel[ “SM.fr“, “Phi_4_Gauged“ ];

N.B.: In the SM implementation, the gluon and the QCD 
gauge group are already defined, so no need to redefine them.

Mittwoch, 7. September 2011



Running Interfaces

• We are now ready to do phenomenology!

• FeynRules contains interfaces to the following codes:
➡ CalcHep / CompHep

➡ FeynArts / FormCalc

➡ MadGraph 4 & 5

➡ Sherpa

➡ Whizard / Omega

• Each interface produces a set of text files that can be read 
into the existing generators.
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Running Interfaces

• The interfaces are called via the Mathematica commands

WriteCHOutput[ LSM, L ];                  (* CalcHep *)
WriteFeynArtsOutput[ LSM, L ];      (* FeynArts/FormCalc *)
WriteMGOutput[ LSM, L ];                 (*MadGraph 4 *)
WriteUFO[ LSM, L ];                             (* UFO / MadGraph 5 *)
WriteSHOutput[ LSM, L ];                  (* Sherpa *)
WriteWOOutput[ LSM, L];                  (* Whizard / Omega *)

• The files produced by FeynRules can then be processed 
by the matrix element generators.

page 1/1

Diagrams made by MadGraph5
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t 5
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t~
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t
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g

1

g
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 diagram 1 QED=0, QCD=6

g
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2

g
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t~
4

t

3

phis1

 diagram 2 QED=0, QCD=6

t~
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5

phis1~
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 diagram 3 QED=0, QCD=6
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 diagram 4 QED=0, QCD=6
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Running Interfaces
• Some interfaces require/admit additional options that 

were not discussed.

• E.g., the SM input parameters should be named following 
some conventions that assure that, e.g., the strong 
coupling is recognized as such by the generator.

• Some interfaces to some generators have the colour and / 
or Lorentz structures hardwired:

Spins Lorentz Colour
CalcHep 0,1/2,1,2 ~all 1,3,8 (limited)
FeynArts 0,1/2,1 all all*

MadGraph 4 0,1/2,1 MSSM - like 1,3,8 (limited)
MadGraph 5 0,1/2,1,2 all 1,3,6,8

Sherpa 0,1/2,1 SM - like 1,3,8
Whizard 0,1/2,1,2 MSSM - like 1,3,8
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Other available models

• The same procedure can be used to extend any other 
models.

• Many models can be downloaded from the FeynRules 
web page, and can serve as a start to implement new 
models (http://feynrules.irmp.ucl.ac.be/).

➡ SM (+ extensions: 4th generation, diquarks, See-saw...).

➡ MSSM, NMSSM, RPV-MSSM.

➡ Extra dimensions: UED, LED, Higgsless, HEIDI.

➡ Minimal walking Technicolor.

Mittwoch, 7. September 2011
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Advanced topics
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Complicated models

• The procedure described so far requires the Lagrangian to 
be written explicitly in terms of scalar, vector and 4-
component fermion fields.

• For some models, this is not the most convenient way to 
write the Lagrangian:

➡ Supersymmetric models are very compact in terms of 
superfields.

➡ Extra-dimensional models naturally live in a D > 4 
dimensional space.

• FeynRules, together with the underlying Mathematica 
engine, allows to write down compact Lagrangians, even 
for complicated models.
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Model Restrictions

• A model restriction is a model that is obtained from a bigger 
model by putting some of its parameters to zero (or 1, 
etc.).

• Example:
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Model Restrictions

• A model restriction is a model that is obtained from a bigger 
model by putting some of its parameters to zero (or 1, 
etc.).

• Example:

SM
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Model Restrictions

• A model restriction is a model that is obtained from a bigger 
model by putting some of its parameters to zero (or 1, 
etc.).

• Example:

SM

SM
where e, mu, u,d,s,c 

masses are zero
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Model Restrictions

• A model restriction is a model that is obtained from a bigger 
model by putting some of its parameters to zero (or 1, 
etc.).

• Example:

SM

SM
where e, mu, u,d,s,c 

masses are zero

SM
with diagonal CKM
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Model Restrictions

• A model restriction is a model that is obtained from a bigger 
model by putting some of its parameters to zero (or 1, 
etc.).

• Example:

SM

SM
where e, mu, u,d,s,c 

masses are zero

SM
with diagonal CKM

SM
where e, mu, u,d,s,c 
masses are zero and

diagonal CKM
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Model Restrictions

• A model restriction is a model that is obtained from a bigger 
model by putting some of its parameters to zero (or 1, 
etc.).

