2011 IPMU-YITP School and Workshop on Monte Carlo Tools for LHC 10 September 2011

Yuji Yamazaki (Kobe University)

Recent results from LHC/ATLAS

LHC (Large Hadron Collider) at CERN

- For finding Higgs, understanding EW symmetry breaking mechanism and physics beyond the Standard Model
- Highest energy experiment

27km circumference Design beam energy: 7TeV Currently 3.5 GeV = 7 GeV CMS energy (3.5 times design energy) 40MHz collision frequency Design luminosity 10^{34} cm⁻²s⁻¹

LHC accelerator operation

- 2012: continueing 7 TeV run, aiming for total 10 fb⁻¹ for 7 TeV
- 2013-14 repairing super-conducting magnets for ~14 TeV run

List of topics in this talk

- Higgs search result as of LP2011
- W and Z boson production
 - + jets
 - Diboson
- Top quark production
- SUSY and other searches
- QCD
 - Soft physics
 - jets

Subjects are chosen from ones something to do with QCD part of Monte Carlo simulation / theoretical calculation

Higgs search

10⁷

10⁶

01 10⁵ 10⁵ 10⁵ 10⁵ 10⁵ events for 10⁵ pb

'10³

'10²

1000

SM Higgs decay

- $m_H > 2m_W$: \rightarrow WW, ZZ (, tt)
- $m_H \approx 2m_W$: $\rightarrow WW^{(*)} \sim 100\%$
- $m_H < 2m_W$ \rightarrow bb, WW*, ZZ* \rightarrow $\tau\tau$ (< 10%) \rightarrow $\gamma\gamma$ (2 × 10⁻³)
- Golden channel: $ZZ \rightarrow 4I$, $\gamma\gamma$
- Sensitivity at 1-2fb⁻¹:
 - $m_H \lesssim 2m_W : WW^{(*)}, ZZ^{(*)}$
 - $m_H > 2m_W : ZZ \rightarrow ll\nu\nu$, llll

ATLAS result @ LP2011

- Individual channel upper limit already close to SM cross sections
- Insignificant excess in $H \rightarrow WW$ channel seen

Upper limits combined

- Excess observed at around 130-150 GeV @ EPS2011 (July 2011): now with less significance
- $145 < m_H < 450$ GeV pretty much excluded

CMS results mostly with 1.6-1.7 fb⁻¹, ATLAS mostly 1.0 fb⁻¹ but 4lepton and WW

Events / 10 GeV

Low-mass Higgs (1) : $\gamma\gamma$

- The channel for low mass
 - Current limit: 2-4 times SM
 - some signal may be seen next year with 10 fb⁻¹

Low-mass Higgs (2) $W(Z)H \rightarrow l(\nu, l)b\overline{b}$

W tagged by lepton + Etmiss, Z by dilepton

150

200

m_{bb}

250

[GeV]

- Large cross section but huge background
- Key point: good resolution in mass reconstruction

 $W \rightarrow q \bar{q}$ mass reconstructed!v

100

40

20

50

using subjet technique

Reconstructing the mass of heavy objects from "fat jet"

- Boosted heavy object may be reconstructed as a jet with large radius parameter (e.g. R = 1.2)
- Need to remove objects not from the decay
 - From QCD radiation not associated to the decay
 - Multi-parton interaction and pileup
- Procedure
- 1. Splitting into two objects where mass after recombination becomes very large
- 2. Reclustering each of the small objects with small radius (e.g. R = 0.3)
- 3. Remove jets away from high-momentum partons (filtering)

Jet mass distribution before and after the treatment

- Model dependence of mass distribution disappeared
- All models show good agreement to data
- Also much smaller dependence to pileup (not shown)

The $H \rightarrow WW \rightarrow l\nu l\nu$ channel

- Has lead excitement in July
 - Still cross section tend to be high
- No mass peak, counting experiment
- Events selection mainly by
 - 2 opposite sign lepton
 - Large missing Et
 - #of jets and b-tag to control bckgnd (mainly top)
 - Low m_{ll} and small $\Delta \phi(ll)$ assuming Higgs is scalar

of jets, m_T and $\Delta \phi(ll)$

- Background from
 - 0-jet: WW
 - 1-jet: top, WW
- Insignificant excess in 0-jet sample

