2011 IPMU-YITP Workshop on Monte Carlo Tools for LHC, 10 September 2011

Improved discovery of nearly degenerate model: MUED using M_{T2} at the LHC

Kohsaku Tobioka IPMU (Univ. of Tokyo) Based on the collaboration with H. Murayama and M. Nojiri arXiv:hep-ph/1107.3369

LHC is searching for new physics models, and invisible particles are expected for the <u>dark matter</u>.

BSM Results from LHC, Lepton-Photon 2011 (22-27 August 2011)

BSM Results from LHC, Lepton-Photon 2011 (22-27 August 2011)

- SUSY in its most hoped for incarnation is starting to be in trouble
 - → Of course we will continue looking and increasing our reach
- What if SUSY were hiding? (e.g. no Missing E_T)
 - → "Split", low-MET", "squashed", "mashed?"
 - → Even if very soft cascade at tree level, Initial State Radiation still creates MET, but this needs to be studied further

Tools for LH

2011 IPMU-

Motivation

A weak point of LHC: degeneracy

The spectrum of a new physics model is can be degenerate.

Most energy is carried away by invisible particles (but its momentum is small)

The signature of most events is...

<u>Small missing energy (E_T^{miss}) & soft jets (and/or leptons)</u>

In the analysis expecting multiple hard jets and missing, it is difficult to discover such a degenerate new physics model from the SM backgorund (ttbar, W/Z+jets).

<u>The previous studies</u> for the degenerate new physics model

• Specific analysis by model

e.g.) 4 leptons + E_T^{miss} for the MUED

• Initial state radiations (ISR) + E_T^{miss} [Alwall, Le, Lisani, Wacker (2008, 2009)]

Hard ISR accompanies with heavy particle productions

Cuts on traditional variables (E_T^{miss}, H_T) are optimized

MY POINT

The M_{T2} cut is effective in the search for the degenerate model

KEY: Invisible particle mass (test mass) is set to zero•Correct for the SM (neutrino) $\rightarrow M_{T2}^{SM} \leq m_{top}$.•Wrong for new physics model $\rightarrow M_{T2}$ can be large depending on the boostSignal excess in the high M_{T2} region

 \bullet $M_{\rm T2}$ combinatric effect enhances the signal excess

Minimal Universal Extra Dimension model (MUED)

is taken as an example of the degenerate model

Previous study: 4 leptons + E_T^{miss} ... extremely low background but low statistics [Cheng, Matchev, Schmaltz (2002)]

We improve the discovery potential of the MUED using the M_{T2} cut in multijet + lepton mode

The improvement is significant for the most degenerate parameter we consider

2011 IPMU-YITP Workshop on Monte Carlo Tools for LHC Improved discovery of nearly degenerate model: MUEDusing MT2 at the LHCKohsaku Tobioka

The contents of this talk

- \checkmark 1. Introduction
 - 2. Typical degenerate model: MUED
 - 3. Ideas of the M_{T2} cut
 - 4. Improvement of the MUED discovery potential
 - 5. Summary and Future work

2. Typical degenerate model: MUED

Minimal Universal Extra Dimension model (MUED) in 5D ...gives a good DM candidate

Universal Extra Dimension (UED) [Appelquist, Cheng, Dobrescu (2001)]

- All the SM fields universally propagate in the flat extra dimension
- Orbifold compactification S^1/Z_2 to obtain the SM chiral fermions

Boundary

- Fields \rightarrow Kaluza-Klein modes in 4D / Zero mode corresponds to the SM particle
- The orbifolding violates the 5th dim. momentum (KK number *n*) conservation, but <u>KK parity</u> (-1)^{*n*} remains unbroken
- The lightest KK odd particle (LKP), $\gamma^{(1)}$, is stable and a DM candidate

<u>MUED</u>

- •No additional boundary terms
- •3 parameters: the 5th dim. radius *R*, a cutoff Λ , and the Higgs mass m_h
- •MUED scale 1/R is about 1 TeV for the LKP relic abundance

2. Typical degenerate model: MUED

Why is the MUED degenerate?

