
Practical Session 2
MC studies of t̄t reconstruction

IMPU-YITP Summer School 2011, Kyoto, 2011-09-07

1/12



Writing a Rivet analysis

Writing an analysis is of course more involved than just running
rivet!

But the C++ programming interface is intended to be friendly:
most analyses are quite short and simple because the bulk of the
computation is in the library.

Key Rivet analysis features:

I Analyses are classes and inherit from Rivet::Analysis

I Usual init/execute/finalize-type event loop structure
(certainly familiar from experimental frameworks)

I Weird projection things in init and analyze

I Mostly normal-looking everything else

2/12



Projections – registration

Major idea: projections. These are where most Rivet
computation resides. They are just observable calculators: given
an Event object, they project out physical observables.

They also automatically cache themselves, to avoid
recomputation: this leads to the most unintuitive code structures
in Rivet.

Register projections with a name in the init method:

void init() {
...
const SomeProjection sp(foo, bar);
addProjection(sp, "MySP");
...

}

3/12



Projections – applying
Use the registered name to apply a projection to the current
event:

void analyze(const Event& evt) {
...
const SomeProjection& mysp =
applyProjection<SomeProjection>(evt, "MySP");

mysp.foo()
...

}

Get a const reference to the applied projection to avoid unnecessary
copying.

It can then be queried about the things it has computed.
Projections have different abilities and interfaces: check the
Doxygen on the Rivet website, e.g.
http://projects.hepforge.org/rivet/code/dev/hierarchy.html

4/12

http://projects.hepforge.org/rivet/code/dev/hierarchy.html


Final state projections

Rivet is mildly obsessive about only calculating things from final
state objects. Accordingly, a very important set of projections is
those used to extract final state particles: these all inherit from
FinalState.

I The FinalState projection finds all final state particles in a
given η range, with a given pT cutoff.

I Subclasses ChargedFinalState and NeutralFinalState have
the predictable effect!

I IdentifiedFinalState can be used to find particular
particle species.

I VetoedFinalState finds particles other than specified.
I VisibleFinalState excludes invisible particles like

neutrinos, LSP, etc.

5/12



Using FSPs to get final state particles

void analyze(const Event& evt) {
...
const FinalState& cfs =
applyProjection<FinalState>(event, "ChgdFS");

MSG_INFO("Total charged mult. = " << cfs.size());
foreach (const Particle& p, cfs.particles()) {

const double eta = p.momentum().eta();
MSG_DEBUG("Particle eta = " << eta);

}
...

}

Note the foreach. We like the “make simple things simple”
philosophy.

6/12



An aside: physics vectors

Rivet uses its own physics vectors rather than e.g. CLHEP. For
the full interface see the Rivet Doxygen:
http://projects.hepforge.org/rivet/code/dev/

Particle and Jet both have a momentum() method which returns
a FourMomentum.

Some FourMomentum methods: eta(), pT(), phi(), rapidity(),
E(), px() etc., mass().

Hopefully intuitive! e.g. myparticle.momentum().pT()

7/12

http://projects.hepforge.org/rivet/code/dev/


Jets (1)

There are many more projections, but one more important set
which we’d like to dwell on is those to construct jets. JetAlg is
the main projection interface for doing this, but almost all jets
are actually constructed with FastJet, via the explicit FastJets
projection.

The FastJets constructor defines the input particles (via a
FinalState), as well as the jet algorithm and its parameters:

const FinalState fs(-3.2, 3.2);
addProjection(fs, "FS");
FastJets fj(fs, FastJets::ANTIKT, 0.6);
addProjection(fj, "Jets");

Remember to #include "Rivet/Projections/FastJets.hh"

8/12



Jets (2)

Then get the jets from the jet projection, and loop over them in
decreasing pT order:

const Jets jets =
applyProjection<JetAlg>(evt, "Jets").jetsByPt(20*GeV);

foreach (const Jet& j, jets) {
foreach (const Particle& p, j.particles()) {

const double dr =
deltaR(j.momentum(), p.momentum());

}
}

Check out the Rivet/Math/MathUtils.hh header for more handy
functions like deltaR – useful for e.g. the lepton isolation.

9/12



Histogramming

Histograms are booked via helper methods on the Analysis base
class, e.g. bookHistogram1D("thisname", 50, 0, 100). Binnings
can also be specified via a vector of bin edges (or autobooked from a
reference histogram – not relevant today)

The histograms have the usual fill(value, weight) method for
use in the analyze method. There are scale() and normalize()

functions for use in finalize.

The fill weight is important! Generators are often run with some
kinematic enhancement which has to be offset with a reduced
weight. Use evt.weight().

Plot presentation is specified in the .plot file accompanying the
analysis. Directives include LogY=1 (or =0), Title=foo,
XLabel=bar, FullRange=1, . . .

10/12



Today’s analysis practical

You will be extending and optimising a Rivet analysis for
semileptonic t̄t reconstruction: MC_TOP

The analysis method is to look for a hard lepton and missing ET
as a signature of the leptonically-decaying top. The remaining
light and b-tagged jets are then used to reconstruct the other top.

You will have a signal and a background/inclusive event sample
per generator. The analysis can be improved in many ways, e.g.

I More intelligent hadronic W reconstruction, e.g. tighter
mass window, mass-constrained jet selection, lepton
isolation. . .

I Use of extra variables for cuts, e.g. HT, centrality

11/12