• Example:
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Model Restrictions

• A model restriction is a model that is obtained from a bigger 
model by putting some of its parameters to zero (or 1, 
etc.).

• Example: MSSM
105 parameters
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Model Restrictions

• A model restriction is a model that is obtained from a bigger 
model by putting some of its parameters to zero (or 1, 
etc.).

• Example: MSSM
105 parameters

CMSSM
mSuGra

5 parameters
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Model Restrictions

• A model restriction is a model that is obtained from a bigger 
model by putting some of its parameters to zero (or 1, 
etc.).

• Example: MSSM
105 parameters

CMSSM
mSuGra

5 parameters
MFV-MSSM
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Model Restrictions

• In phenomenological applications one generally does not 
need the full model, but only a subset.

• Keeping the full model is ok, but it might make the MC 
unnecessarily slow.
➡ Example: for generic CKM, lots of flavor-violating 

vertices, that lead to diagrams that are numerically 
subleading.

• We want a way to get rid of the ‘undesired’ vertices!
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Model Restrictions

• Restriction files allow to achieve this by using simple 
Mathematica replacement rules.

M$Restrictions = {
            CKM[i_,i_] -> 1,
            CKM[i_?NumericQ, j_?NumericQ] :> 0 /; (i =!= j),
}

• If one or more restrictions are loaded after loading a 
model file, the corresponding replacement rules are 
applied at runtime when computing the vertices.

LoadRestriction[ “DiagonalCKM.rst“ ];
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Supersymmetric models

• FeynRules allows to use the superfield formalism for 
supersymmetric theories.

• The code then 

➡ expands the superfields in the Grassmann variables and 
integrates them out.

➡ Weyl fermions are transformed into 4-component 
spinors.

➡ auxiliary fields are integrated out.

• As a result, we obtain a Lagrangian that can be exported 
to matrix element generators!
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Supersymmetric models

• Example: SUSY QCD
➡ 1 octet vector superfield 

➡ 1 triplet left-handed chiral superfield

➡ 1 triplet right-handed chiral superfield

• The physical spectrum contains

V a = (g̃a, Ga
µ, Da)

➡ a gauge boson, the gluon

➡ two complex triplet scalars

➡ an octet Majorana fermion

➡ a triplet Dirac fermion, the quark

Qi
R = (q̃i

R, ξ̄i, F i
R)

Qi
L = (q̃i

L, χi, F i
L)

qi = (χi, ξ̄i)
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Supersymmetric models

• Interactions (almost) entirely fixed by SUSY

• The gauge sector is already rather complicated in terms of 
component fields...

Q†
L e−2gsV QL + Q†

R e−2gsV QR +
1

8g2
s

Tr(WαWα) +
1

8g2
s

Tr(W α̇W
α̇)

+W (QL, Q†
R) + W �(Q†

L, QR)
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Defining superfields

  VSF[1] == { ClassName   -> GSF, 
                      GaugeBoson  -> G,  
                      Gaugino     -> gow, 
                      Indices     -> {Index[Gluon]}},

  CSF[1] == { ClassName     -> QL, 
                       Chirality     -> Left, 
                       Weyl          -> qLw, 
                       Scalar        -> QLs, 
                       Indices->{Index[Colour]}},

V a = (g̃a, Ga
µ, Da)

Qi
L = (q̃i

L, χi, F i
L)

• The component fields are defined separately.

• Auxiliary F and D fields could be added, but can be left 
out, and are created on the fly.
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Using superfields

• A set of functions allows to transform the superspace 
action into a component field Lagrangian.

WS = ...
SL = VSFKineticTerms[] + CSFKineticTerms[] + WS + HC[WS];

➡ SF2Components: expansion in the Grassmann parameters

➡ ThetaThetabarComponent etc.: selects the desired 
coefficient in the Grassmann expansion.

➡ SolveEqMotionF/SolveEqMotionD: solves the equations of 
motion for the F and D terms.

➡ WeylToDirac: Transforms Weyl fermions into 4-component 
fermions.
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Using superfields
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Summary

• Implementing a New Physics into a matrix element 
generator can be a tedious and error-prone task.

• FeynRules tries to remedy this situation by providing a 
Mathematica framework where a new model can be 
implemented starting directly from the Lagrangian.

• There are no restrictions on the model, except

➡ Lorentz and gauge invariance
➡ Locality

➡ Spins: 0, 1/2, 1, 2, ghosts  (3/2 to come in the future)

• Try it out on your favorite model!
      http://feynrules.irmp.ucl.ac.be/
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