Backgrounds in underground laboratories

Vitaly A. Kudryavtsev

University of Sheffield

Contributions from many others

Outline (and some notes)

- Built on ILIAS work: background studies for underground experiments.
- This study is relevant mainly to 'astroparticle physics' programme (neutrino 'astrophysics' and proton decay).
- Background sources are important for all LAGUNA technologies (liquid argon, scintillator, water Cherenkov) but the end-point event signatures are different.
- Background effects depend on the underground lab location (mainly depth).
- Muon simulation codes: MUSIC and MUSUN.
- Muon-induced neutrons.
- Radioactivity.

MUSIC/MUSUN

- MUSIC is a MUon SImulation Code code for muon transport (propagation) through matter - recent publication: Kudryavtsev. Comp. Phys. Commun. 180 (2009) 339; see also references therein.
- First version written in 1987. First 3D version written in 1997 (Antonioli et al. Astroparticle Physics (1997)).
- Features: 3D (or 1D) muon transport through matter; initial muon parameters (energy, coordinates, direction cosines) -> final muon parameters (...). A set of subroutines (in Fortran????!!!!). Other inputs: parameters for a (uniform) material: composition, density, radiation length (3D), density corrections.
- MUSUN is a code for MUon Simulations UNderground: uses the results of MUSIC written in the files.
- MUSUN aim: to generate muons according to the energy spectrum and angular distribution at an underground location; has to be written for any specific location (specific rock composition, slant depth distribution etc).
- Requires rock composition and slant depth distribution as inputs.
- MUSUN exists for standard rock and water (flat surface); also for LNGS, LSM, Boulby, Soudan, SNOLab.

11/03/2011, LAGUNA, Durham

- Left: Vertical muon intensity as a function of depth in standard rock and water in comparison with data (see also other references in CPC (2009)).
- Right: Energy distribution of muons with initial energy of 2 TeV transported through 3 km of water.
- See also Tang et al. Phys. Rev. D <u>74</u>, 053007 (2006); A. Lindote et al. Astropart. Phys., 31 (2009) 366.

11/03/2011, LAGUNA, Durham

Muon generator - MUSUN (LSM)

- Zenith and azimuth angular distributions of muons from MUSUN (black) at LSM compared with data from the Frejus proton decay experiment (red).
- MUSIC and MUSUN, V. Kudryavtsev, Comp. Phys. Comm. 180 (2009) 339.

MUSIC/MUSUN for LNGS x 10⁻⁹ All zenith angles Muon intensity, cm⁻²s⁻¹degree⁻¹ 0.14 Zenith angles <60⁰ 0.12 0.12 0.1 0.1 0.08 0.08 0.06 0.06 0.04 0.04 0.02 0.02 0 300 350 50 250 350 200 Azimuthal angle, degrees Azimuthal angle, degrees

- Angular distribution of muons at LNGS as generated by MUSUN in comparison with the single muon data from LVD. From Kudryavtsev et al., Eur. Phys. J. A 36, 171 (2008); Comp. Phys. Commun. 180 (2009) 339.
- Normalisation: total muon flux 1.17 m⁻² hour⁻¹ (sphere with 1 m² cross-sectional area).

MUSIC/MUSUN for SNOLAB

- Data from SNO converted to standard rock: B.Aharmim et al. (SNO Collaboration), PRD <u>80</u> (2009) 012001.
- Simulations with MUSIC for standard rock: solid red - LVD best fit parameters from surface muon spectrum; dashed blue - intensity multiplied by 0.9.
- Total flux: measured 3.31×10⁻¹⁰ cm⁻² s⁻¹, simulated with LVD parameters 3.50×10⁻¹⁰ cm⁻² s⁻¹.
- Required normalisation for simulated flux: 0.95.

11/03/2011, LAGUNA, Durham

Neutron spectra at production

- Left: CH₂, 280 GeV muons, GEANT4 9.2 (V. Tomasello, 2009); also M. Horn, H. Araújo, M. Bauer, A. Lindote, R. Persiani and others with various versions of GEANT4.
- Right: spectra in CH₂, NaCl and lead; <E> = 65.3 MeV, 23.4 MeV and 8.8 MeV (A. Lindote et al. Astropart. Phys., 31 (2009) 366). Neutron spectrum strongly depends on the material.

11/03/2011, LAGUNA, Durham

Rock composition and neutron spectra

Simulated (not normalised) energy spectra of neutrons coming from the rock (preliminary, from R. Persiani and M. Selvi). No H was included in LNGS rock but probably should be there.

• Some elements even with small concentrations can be important (hydrogen).

Angular dependence

Figure 3.9: Angular distribution relative to the total neutron yield of neutrons produced in muon nuclear reactions with *Geant4* 8.2.p01. For all neutron kinetic energies (black) or the respective kinetic energy ranges, $E_n > 100 \ MeV$ (blue), $10 \ MeV < E_n < 100 \ MeV$ (green) and $E_n < 10 \ MeV$ (purple). The inlet shows the definition of the angle θ with respect to the incident muon. See text for details.

M. Horn. PhD thesis. Univ. of Karlsruhe (2007).

- Angular distribution of emitted neutrons.
- High-energy neutron emission is not isotropic but is correlated with the muon direction.
- Hence the signal from high-energy neutrons travelling long distance to the detector (from rock) may be accompanied by the energy deposition from a muon or muoninduced cascade.
- Production and transport of all particles in a cascade is important for correct evaluation of neutron-induced signal.

11/03/2011, LAGUNA, Durham

Neutron spectra after shielding

- Neutron fluxes at various boundaries behind the shielding (lead + CH₂).
- Significant suppression of neutron flux below 10 MeV after 50 cm of polyethylene.

Neutrons in water and CH₂

 Neutron attenuation in water and CH₂ - V. Tomasello, PhD Thesis, Univ. of Sheffield (2009); Tomasello et al. Astropart. Phys. 34 (2010), 70.

Gamma-ray attenuation in lead

- A spectrum from rock;
- B behind 5 cm of lead;
- C 10 cm of lead;
- D 20 cm of lead;
- E 30 cm of lead;
- F 20 cm of lead and 40 g/cm² of CH₂.
- From M. J. Carson et al., Nucl. Instrum. and Meth. A 548 (2005) 418.

Attenuation in water

- Spectra of gamma-rays from U in concrete. On average $\times 10$ suppression per 0.5 m of H₂O.
- Required suppression of gamma-rays for a 1 t experiment is achieved with 3 m of water (discrimination <10⁻⁴).

Some new (?) 'discoveries'

S. Garny et al. IEEE Transactions on Nuclear Science, 56 (2009) 2392; credits to S. Semikh (JINR, Dubna).

- Importance of thermal neutron cross-sections.
- Does not affect
 high-energy
 neutron
 attenuation in the
 shielding but may
 affect the
 efficiency of
 neutron detectors
 based on thermal
 neutron capture
 detection.
- Anything else we need to know?

11/03/2011, LAGUNA, Durham

Vitaly Kudryavtsev

•

Summary

- We have expertise in background radiation (simulations and measurements).
- So far applied to the background studies for dark matter experiments (low energy depositions < 100 keV).
- Muon codes are relevant to all labs, technologies etc.
- Muon-induced background is key to the success of many experiments (not only DM).
- Our simulations can be extended to neutrons at GeV energies (proton decay) and to MeV-neutrino background.