At tree level, the *n*th KK mode mass is highly degenerate.

$$(n \ge 1) \qquad m_n = \sqrt{m_{\rm SM}^2 + \frac{n^2}{R^2}} \sim \frac{n}{R}$$

Radiative corrections relax the degeneracy

[Cheng, Matchev, Schmaltz (2002)]

$$m_n = \sqrt{m_{\rm SM}^2 + \frac{n^2}{R^2}} + \frac{\delta m_n}{\delta m_n} \qquad \delta m_n \propto \frac{n}{R} \ln \Lambda R$$

 δm_n is proportional to $\ln \Lambda R$, but Λ cannot be very large.

•E>1/R, many KK particles appear the running of gauge coupling becomes power law βSM → βSM + (ER − 1)β^{KK}, 1/R < E < Λ
U(1) gauge coupling blows up immediately at Λ ~ 40/R

Appropriate cutoff scale: $\Lambda R = O(10)$

The mass spectrum is still nearly degenerate

2011 IPMU-YITP Workshop on Monte Carlo Tools for LHC Improved discovery of nearly degenerate model: MUED using MT2 at the LHC KohsakuTobioka

[Bhattacharyya, Datta, Majee, Raychaudhuri (2007)]

2. Typical degenerate model: MUED

Why is the MUED degenerate?

At tree level, the *n*th KK mode mass is highly degenerate.

$$(n \ge 1)$$
 $m_n = \sqrt{m_{\rm SM}^2 + \frac{n^2}{R^2}} \sim \frac{n}{R}$

Radiative corrections relax the degeneracy

[Cheng, Matchev, Schmaltz (2002)]

$$m_n = \sqrt{m_{\rm SM}^2 + \frac{n^2}{R^2}} + \frac{\delta m_n}{\delta m_n} \qquad \delta m_n \propto \frac{n}{R} \ln \Lambda R$$

 δm_n is proportional to $\ln \Lambda R$, but Λ cannot be very large.

•E>1/R, many KK particles appear the running of gauge coupling becomes power law $\beta^{SM} \rightarrow \beta^{SM} + (ER - 1)\beta^{KK}, \quad 1/R < E < \Lambda$ U(1) gauge coupling blows up immediately at $\Lambda \sim 40/R$

Appropriate cutoff scale: $\Lambda R = O(10)$

The mass spectrum is still nearly degenerate

2011 IPMU-YITP Workshop on Monte Carlo Tools for LHC Improved discovery of nearly degenerate model: MUED using MT2 at the LHC KohsakuTobioka

[Bhattacharyya, Datta, Majee, Raychaudhuri (2007)]

2011 IPMU-YITP Workshop on Monte Carlo Tools for LHC Improved discovery of nearly degenerate model: MUEDusing MT2 at the LHCKohsaku Tobioka

The M_{T2} cut for the SM background

the dominant background is $\, t ar{t} \,$

A significant excess in the high $\rm M_{T2}$ region above $\rm m_{top}$ should be a signature of new physics

Up-Stream Radiations (USR) <ISR + decay products>

USR gives the recoil momentum of the subsystem of parent particles

 p_T of USR: $\mathbf{P}_T \equiv -\mathbf{p}_T^{vis(1)} - \mathbf{p}_T^{vis(2)} - \mathbf{p}_T^{miss}$

 M_{T2} endpoint (M_{T2}^{max}) has different behaviors depending on whether the test mass is correct.

We set the test mass to zero and construct M_{T2} with two jets

Massive invisible particles(new physics)

False

 M_{T2}^{max} depends on USR and is not bounded the parent particle mass anymore

The $\rm M_{T2}$ cut for the new physics signal

[Events without USR] M_{T2}^{max} is a mass combination,

$$M_{T2}^{\max} = \frac{m_{parent}^2 - m_{inv}^2}{m_{parent}} \equiv \mu_0.$$

It is difficult to discover the signal excess for the degenerate spectrum (e.g. $\mu_0 < m_{top}$)

