2 jets +missing ET signature and spin of new particles Mihoko Nojiri

with Jing Shu arXive 1102.0293

Why Study SUSY models

- Beautiful Symmetry
- Gauge coupling Unification
- New particles that can be searched for at LHC
- Dark matter candidate with R parity
- Can be consistent with low energy measurements.
- Signature missing energy(dark matter) with lots of jets and leptons in the final state.

SUSY search and measurement Now and future

Event selection

- Depending on the SUSY mass hierarchy, different production processes favoured $(\tilde{g}\tilde{g}, \tilde{g}\tilde{q}, \tilde{q}\tilde{q})$
 - Signal regions optimised to maximise sensitivity to different production processes

In my view, this is THE BEST way to presenting data

Results

Process	Signal Region				
	≥ 2-jet	≥ 3-jet	\geq 4-jet, $m_{\rm eff} > 500 {\rm GeV}$	\geq 4-jet, $m_{\rm eff} > 1000 {\rm GeV}$	High mass
Z/γ +jets W+jets $t\bar{t}$ + single top QCD jets	$32.5 \pm 2.6 \pm 6.8$ $26.2 \pm 3.9 \pm 6.7$ $3.4 \pm 1.5 \pm 1.6$ $0.22 \pm 0.06 \pm 0.24$	$25.8 \pm 2.6 \pm 4.9$ $22.7 \pm 3.5 \pm 5.8$ $5.6 \pm 2.0 \pm 2.2$ $0.92 \pm 0.12 \pm 0.46$	$208 \pm 9 \pm 37$ $367 \pm 30 \pm 126$ $375 \pm 37 \pm 74$ $34 \pm 2 \pm 29$	$16.2 \pm 2.1 \pm 3.6$ $12.7 \pm 2.1 \pm 4.7$ $3.7 \pm 1.2 \pm 2.0$ $0.74 \pm 0.14 \pm 0.51$	$3.3 \pm 1.0 \pm 1.3$ $2.2 \pm 0.9 \pm 1.2$ $5.6 \pm 1.7 \pm 2.1$ $2.10 \pm 0.37 \pm 0.83$
Total	$62.3 \pm 4.3 \pm 9.2$	$55 \pm 3.8 \pm 7.3$	$984 \pm 39 \pm 145$	$33.4 \pm 2.9 \pm 6.3$	$13.2 \pm 1.9 \pm 2.6$
Data	58	59	1118	40	18
excluded σ x acc (fb)	24	30	477	32	17

• No discrepancy with respect to SM predictions.

upper limit of each search channel

- The result is interpreted as a 95% CL exclusion limit on effective cross sections using a profile likelihood ratio approach following the CLs prescriptions.
- Analysis giving best expected limit used in each point.

I.Vivarelli - EPS-HEP, Grenoble July 21st-27th 2011

LHC SUSY search

14TeV projection

$m(\tilde{q}) = m(\tilde{g}) = 0.5 TeV$	σ~100pb ^{Ĩĝ} がmain
$m(\tilde{q}) = m(\tilde{g}) = 1TeV$	σ~ 3pb
$m(\tilde{q}) = m(\tilde{g}) = 2TeV$	σ~20fb ũũ,ũđがmain

- 7TeV run excluded significant parameter space
- production at 14TeV would be 1 pb or less. significantly limits statistics at 14TeV run already.

Sparticle Detection & Reconstruction

SUSY mass determination using jets+ 2 lepton channel

- production cross section is determined by squark gluino mass
- Branching ration into the second lightest neutralino 30%, lepton branch 6~20%→ total 2~6%.
- 30fb⁻¹ x 1pb =30000-> 600 events(2% branch) are not enough to determine EW SUSY particles masses precisely
- Need full use of hadronic channels to determine SUSY scale when it is discovered.

Combinatorial background in hadronic channel

Combinatorial background in hadronic channel

MT2 and mass reconstruction

$$m_{T2}(\mathbf{p}_T^{vis(1)}, m_{vis}^{(1)}, \mathbf{p}_T^{vis(2)}, m_{vis}^{(2)}, m_{\chi}) \equiv \min_{\{\mathbf{p}_T^{\chi(1)} + \mathbf{p}_T^{\chi(2)} = -\mathbf{p}_T^{vis(1)} - \mathbf{p}_T^{vis(2)}\}} \left[\max\{m_T^{(1)}, m_T^{(2)}\} \right]$$

7TeV 100fb⁻¹

mgl=558GeV mul=825 GeV

input gluino mass

 M_{T2} for multijet final state = minimization for all jet combination

M_{T2min}=ISR removal ~remove one jet from the minimization (among 5 leading jets) Nojiri Sakurai 2010

Reconstruction of (squark /gluino mass -LSP mass) may be possible

How about spin measurements

- in Jet +2 lepton channel spin effect in the inv. mass distribution, able to distinguish SUSY vs "Same spin partner" models (such as LHT, UED)
- jet channel: there are jet ID problem, but jets from two body decay of quark partner is easy to identify because of the PT
- If the interaction of quark partner is chiral, there are visible spin effect Azimuthal angle correlation

leading objects and new particle decays

Interactions of the same spin partner model

 $L_{int} = \int dx^4 \left[g_s G_H^{\mu a} \bar{Q} T^a \gamma_\mu q + g W_H^{\mu a} \bar{Q}_L T^a \gamma_\mu P_L q_L \right. \\ \left. + g' B_H^\mu (Y_L \bar{Q}_L \gamma_\mu P_L q_L + Y_L \bar{Q}_R \gamma_\mu P_R q_R) + (\text{Lepton part}) + h.c \right]$

