
Double Parton Scattering Theory

Jo Gaunt

1

Department of Physics

Cavendish Laboratory

Based on work performed in collaboration with W. J. Stirling

QCD@LHC 2011, St. Andrews, Scotland, 22nd August 2011



Outline

• Introduction to double parton scattering, and summary of the state 
of the subject prior to developments over the past year. ‘dPDF 
framework’ of Snigirev for describing DPS.

• Summary of our work showing that a compact analytic expression 
can be obtained for the ‘DPS singular’ part of a one-loop diagram. 
Use of this expression to show that dPDF framework appears to be 
treating the ‘double parton splitting’ or ‘1v1’ part of the DPS cross 
section wrongly.

• What is wrong with the dPDF framework? Discussion of how the 
‘1v1’ piece should be treated correctly.

• How should the ‘single parton splitting’ or ‘2v1’ piece be treated?

• Summary
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In the standard theoretical framework for p-p scattering, we 
assume that a given collection of hard outgoing particles can 
only have been produced from the collision of two partons, 
one from either proton. This is single parton scattering (SPS).

Double Parton Scattering

However, for certain final states, the possibility exists that the 
final state could have been produced as the result of two 
independent hard scatterings (double parton scattering, or 
DPS).

The total cross section for a given final state {A,B} to be produced via DPS is power 
suppressed with respect to the single scattering cross section. However, in the 
kinematic region where the transverse momenta of the particle subsets A and B is 
small, DPS gives a comparable contribution to SPS. Has been observed at the 
Tevatron [CDF Coll., Phys. Rev. D56 (1997) 3811, D0 Coll., Phys. Rev. D81 (2010) 
052012].
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Cross Section for DPS 

A

B

Assuming only the factorisation of the hard processes A and B, the 
DPS cross section may be written as:
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Two-parton generalised PDF (2pGPD)

Parton level cross sections

Symmetry factor

The vector b in the 2pGPDs corresponds to the vector separation in transverse space 
between the two partons described by the 2pGPD.

DPS differs from SPS in that the cross section may not naturally be expressed in terms  of 
PDFs depending only on x arguments. The 2pGPDs in the DPS cross section must share a 
common b in order that both pairs of partons can meet and interact – one cannot 
integrate independently over the transverse separation arguments of each PDF and obtain 
PDFs depending only on x arguments, as one can in the SPS case. 4



Assumptions made in 
Phenomenological Studies
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1. Take  to be a product of 
longitudinal and transverse pieces .

2. Assume that F does not depend on 
parton indices – i.e.

Double parton distribution 
functions (dPDFs)

Parton pair density in 
transverse space 

(exponential or dipole 
form of radius Rp).

Then, if we define we may write DPS cross section as: 

3. Neglect longitudinal correlations



The ‘dPDF framework’
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An alternative, supposedly more rigorous framework for calculating the p-p DPS 
cross section for the case QA = QB = Q was proposed a number of years ago by 
Snigirev. He suggested that assumptions 1 and 2 on the previous slide approximately 
hold, such that the DPS cross section may be described in terms of dPDFs.

‘12’ splitting function

Single PDF

Usual 11 splitting 
functions

 2ln Qt 

The dPDFs in this framework evolve according to the ‘double DGLAP’ equation 
obtained by Shelest, Snigirev, and Zinovjev in 1982 [Phys. Lett. B 113:325]. At 
leading order, equation is:



Pictorial Representation of the 
dDGLAP equation 

‘Independent 
branching’ terms
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Pictorial Representation of the 
dDGLAP equation 

‘sPDF feed’ term

x1

x2

x1+x2



‘1v1’ contributions to DPS?
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Under dPDF framework, there is a part of the 
DPS cross section that comes from 
multiplying two accumulated sPDF feed 
contributions together. Pictorially this piece 
looks like this:

According to the dPDF framework then,  there is some part of this loop diagram 
which at the cross section level contains a DGLAP large logarithm αslog(Q2/Λ2) for 
every splitting (Λ being an IR cut-off). This same piece should contain all of the 
appropriate splitting functions convolved together.

Simplest example of a loop diagram with the given 
structure is the crossed box diagram on the right.  
Does the cross section expression for this contain a 
piece proportional to (αslog(Q2/Λ2) )2?

Q1
2 = Q2

2 = Q2 > 0



Double Parton Scattering Singularity
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We would expect this piece to come from the portion of 
the external and loop integrations in which the 
transverse momenta of the outgoing particles are small, 
and all internal loop particles are almost on shell and 
collinear.

This is the region around a specific pinch singularity (Landau singularity) in the crossed box 
integral known as the double parton scattering singularity. 

DPS divergent part of a crossed box integral = expression  for the part of the integral 
associated with the loop particles being almost on-shell and collinear, valid in the 
limit of small external transverse momenta. Expect this to diverge as external pTs → 0.

We have derived a simple analytical expression for the DPS divergent part of a crossed box 
diagram with arbitrary external and loop particles [JG and Stirling, JHEP 1106 048 (2011)]. 
Let us show how it is derived.