80 100 120 140 160 180 200 220 240

60

of jets, m_{ll} and $\Delta \phi(ll)$: CMS

 Similar degree of insignificant excess observed

Background uncertainty

- Background estimated by control samples
- low mass region $m_H < 170$ GeV uses:
 - WW: $\Delta \phi(ll) < 1.3$ and $0.75 m_H < m_T < m_H$ cuts removed
 - Z/γ^* + jets: Etmiss distribution from data used to estimate large fake Etmiss events $\cong 100$ ATLAS Preliminary • Data # SM (93 @ st
 - top: normalised by b-tag efficiency from data
 - W+jets: jet → lepton misID from data
- MC samples used in ATLAS
 - WW: MC@NLO (syst: ALPGEN)
 - $t\bar{t}$: MC@NLO (syst: POWHEG)
- In CMS:
 - WW: MADGRAPH
 - $t\bar{t}$: MADGRAPH

Diboson production

Diboson production at the LHC

- Motivation:
 - Sensitivity to (anomalous) triple gauge boson coupling (TGC) shown up as cross section enhancement at high E_T
 - Background to other searches
- Example from $W\gamma$, $Z\gamma$

WW, WZ, ZZ cross sections

- Clear signal with 1fb⁻¹ of data
 - Very small background
- Consistent with prediction

WW distribution in detail

- Plots with jet-veto (no jet with $E_T > 30$ GeV, $|\eta| < 4.5$)
- Overall agreement OK, some shift in some distribution
 - More events in small $\Delta \phi(ll)$ as in the Higgs search (not shown)
 - $p_T(lepton)$ OK; transverse mass of 2leptons + Etmiss some shift

Top quark physics

LHC: top factory

- Already $O(10^4)$ events with 1 fb^{-1}
 - More statistics than in Tevatron
 - Sensitivity to new physics
- Single top cross section is also much larger
- Mass of top quarks: still better measured at Tevatron (hence not shown today)
- How to find
 - t → Wb ~100%
 b-quark tagging for most of analysis
 - $W \rightarrow e \text{ or } \mu$ (leptonic) or $W \rightarrow q \overline{q}$ (hadronic)

Single top production

- Sensitive to |V_{tb}| and new physics
- Cross section @ LHC almost two order of magnitude larger than at the Tevatron
 - Clear signal by cut-based analysis

σ [pb]

Kidonakis, arXiv:1103.2792v1 [hep-ph]

8

√s [TeV

26

2

From EPS 2011/ talk by Frederic Deliot

High-pt top pairs: resonance search

- Many models have enhanced coupling to top quark
 - e.g. KK excitation of graviton/gluon
- Using dilepton channel for high purity (ATLAS) muon + jet from boosted top (CMS)

Search for SUSY and other BSM models

SUSY search strategy

- Detailed mass spectrum depends on models
- Common strategy:
 - Coloured \tilde{q} , \tilde{g} produced
 - Cascade decay: e.g. $\tilde{g} \rightarrow qq' \tilde{\chi}^{\pm} \rightarrow qq' l \nu \tilde{\chi}^{0}$
 - Many models give leptons
 - Most models give many jets
- Neutralino is LSP: R-parity conserved
 - Missing E_T

Result 0/1-lepton: ATLAS and CMS

- No excess giving limits
- Already exhausting sensitivity with 7 TeV beam for simple scenario

More exclusively: 1-lepton+btag

- Other exclusive search for investigating scenarios such as
 - LSP not escaping detector (either long-lived NLSP or R-parity violation)
 - Many leptons

Generic resonance search (1) dilepton

- Z', G_{KK} etc.
- Limit up to 1-1.5 TeV

Dijet resonance

- Various models: excited quarks (q*), heavy W/Z, RS graviton, axigluon, E6 diquark...
- Limit: 1.5-4 GeV

Monojet + missing E_T

- Graviton goes away from brane to bulk (into extra-dimension)
- M_D > 3.39 TeV (n = 2) ADD model
 - *M_D*: planck scale in 4+n dimension