- Heavy gauge boson(spin1) and quark partners(spin 1/2) have Z₂=-1
- Haven't specify Higgs sector: Gauge invariance of the amplitude must be carefully checked.
 - in UED like model: 5th component of gauge boson is the goldstone boson.
 - split UED/ a three site model allow mass splitting of the partners
 - big difference in the distributions

Production process at LHC and decay

Amplitude Tips

Production and chiral interaction

$$i\mathcal{M}(uu \to U_R U_R) = \frac{ig'^2 Y_u^2 \delta_{aa'} \delta_{bb'} (-g^{\mu\nu} + \frac{g^{\mu}g^{\nu}}{m_{B_H}^2})}{q^2 - m_B^2} \bar{u}_{h_f}(p_f) \gamma_{\mu} P_R u_{h_i}(p_i) \bar{u}_{h'_f}(p'_f) \gamma_{\nu} P_R u_{h'_i}(p'_i) + \cos \operatorname{diagram} + \operatorname{gluon} \operatorname{exchange} \operatorname{contribution}$$
(2)
$$-ig'^2 \delta_{aa'} \delta_{bb'} m_Q^2 \overline{u}_{(q^2 - m_B^2)} \bar{u}_{B}(p'_f) P_R u(p_i) \bar{u}(p'_f) P_R u(p'_i)$$
(2)
$$4ig^2 \frac{\delta_{aa'} \delta bb'}{q^2 - m_A^2} p_i \left[2p_f \delta_{h_f, 1/2} - (-)^{\bar{h}_f + 1/2} (E_f - p_f) \right]$$
(p'_f) Chirality flip
helicity conserving in the
$$\beta \rightarrow \infty \quad \text{limit}$$
(1/2, 1/2)

Decay and polarization

• Polarized particle decay non-spherically

 $iM \propto \epsilon^{*\mu} \epsilon^{\nu} \operatorname{Tr} \left[\gamma_{\mu} P_{R} p_{f} \gamma_{\nu} P_{R} \frac{1 + \hbar \gamma_{5}}{2} (p_{i} + m_{Q}) \frac{1 + \hbar \gamma_{5}}{2} \right] = \frac{2k_{B} \cdot p_{f} m_{Q}}{m_{B}^{2}} (E_{B} - k_{B//})$ chiral vertex
projection to the helicity state $h=1/2 \text{ particle+ chiral vertex} \rightarrow \text{ quark distribution is } \approx 1 + \cos \theta$ (The distribution is same for Q_L decay into q_LX)

If number of particle is larger than number of antiparticle(LHC) effect remains.

Note :h=0 massive gauge boson dominates in the decay.

$$\frac{1}{\mathcal{C}}\frac{d\mathcal{C}}{d\phi} = \frac{1}{2\pi} \left[1 + A_1 \cos(\phi) + \dots + A_{2j} \cos(2j\phi)\right].$$

parton level distribution

• m_{BH}=100 GeV/200GeV mQ=600GeV mG=700GeV

How to see it

M_{T2} and reconstruction of a-angle in jet level

- MT2 $M_{T2} = \min_{p_1^T + p_2^T = p_{\text{Tmiss}}} \left[\max\left(m_{T2}(p_{\text{vis}}^{(1)}, p_1^T), m_{T2}(p_{\text{vis}}^{(2)}, p_2^T) \right) \right]$
- MT2 assisted reconstruction: The process give transverse test LSP momentum p₍₁₎, p₍₂₎ of that gives M_{T2}. calculate p_z momentum that gives correct m_Q, and mχ

$$(p_i + p_{\text{vis}}^{(i)})^2 = m_Q^2, \ \ (p^{(i)})^2 = m_{B_H}^2$$

• calculate ϕ for the momentum.

Lessons and some info

- "phase space decay" for leading objects fails to reproduce physics processes even in such simple case. (Some phase sphace generators are not useful)
 - Moortgat-Pick et al : distribution of production cross section in forward region is also different
- "Consistent treatment": Production in T channel and decay are correlated.
 - Full amplitude generator (Madgrap and Herwig++) work. No Pythia.
- Working on little higgs model with T parity (no gluon partner, heavy wino like object)

two high pT jets in SUSY events

 Inclusive MT2 distribution for Mgl~600 GeV

- divide events into two using Lund distance and calculate MT2 from two visible system
- Selection: Events at least 2 jets with pT>200GeV
- msq<mgl: large branch sharp edge. The mode with 2 high pT jet stands!

under mixed SUSY production

• In SUGRA like mass spectrum (msq, mgl>>m χ) jets from sq \rightarrow q χ is prominent.

(pT of the 3rd jet)/pT of the 1st jet

2011年9月10日土曜日