 $1/R = 900 \text{ GeV}, \ \Lambda R = 20$ $q^{(1)}: 912 \text{ GeV}, \ \gamma^{(1)}: 800 \text{ GeV}, \ \mu_0: 211 \text{ GeV}$

The M_{T2} cut for the new physics signal

The M_{T2} cut for the new physics signal

2011 IPMU-YITP Workshop on Monte Carlo Tools for LHC Improved discovery of nearly degenerate model: MUED using MT2 at the LHC Kohsaku Tobioka

17/27

Combinatoric effect

Use leading visible particles in pT to define M_{T2}

 \Rightarrow leading particles do not always correspond to particles we want

Combinatoric effect

•Combinatorics smears the M_{T2} distribution & the smearing is significant for high M_{T2} •The SM background in the high M_{T2} region is due to the combinatorics

• In most events, leading particles = correct particles

•The smearing effect is different in each process

Parton level	$q^{(1)}q^{(1)} \to qq\gamma^{(1)}\gamma^{(1)} + 0, 1$ jet	$t\bar{t} \rightarrow b\bar{b}W^+W^- + 0, 1$ jet
$M_{T2}^{leading} = M_{T2}^{correct}$	61.6%	49.1%
$M_{T2}^{leading} > M_{T2}^{correct}$	30.3%	22.4%
$M_{T2}^{leading} < M_{T2}^{correct}$	8.1%	28.5%

Combinatoric effect

•Combinatorics smears the M_{T2} distribution & the smearing is significant for high M_{T2} •The SM background in the high M_{T2} region is due to the combinatorics

• In most events, leading particles = correct particles

•The smearing effect is different in each process

Parton level	$q^{(1)}q^{(1)} \to qq\gamma^{(1)}\gamma^{(1)} + 0, 1$ jet	$t\bar{t} \rightarrow b\bar{b}W^+W^- + 0, 1$ jet
$M_{T2}^{leading} = M_{T2}^{correct}$	61.6%	49.1%
$M_{T2}^{leading} > M_{T2}^{correct}$	30.3%	22.4%
$M_{T2}^{leading} < M_{T2}^{correct}$	8.1%	28.5%

Combinatorics assists to enhance the signal to background ration for high M_{T2}

2011 IPMU-YITP Workshop on Monte Carlo Tools for LHC Improved discovery of nearly degenerate model: MUED using MT2 at the LHC KohsakuTobioka

Study the discovery potential of MUED using M_{T2} in the multijet + lepton mode and compare it with the previous study, 4leptons + E_T^{miss} analysis.

Dominant production processes at LHC •KK quark $(Q^{(1)}/q^{(1)})$ + KK gluon $(g^{(1)})$ •KK quark + KK quark

• $Z^{(1)}/W^{(1)}$ decay only leptonically

4leptons

 $Q^{(1)} \rightarrow Q + (Z^{(1)} \rightarrow l^{(1)}l \rightarrow ll\gamma^{(1)}) \times 2$ ~ 1% of the total production

Multijet (≥ 2 jet) + lepton ~ 65% of the total production

Monte Carlo simulation

SM backgrounds: $t\bar{t}$, W/Z+jets, Diboson, W/Z+ $t\bar{t}/b\bar{b}$ + Off-shell Z*/ γ * processes Generated by Madgraph/Madevent 4.4 Matrix Element corrections up to 2 jets + MLM matching $t\bar{t}$, W/Z+jets were normalized to the NLO cross section

```
MUED signal: KK gluon+KK gluon, KK gluon+KK quark,
KK quark+KK quark, KK quark+KK antiquark
Generated by Pythia 6.4
No Matrix Element correction & No NLO correction
→ Conservative estimation
(For a benchmark point, Pythia and MG/ME +MLM matching were compared)
PGS 4 detector simulation
Luminosities: 2 fb<sup>-1</sup> at 7 TeV & 10 fb<sup>-1</sup> at 14 TeV
```

Event selection

(lepton isolation was imposed)

