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Hadron-Hadron Collision
In hadron-hadron collision the picture is more complicated. 

Resolution scale: 400 GeV
Decreasing the resolution scale 
more and more partons are 
visible and less absorbed by the 
incoming hadrons and the final 
state jets. 

Important observation: The 
total cross section is independent 
of the resolution of the 
measurement (or detector).  

We have to also consider the evolution of the final state jets.

Does perturbative QCD 
support this nice intuitive 
picture?
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Hadron-Hadron Collision
In hadron-hadron collision the picture is more complicated. 

Decreasing the resolution scale 
more and more partons are 
visible and less absorbed by the 
incoming hadrons and the final 
state jets. 

Important observation: The 
total cross section is independent 
of the resolution of the 
measurement (or detector).  

Resolution scale: 100 GeV

We have to also consider the evolution of the final state jets.

Does perturbative QCD 
support this nice intuitive 
picture?
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Cross section

parton distributions

matrix element

σ[F ] =
�

m

� �
d{p, f}m

� � �� �
fa/A(ηa, µ

2
F ) fb/B(ηb, µ2

F )
1

2ηaηbpA ·pB

×
�
M({p, f}m)

�� F ({p, f}m)� �� �
��M({p, f}m)

�
� �� �

observable

The cross section is a phase space integral of all the possible matrix elements  and the a convolution to 

the parton distribution functions.

✗ This is formally an all  order expression and it is impossible to calculate out. 

✗ We can do it at LO, NLO and in some cases NNLO level. 

✗ Lots of complication with IR singularities.

✗ Lots of complication with spin and colors.

✓ The idea is to approximate the matrix elements using factorization properties of the 
QCD matrix element.
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Cross section
The cross section is a phase space integral of all the possible matrix elements  and the a convolution to 

the parton distribution functions.

✗ This is formally an all  order expression and it is impossible to calculate out. 

✗ We can do it at LO, NLO and in some cases NNLO level. 

✗ Lots of complication with IR singularities.

✗ Lots of complication with spin and colors.

✓ The idea is to approximate the matrix elements using factorization properties of the 
QCD matrix element.

σ[F ] =
�

m

� �
d{p, f}m

�
Tr{ρ({p, f}m)� �� �F ({p, f}m)}

density operator in color ⊗ spin space
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Approx. of the Density Operator
The m+1 parton physical state is represented by density operator in the quantum space and by the 

statistical state in the statistical space. 

ρ
�
{p, f}m+1

�
⇔

��ρ({p, f}m+1)
�

This is based on the m+1 parton matrix elements. They are very complicated (especially the loop 

matrix elements). We try to approximate them by using their soft collinear factorization properties. 
For this we introduce operators in the statistical space:

Collinear and soft-
collinear contribution

Wide angle soft 
contributions

This parameter represents  
the hardness of the splitting. 
We will call it shower time.

��ρ({p̂, f̂}m+1)
�
≈

� ∞

tm

dt
�
HC(t)� �� � +

� �� �
HS(t)

���ρ({p, f}m)
�

HI(t) = HC(t) +HS(t)

The total splitting operator is 
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Collinear Singularities
The QCD matrix elements have universal factorization property when two external partons become 
collinear

HC ∼

�

l

tl ⊗ t†l Vij(si, sj)⊗ V †
ij(s

�
i, s

�
j)⇔

αs

2π

�

l

1
pi · pj

Pfl,fi(z) + . . .

i�j−−−−→

...
..

1

m + 1

i
j

M
m

+
1

⊗

...
..

1

m + 1

M
m l

2 2

i

j

Vij

2

Altarelli-Parisi splitting kernels
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Soft Singularities
The QCD matrix elements have universal factorization property when an external 
gluon becomes soft

HS ∼ −

�

l,k
l �=k

p̂l · ε(s) p̂k · ε(s�)
p̂l · p̂m+1 p̂k · p̂m+1

tl ⊗ t†k

pr→0−−−−−→

l

k

�

l,kM
m

+
1

M
m

+
1

M
m

M
m

Soft gluon connects everywhere and the color structure is not diagonal; quantum 
interferences in the color space.
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Resolvable Splittings
Let us consider a physical state at shower time t,           . This means every parton is resolvable at this 
time (this scale). Now, we apply the splitting operator:

��ρ(t)
�

           operator changes
- the number of the partons, m ➝ m+1
- the color and spin structure
- flavors and momenta

HI(t)

This is good approximation if we allow 
only softer radiations than t, τ > t

Now, let us consider a measurement with a resolution scale which correspond to shower time 
t’

Resolved radiations Unresolved radiations
This is a singular contribution

           operator
- changes only the color structure
-

VI(t)

�
1
��VI(t) =

�
1
��HI(t) What can we do about it?