Derivation of DPS Divergence in 
Crossed Box
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Numerator – depends on 
nature of particles in diagram 

Loop propagator denominators –
universal to all crossed boxes

Decompose all vectors in terms of light-cone coordinates: 
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Derivation of DPS Divergence in 
Crossed Box
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Perform k- integration by contour method:

Two terms 
corresponding to 
different k+ ranges.



Derivation of DPS Divergence in 
Crossed Box
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Perform k- integration by contour method:

Crossed out terms are all 
negligible compared to 
accompanying terms in region 
around DPS singular point, 
where:

  ii QQk ,,, kQk 2



14

∞

-∞

Integral strongly peaked 
around k+ = 0

Derivation of DPS Divergence in 
Crossed Box

Perform k+ integration by contour method

Compact expression!



Cutkosky cuts of the box
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DPS divergence is in the real 
part of box integral – i.e. 
imaginary part of box amplitude 
since

DPS divergent part of loop integral can also be found by taking sum of cuts in 
limit where external transverse momenta are small and internal particles are 
almost on shell.

Two cuts give the same 
contribution.

Li M
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Q

Q
Hard matrix elements –
can evaluate with incoming 
off-shellness and 
transverse momentum = 0

‘Light-cone wavefunction to 
find L2L3 in b’

Decomposition of DPS divergent part 
of Crossed Box



DPS divergent part of arbitrary one-
loop integral
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To obtain DPS divergent part of an arbitrary 
one-loop diagram (of the appropriate 
character), replace 2→1 matrix elements by 
2→n1, 2→n2 matrix elements above.

n1

n2

Any one-loop diagram of this structure also has a 
DPS divergence.

On shell On shell

Total invariant mass > 0

Total invariant mass > 0

Red = massless
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Light-cone wavefunctions
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Square root of helicity dependent splitting function!

Transverse momentum dependent factor K contains a 1/k2 factor from propagator 
denominator, multiplied by a further factor coming from splitting matrix element.

k
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Scalar ϕ3 theory : splitting matrix element doesn’t depend on k. For an arbitrary loop:
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Power divergence at the DPS singular point which is unintegrable at the cross section level.
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Light-cone wavefunctions
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For any Standard Model massless particle splitting, matrix element is proportional to k.

Can show where this comes from for e.g. g → qq graph:

Helicity conservation  Jz of 
final state = 0 in collinear limit

Jz of initial state =±1 

splitting must be suppressed 
in collinear limit.
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Therefore the DPS divergence in any Standard Model loop diagram is always integrable!

Strongly related to 
logarithmic scaling violations 
of parton distributions
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No large logarithms dependent on the IR cut-off Λ! Seems to be inconsistent with 
prediction from dPDF framework.



What was wrong with the dPDF 
framework?
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Contribution to pp → AB + X cross section coming from DPS divergent part of gg → 

AB crossed box: 

Insert expression for LDPS and perform a number of changes of variable:

rk
2
1 rk

2
1

rk
2
1 rk

2
1 rk

2
1

rk
2
1

rk
2
1

rk
2
1

r = loop transverse momentum imbalance between amplitude and conjugate. This 
is the Fourier transform of the transverse separation between partons b.

Have absorbed single PDFs and light-cone wavefunction parts 
of |L|2 into these factors resembling 2pGPDs.



What was wrong with the dPDF 
framework?
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Write r-space 2pGPDs as Fourier transforms of b-space 2pGPDs, and then simplify 
expression:

Looks exactly like the expression that we wrote down at the beginning of this talk! 
However, the b dependence of the Γ functions above is very different from an 
exponential or dipole form. In fact, for small b:

  221
1~,,
b

bxx
qqgqq 

 Power law behaviour!

There is clearly a problem with assuming that the 2pGPDs factorise into a dPDF and 
a smooth function of size RP. Need to take account of b (or r) dependence.

See also Diehl and Schafer [Phys. Lett. B 698 389 (2011)].



What ‘1v1’ contribution should one 
include in the DPS cross section?
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Our proposal in JHEP 1106 048 was to remove the 1v1 contribution from DPS entirely. 
Also suggested by Blok, Dokshitzer, Frankfurt and Strikman (BDFS) [arXiv: 1106.5533].

Our motivation for making this proposal was our finding that the 1v1 graphs do not 
contain large DGLAP logarithms at the cross section level → the main contribution to 
these graphs comes from the region in which transverse momenta (and virtualities) 
inside the loop are of order of the hard scale → these graphs should be regarded as 
pure SPS.

The motivation of the BDFS group was that the differential distribution for the 1v1 
graphs to produce final states {A,B} is not peaked at small pT of A and B, which is 
essentially the definition of what DPS is. Rather, it should be considered as a smooth 
background to DPS.

The two lines of reasoning are in fact very closely linked.

No double counting problem with SPS. Maybe the only sensible way of dealing with 
the 1v1 contribution?



What about the 2v1 contribution?
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Take a similar approach as we did for the 1v1 
graphs. Look at the simplest graph in which a 
single parton splits and then interacts with two 
‘independent’ partons from a proton, and see 
if there is a large logarithm.