- CUT1: $p_T^{jet} > \{100, 20 \text{ GeV}\}$
- CUT2: $E_T^{miss} > 100 \text{ GeV}$
- CUT3: At least one lepton with $p_T^{lep} > 20 \text{ GeV}$
- CUT4: If the number of lepton is one, $M_T^{lep,miss} > 100 \text{ GeV}$

2011 IPMU-YITP Workshop on Monte Carlo Tools for LHC Improved discovery of nearly degenerate model: MUEDusing MT2 at the LHCKohsakuTobioka

23/27

Proces	88	CUT1	CUT2	CUT3	CUT4	CUT5 (Optimal)
$g^{(1)} + g^{(1)}$	MG/ME	1,028	832	119	62	25
	PYTHIA	937	757	108	63	22
$g^{(1)} + q^{(1)}/Q^{(1)}$	MG/ME	9,196	7,218	1,234	675	241
	PYTHIA	8,569	$6,\!694$	1,344	731	223
$q^{(1)}/Q^{(1)}$	MG/ME	5,315	4,035	863	508	148
$+q^{(1)}/Q^{(1)}$	PYTHIA	4,497	3,276	690	436	84
$q^{(1)}/Q^{(1)}$	MG/ME	1,444	1,075	206	115	27
$+\bar{q}^{(1)}/\bar{Q}^{(1)}$	PYTHIA	1,301	955	163	112	20
Total MUED	MG/ME	16,983	13,160	2,422	1,360	441
	PYTHIA	15,304	$11,\!682$	2,305	1,342	349
$t\bar{t}$		426,074	57,533	23,239	5,620	243
W		400,527	97,907	35,386	1,031	85
Z		142,368	53,801	916	107	12
W/Z + t	$\overline{t}/b\overline{b}$	1,121	304	103	49	10
Diboson		29,141	4,482	1,335	252	40
Total Standard Model		999,231	214,027	60,979	7,059	390
Total MUED	MG/ME	0.05	0.17	0.06	0.78	4.10
Z_B	PYTHIA	0.05	0.14	0.05	0.77	3.37(7.57)

Discovery potential

following the ATLAS MC study [hep-ex/0901.0512]

Discovery: significance $Z_B > 5$ & Ns>10

(Z_B is a convolution of Poisson and Gaussian terms to account for the background systematic uncertainty. Estimation of the systematic uncertainty: $\pm 20\%$)

Our MT2 analysis : find the optimal M_{T2} cut > 200 GeV to maximize Z_B

Previous 4lepton analysis •CUT1: $p_T^{lep} \ge \{30, 25, 15, 10 \text{ GeV}\}$ •CUT2: $E_T^{miss} \ge 50 \text{ GeV}$ •CUT3: $|M_{ll} - m_Z| \ge 10 \text{ GeV}$ for all same flavor opposite sign pairs

[Cheng, Matchev, Shmaltz (2002)]

Discovery potential

following the ATLAS MC study [hep-ex/0901.0512]

Discovery: significance $Z_B > 5$ & Ns>10

 $(Z_B \text{ is a convolution of Poisson and Gaussian terms to account for the background systematic uncertainty. Estimation of the systematic uncertainty: <math>\pm 20\%$)

Our MT2 analysis : find the optimal M_{T2} cut > 200 GeV to maximize Z_B

Improved discovery of nearly degenerate model: MUEDusing MT2 at the LHCKohsaku Tobioka

Discovery potential

following the ATLAS MC study [hep-ex/0901.0512]

Discovery: significance $Z_B > 5$ & Ns>10

(Z_B is a convolution of Poisson and Gaussian terms to account for the background systematic uncertainty. Estimation of the systematic uncertainty: $\pm 20\%$)

Improved discovery of nearly degenerate model: MUEDusing MT2 at the LHCKohsaku Tobioka

5. Summary and Future work

Summary

- The test mass is correct for the SM background, $M_{T2} \leq m_{\text{parent}} \leq m_{top}$
- The wrong test mass for the signal leads <u>the M_{T2} dependence on USR</u> & heavy colored particles will have hard ISR (→ USR)
 Signal excess in the high M_{T2} region
- Combinatoric effect enhances the signal excess
- MUED discovery potential is improved, and the improvement is significant for the most degenerate parameter

Future work

• Further improvement by other cuts or in the other channels

e.g.) <u>b-jet veto</u>, or multiple jets channel

• How about the other models like SUSY?