��ρR
∞

�
=

� ∞

t
dτ HI(τ)

��ρ(t)
�

��ρR
∞

�
≈

� t�

t
dτ HI(τ)

��ρ(t)
�

� �� �
+

� ∞

t�
dτ V(�)

I (τ)
��ρ(t)

�

� �� �

Monday, August 22, 2011



Virtual Contributions
There is another type of the unresolvable radiation, the virtual (loop graph) contributions. We have 

universal factorization properties for the loop graphs. E.g.: in the soft limit, when the loop momenta 
become soft we have

m m This is again a singular 
operator only in the color space.

We can use this factorization to dress up partonic states with virtual radiation. After careful analysis 
one can found that the virtual contribution can be approximated by 

��ρV
∞

�
≈ −

� ∞

t
dτ V(�)

I (τ)
��ρ(t)

�

i

j

...
..

1

...
..

M
(1

)
m

l → 0

i

j

...
..

1

...
..

M
m

⊗

i

j×

×�
ddl

(2π)d

Same structure like in the 
real unresolved case but 
here with opposite sign.
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Physical States
Combining the real and virtual contribution we have got

��ρR
∞

�
+

��ρV
∞

�
=

� t�

t
dτ [HI(τ)− VI(τ)]

��ρ(t)
�

This operator dresses up the physical state with one real and virtual radiations that is softer or 

more collinear than the hard state.  Thus the emissions are ordered. Now we can use this to build  

up physical states by considering all the possible way to go from t to t’.

��ρ(t�)
�

=
��ρ(t)

�

+
� t�

t
dτ [HI(τ)− VI(τ)]

��ρ(t)
�

+
� t�

t
dτ2 [HI(τ2)− VI(τ2)]

� τ2

t
dτ1 [HI(τ1)− VI(τ1)]

��ρ(t)
�

+ · · ·

= T exp

�� t�

t
dτ [HI(τ)− VI(τ)]

�

� �� �

��ρ(t)
�

U(t�, t) shower evolution operator

��ρ(t�)
�

= U(t�, t)
��ρ(t)

�
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Full Splitting Operator

Ψlk =
αs

2π

1

p̂l ·p̂m+1

�
Alk

2p̂l ·p̂k
p̂k ·p̂m+1

+H
coll
ll ({f̂ , p̂}m+1)

�
Splitting kernel is

�
{ĉ�, ĉ}m+1

��GR(l, k)
��{c�, c}m

�

=
D

�
{ĉ}m+1

��t†l
��{c}m

� �
{c�}m

��tk
��{ĉ�}m+1

�
D

.

Color operator for gluon emission is

Very general splitting operator (no spin correlation) is
�
{p̂, f̂ , ĉ�, ĉ}m+1

��H(t)
��{p, f, c�, c}m

�

=
�

l=a,b,1,...,m

δ
�
t− Tl

�
{p̂, f̂}m+1

�� �
{p̂, f̂}m+1

��Pl

��{p, f}m
�m+ 1

2

×
nc(a)nc(b) ηaηb

nc(â)nc(b̂) η̂aη̂b

fâ/A(η̂a, µ
2
F )fb̂/B(η̂b, µ

2
F )

fa/A(ηa, µ2
F )fb/B(ηb, µ

2
F )

�

k

Ψlk({f̂ , p̂}m+1)

×

�

β=L,R

(−1)1+δlk
�
{ĉ�, ĉ}m+1

��Gβ(l, k)
��{c�, c}m

�

Alk +Akl = 1
Important:
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Full Splitting Operator

Ψlk =
αs

2π

1

p̂l ·p̂m+1

�
Alk

2p̂l ·p̂k
p̂k ·p̂m+1

+H
coll
ll ({f̂ , p̂}m+1)

�
Splitting kernel is

�
{ĉ�, ĉ}m+1

��GR(l, k)
��{c�, c}m

�

=
D

�
{ĉ}m+1

��t†l
��{c}m

� �
{c�}m

��tk
��{ĉ�}m+1

�
D

.