Required large 
logarithm

1 → 2 splitting function
2pGPD of independent partons 
probed at b = 0!

Need to use a wavefunction on the side with 
the two independent partons to represent the 
fact that the two partons are tied together in 
the same proton (see also BDFS [arXiv: 
1106.5533]). 



What about the 2v1 contribution?
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As 2v1 part of DPS probes b distribution of independent partons differently from 2v2 
part, σeff for 2v2 and 1v2 are different:

With a simple Gaussian form for F(b), each 2v1 part of the DPS cross section is 
enhanced by a factor of two due to the σeff factor.



Interference contributions to proton-
proton DPS

In proton-proton SPS, only one parton leaves each 
proton, interacts, and then returns 
 interacting parton must return with the same 
quantum numbers as it left with such that it can 
recombine with spectators to form original proton
 No interference contribution to proton-proton 
SPS

In proton-proton DPS, fact that interacting partons must 
recombine with spectators to form original proton only 
imposes conditions on ‘sum’ of quantum numbers of 
active partons
 Possibility of interference diagrams in which flavour, 
spin or colour are swapped between active partons, 
provided that a swap in the opposite direction occurs 
for the other proton.



Polarised PDF contributions to proton-
proton DPS

In proton-proton DPS, there exists the possibility of having contributions to the cross 
section associated with polarized 2pGPDs, even when the colliding protons are 
unpolarized!

Reason for this: there may be correlations in helicity between the two active partons!

e.g.  2121212121 qqqqqqqqqq

If probability to find two quarks with same spin differs from probability to find two quarks 
with opposing spins,                    . 021  qq

Same spin Opposing spin

Issues of interference & spin/colour correlations raised by Diehl and Schafer [Phys. 
Lett. B 698 389 (2011)].

Similarly – contributions associated with colour correlations between partons.



Outstanding questions and further 
work

• We have made a distinction between ‘independent’ parton pairs and those 
arising from a perturbative splitting. In this picture we need to choose some 
initial scale Q0 at which the proton only contains independent pairs, and choose 
2pGPDs dictating the distributions of these pairs at this scale. What scale should 
we choose for Q0 (presumably something rather close to ΛQCD), and what 2pGPDs 
should we use at this scale?

• How large are the interference and polarized contributions? A numerical study 
would be useful, but constructing input forms for interference/polarized 2pGPDs 
is difficult. One cannot construct approximate input forms for these based on 
products of single PDFs/GPDs as one does for the unpolarised distributions.
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Summary

• We have derived a compact analytical expression for the DPS divergence 
in an arbitrary one-loop diagram. Using this expression we have shown 
that the DPS divergent part of a one-loop diagram does not behave as is 
anticipated by the dPDF framework of Snigirev.

• The majority of the contribution to a 1v1 loop graph comes from the 
region in which the particles inside the loop have virtualities and 
transverse momenta of order of the hard scale. Seems to suggest that we 
should consider these graphs as pure SPS.

• Calculation of a simple 1v2 graph indicates that 1v2 diagrams should be 
included as part of DPS, but with a different σeff. Simple model calculations 
indicate 1/σeff for 1v2 graphs is about twice as big as that for 2v2 graphs.

• There are interference and polarised contributions to DPS, even in 
unpolarised pp scattering.
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Backup Slides
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DPS divergences in Six Photon 
Amplitude 

30

Our analytical expression for the DPS singularity of a one-loop diagram can be used to 
explain interesting behaviour of amplitudes around DPS singular points that has been 
observed using ‘traditional’ NLO multileg integration techniques.

e.g. Six photon amplitude

This is just one diagram 
contributing to the amplitude, 
which has a DPS singularity at PΣ = 

p3 + p5 = 0

Take all helicities as 
incoming, label helicity 
amplitude as λ1λ2 λ3λ4 λ5λ6

1. No helicity amplitude diverges at PΣ = 0 as 1/PΣ
2, as was expected by some authors.

2. The NMHV − − − +++ amplitude is finite at PΣ = 0.
3. The MHV − ++ − ++ amplitude is also finite at PΣ = 0.

NLO multileg community observed several interesting things about the six photon 
helicity amplitudes:

Bernicot, arXiv:0804.1315,
Bern et. al., arXiv:0803.0494



DPS divergences in Six Photon 
Amplitude 
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1. No helicity amplitude diverges at PΣ = 0 as 1/PΣ
2, as was expected by some authors.

2. The NMHV − − − +++ amplitude is finite at PΣ = 0.

3. The MHV − ++ − ++ amplitude is perfectly finite at PΣ = 0.

Already explained. Associated with angular momentum nonconservation at both γ → qq 

vertices in collinear limit.

There are four graphs giving a DPS divergence at the point PΣ = 0. The matrix elements to 
be used in the calculation of the DPS divergent parts of the sum of these graphs are the 
sum of the following two graphs:

Overall Jz nonconservation between γγ initial state and qqqq intermediate state in 
collinear limit weakens DPS divergence such that it is finite.

+

= full matrix element for qq → γγ. For MHV 
amplitude studied, photons have same 
helicity in both matrix elements, and go to 
zero by MHV rules for QED.