W + dijet excess @ CDF

- Not observed in LHC
- Large W+jets background with this cut

W, Z production and QCD

Drell-Yan process

- Electroweak process
 - Precise prediction
 - Standard candle for detector understandings

p

p

 γ/Z^0

U

 \overline{u}

W/Z "visible" cross section

- No extrapolation to total cross section smaller uncertainty
- Comparison to calculations with various pdfs
 - LHC data will be sensitive to PDFs with improved precision

Z and W: rapidity dependence

- Rapidity dependence of Z⁰ cross sections
- Sensitivity to pdf

- W charge asymmetry vs rapidity for ATLAS/CMS/LHCb data
 - Wide range of coverage
- Strong discrimination power for pdfs

p_T of Z^0 : higher order in QCD

- Sherpa, ALPGEN, Pythia: good
- $O(\alpha_S)$ cannot explain: need $O(\alpha_S^2)$

 Fixed order+parton shower models show large deviation

W + jets

- Often the background for searches
- LO+PS cannot reproduce jet multiplicity ratio
- ALPGEN/Sherpa, fixed order calculation show good agreement

Z, W + b-jets

Experiment $3.55^{+0.82}_{-0.74}(\text{stat})^{+0.73}_{-0.55}(\text{syst}) \pm 0.12(\text{lumi}) \text{ pb}$

MCFM	3.88 ± 0.58 pb
ALPGEN	2.23 ± 0.01 (stat only) pb
SHERPA	3.29 ± 0.04 (stat only) pb

- W + bjets show good agreement, with slight tendnecy of cross section being higher
- High statistics study awaited

Jets and QCD

Jet production

- Inclusive jet double-differential cross sections
- Comparison to NLO calculations

Good agreement in central rapidity

CMS result

- Good agreement
 - With slight tendency of being low (also for ATLAS)

 Jet energy scale (JES) key for precision

> JES (particle flow) 2.5 – 4% uncertainty

Forward jets

- Need to understand and reduce systematic error
- Interesting tendency

ATLAS JES central rapidity: similar to CMS

Multi-jet events

- Providing good test on MC simulation / QCD calculation
- Good description of models within experimental uncertainties

100

160

p_ (4th leading jet) [GeV

180

200

Gap between jets

- See if there is any jet
 (> 20 GeV) between two
 leading jets separated
 in rapidity by Δy
- Sensitive to
 non-p_T ordered
 QCD radiation
- POWHEG tend to give more radiation if gap rapidity is large
- HEJ too few radiation
 - parton shower may improve the situation

Very selected example

Underlying event studies

- Energy/particle flow measured w.r.t. the leading particle
- Azimuthal profile quite flat
 - Pythia with MC09 or Perugia0 tune ~ OK

Energy flow in transverse region

- Insufficient flow for most models
- Perugia0 OK, MC09 fair
- Important to tune the MC further for precise jet and Etmiss reconstruction

leading particle

transverse

 $60^{\circ} < |\Delta \phi| < 120$

Events with and without rapidity gap

- Diffraction may be suppressed by multi-parton interactions
 - Tevatron has observed O(10) suppression for hard-jet events
- Minimum-buias event cross section as a function of rapidity gap
 - No big overestimation of diffractive contribution by Pythia and Phojet

Inelastic pp cross section

σ_{inel} [mb]

- Visible inelastic cross section measured
 - dissociated mass $M_X > 17.5$ GeV can be triggered by ATLAS
 - Corresponding to
 $\xi > 5 \times 10^{-6}$ (ξ : fraction of longitudinal
 momentum of exhcanged
 particle)
- Slow rise of inelastic cross sections confirmed

Summary

- LHC performance is spectacular, experimentalists are super busy
- (unfortunately) no hint of new physics yet
 But they may be just behind
- QCD calculations and MCs are surprisingly good
 - Items on our wish list were delivered, in time
- Detailed check is still important for precision and higher sensitivity to new physics
 - Scene is quite dominated by Higgs search and related QCD subjects
 - But also important to have more studies for testing QCD itself we should keep in touch