Color operator for gluon emission is

Very general splitting operator (no spin correlation) is
�
{p̂, f̂ , ĉ�, ĉ}m+1

��H(t)
��{p, f, c�, c}m

�

=
�

l=a,b,1,...,m

δ
�
t− Tl

�
{p̂, f̂}m+1

�� �
{p̂, f̂}m+1

��Pl

��{p, f}m
�m+ 1

2

×
nc(a)nc(b) ηaηb

nc(â)nc(b̂) η̂aη̂b

fâ/A(η̂a, µ
2
F )fb̂/B(η̂b, µ

2
F )

fa/A(ηa, µ2
F )fb/B(ηb, µ

2
F )

�

k

Ψlk({f̂ , p̂}m+1)

×

�

β=L,R

(−1)1+δlk
�
{ĉ�, ĉ}m+1

��Gβ(l, k)
��{c�, c}m

�

Alk +Akl = 1
Important:

··
·

k

m + 1

l

··
·

l

m + 1

k

{c}m {c�}m
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Multi Parton Interaction
µ = 100 GeVµ = 100 GeV

Let us see how it looks at hadron collider

In hadron-hadron collision the parton distribution 

function also absorbs the contribution of the multiple 
interactions and joint interactions.

Our strategy:

- Identify factorazible singular contributions.

- Sum up the strongly ordered radiations.

- Minimize the number of the ad-hoc assumptions 
and tuning parameters.

Now, one can try to define the evolution operator in the following form

Everything elseSingle radiations
(IRS & FSR)

U(t, t�) = T exp






� t�

t
dτ

�
HI(τ)− VI(τ) +

�

β=MI, JI,...

�
Hβ(τ)− Vβ(τ)

��




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Multi Parton Interaction

µ = 125 GeVµ = 125 GeV

Let us see how it looks at hadron collider

In hadron-hadron collision the parton distribution 

function also absorbs the contribution of the multiple 
interactions and joint interactions.

Our strategy:

- Identify factorazible singular contributions.

- Sum up the strongly ordered radiations.

- Minimize the number of the ad-hoc assumptions 
and tuning parameters.

Now, one can try to define the evolution operator in the following form

Everything elseSingle radiations
(IRS & FSR)

U(t, t�) = T exp






� t�

t
dτ

�
HI(τ)− VI(τ) +

�

β=MI, JI,...

�
Hβ(τ)− Vβ(τ)

��




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Multi Parton Interaction
µ = 50 GeVµ = 50 GeV

Let us see how it looks at hadron collider

In hadron-hadron collision the parton distribution 

function also absorbs the contribution of the multiple 
interactions and joint interactions.

Our strategy:

- Identify factorazible singular contributions.

- Sum up the strongly ordered radiations.

- Minimize the number of the ad-hoc assumptions 
and tuning parameters.

Now, one can try to define the evolution operator in the following form

Everything elseSingle radiations
(IRS & FSR)

U(t, t�) = T exp






� t�

t
dτ

�
HI(τ)− VI(τ) +

�

β=MI, JI,...

�
Hβ(τ)− Vβ(τ)

��




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Multi Parton Interaction
µ = 25 GeVµ = 25 GeV

Let us see how it looks at hadron collider

In hadron-hadron collision the parton distribution 

function also absorbs the contribution of the multiple 
interactions and joint interactions.

Our strategy:

- Identify factorazible singular contributions.

- Sum up the strongly ordered radiations.

- Minimize the number of the ad-hoc assumptions 
and tuning parameters.

Now, one can try to define the evolution operator in the following form

Everything elseSingle radiations
(IRS & FSR)

U(t, t�) = T exp






� t�

t
dτ

�
HI(τ)− VI(τ) +

�

β=MI, JI,...

�
Hβ(τ)− Vβ(τ)

��




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Multi Parton Interaction

µ = 15GeV

Correlation

µ = 15GeV

Correlation

Let us see how it looks at hadron collider

In hadron-hadron collision the parton distribution 

function also absorbs the contribution of the multiple 
interactions and joint interactions.

Our strategy:

- Identify factorazible singular contributions.

- Sum up the strongly ordered radiations.

- Minimize the number of the ad-hoc assumptions 
and tuning parameters.

Now, one can try to define the evolution operator in the following form

Everything elseSingle radiations
(IRS & FSR)

U(t, t�) = T exp






� t�

t
dτ

�
HI(τ)− VI(τ) +

�

β=MI, JI,...

�
Hβ(τ)− Vβ(τ)

��




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Multi Parton Interaction

µ = 10GeV

Joint interaction

µ = 10GeV

Joint interaction

Let us see how it looks at hadron collider

In hadron-hadron collision the parton distribution 

function also absorbs the contribution of the multiple 
interactions and joint interactions.

Our strategy:

- Identify factorazible singular contributions.