Thank you for your attention

ありがとうございました

2011 IPMU-YITP Workshop on Monte Carlo Tools for LHC Improved discovery of nearly degenerate model: MUED using MT2 at the LHC Kohsaku Tobioka

Backup slides

The LKP DM scenario [Servant, Tait (2003) etc.]

Estimation of the LKP relic abundance

- Co-annihilation effect is important
- Second KK particles enters in the computation (at one-loop level)

$1/R \sim 1.5$ TeV is favored by the LKP DM scenario

The search at LHC is possible but challenging due to the high mass scale & degeneracy

2011 IPMU-YITP Workshop on Monte Carlo Tools for LHC Improved discovery of nearly degenerate model: MUEDusing MT2 at the LHCKohsakuTobioka

Backup slides

Monte Carlo simulation

Process
47 + 0, 1, 0, 1, -+-
tt + 0, 1, 2 jets
$(W \rightarrow l\nu) + 1, 2 \text{ jets}^{\intercal}$
$(Z \rightarrow l^+l^-, \nu\bar{\nu}) + 1, 2 \text{ jets}^\dagger$
$W^+W^- + 0, 1, 2$ jets
WZ + 0, 1, 2 jets
ZZ + 0, 1, 2 jets
$Z^*/\gamma^*Z^*/\gamma^* \rightarrow 2l^+2l^-$
$Z + b\bar{b}$
$W + b\bar{b}$
$(Z/\gamma^* \rightarrow l^+l^-, \nu\bar{\nu}) + t\bar{t}$
$(W \rightarrow l\nu) + t\bar{t}$

Process		
KK gluon + KK gluon	$g + g \rightarrow g^{(1)} + g^{(1)}$	
KK quark + KK gluon	$g + q \to g^{(1)} + Q^{(1)}; \ g^{(1)} + q^{(1)}$	
KK quark + KK quark	$q_i + q_j \to Q_i^{(1)} + Q_j^{(1)}; \ q_i^{(1)} + q_j^{(1)}$	all i, j
	$q_i + q_j \to Q_i^{(1)} + q_j^{(1)}$	all i,j
KK quark + KK antiquark	$g + g \to Q^{(1)} + \bar{Q}^{(1)}; \ q^{(1)} + \bar{q}^{(1)}$	
	$q + \bar{q} \to Q^{(1)} + \bar{Q}^{(1)}; \ q^{(1)} + \bar{q}^{(1)}$	
	$q_i + \bar{q}_j \rightarrow Q_i^{(1)} + \bar{q}_j^{(1)}$	$i \neq j$
	$q_i + \bar{q}_j \to Q_{i_j}^{(1)} + \bar{Q}_{j_j}^{(1)}; \ q_i^{(1)} + \bar{q}_j^{(1)}$	$i \neq j$
	$q_i + \bar{q}_i \to Q_j^{(1)} + \bar{Q}_j^{(1)}$	$i \neq j$

5.1 Object selection

The object selection is that an electron and a muon are required to have $p_T > 10 \text{ GeV}$ and $|\eta| < 2.5$ and a jet is required to have $p_T > 20 \text{ GeV}$ and $|\eta| < 2.5$. In order to avoid recognizing a shower from an electron as a jet, a jet within $\Delta R < 0.2$ ($\Delta R = \sqrt{\Delta \eta^2 + \Delta \phi^2}$) from any electron is removed. Charged leptons from hadronic activity also should be removed. If an electron and a jet are found within $0.2 < \Delta R < 0.4$, the jet is kept and the electron is rejected Similarly, if a muon and a jet are found within $\Delta R < 0.4$, the muon is rejected.

2011 IPMU-YITP Workshop on Monte Carlo Tools for LHC Improved discovery of nearly degenerate model: MUEDusing MT2 at the LHCKohsaku Tobioka

Backup slides