- Sum up the strongly ordered radiations.

- Minimize the number of the ad-hoc assumptions 
and tuning parameters.

Now, one can try to define the evolution operator in the following form

Everything elseSingle radiations
(IRS & FSR)

U(t, t�) = T exp






� t�

t
dτ

�
HI(τ)− VI(τ) +

�

β=MI, JI,...

�
Hβ(τ)− Vβ(τ)

��





Monday, August 22, 2011



Multi Parton Interaction

➭ This is important in the very small pT regions and negligible in the large pT regions but it is hard 
to tell how import in the intermediate region. The cumulative effect could be sizable. 

➭ Important to note that this is a kind of NLO contributions. Thus, compared to the standard 
shower this is also suppressed by an extra power of αs.

➭ Requires multi parton PDF (mPDF).

➭ Implemented in HERWIG & PYTHIA. (No “proper” mPDF implemented.)

t = ∞

t = 0

•

•

•

•
HMI(t) =

�αs

2π

�2
O(et)

Actually the real scaling is weaker due 
to the power suppression:

et−t0 ∼
Λ2
QCD

p2⊥

We need this at least at leading color level.
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Multi Parton Interaction

➭ This is important in the very small pT regions and negligible in the large pT regions but it is hard 
to tell how import in the intermediate region. The cumulative effect could be sizable. 

➭ Important to note that this is a kind of NLO contributions. Thus, compared to the standard 
shower this is also suppressed by an extra power of αs.

➭ Requires multi parton PDF (mPDF).

➭ Implemented in HERWIG & PYTHIA. (No “proper” mPDF implemented.)

t = ∞

t = 0

Actually the real scaling is weaker due 
to the power suppression:

et−t0 ∼
Λ2
QCD

p2⊥

We need this at least at leading color level.

•

•

•

•
VMI(t) =

�αs

2π

�2
O(et)
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Standard IRS

➭ This is the standard shower evolution. Adds LL and NLL contributions. Not power suppressed. 

➭ Since the MPI kernel is NLO contribution we should consider the standard shower at NLO level 
as well. (Just to be systematic.) 

➭ If we consider NLO terms then we need  subleading color contributions, too.

➭ Adds correction to the primary interaction as well as to the MPI contributions.

➭ It is implemented only at LO level in HERWIG & PYTHIA.

t = ∞

t = 0

a1 a2 a2 a1

HI(t) =
αs

2π
O(t2)

+
αs

2π

1

N2
c

O(t)

+
�αs

2π

�2
O(t3)

αs ≈
1

N2
c

≈ 0.1
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Joint Interaction

➭ This operator can be applied on states with at least two chains. (They are already power 
suppressed.)

➭ No corresponding factorizable virtual contribution. ➠ No associated Sudakov factor.

➭ There is some overlap with the NLO standard shower contribution.

➭ Some level it is implemented in PYTHIA.

t = ∞

t = 0

a1
a2 a2

a1

This is the most problematic contribution 

HJI(t) =
αs

2π
O(t)

+
�αs

2π

�2
O(t2)

VJI(t) = 0
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Joint Interaction

➭ This operator can be applied on states with at least two chains. (They are already power 
suppressed.)

➭ No corresponding factorizable virtual contribution. ➠ No associated Sudakov factor.

➭ There is some overlap with the NLO standard shower contribution.

➭ Some level it is implemented in PYTHIA.

t = ∞

t = 0

a1
a2 a2

a1

This is the most problematic contribution 

HJI(t) =
αs

2π
O(t)

+
�αs

2π

�2
O(t2)

VJI(t) = 0
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Virtual Contributions
This is a singular operator 

in the color space.
i

j

m m

i

j

...
..

1
...

..

M
(1

)
m

l → 0

i

j

...
..

1

...
..

M
m

⊗

×

×�
ddl

(2π)d VI(t)

In standard parton shower this operator is obtained from the unitarity condition 
�
1
��VI(t) =

�
1
��HI(t) Always real

×

×�
ddl

(2π)d

But it turns out that we have imaginary contribution from the virtual graphs

∝ VI(t) + iπ�V(t)� �� �
Coulomb gluon

and
�
1
���V(t) = 0

What can Coulomb gluon do?
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Coulomb Gluon
1. Coulomb gluon changes the color configuration and the color flow. It is pure virtual contribution, 

thus it is unresolvable. It does the same thing what color reconnection does. 

2. It always make color correlation between the two incoming partons. Let’s consider a color octet 
hard state:

3. Leads to “Super Leading Logs” in the case of some non-global observables.

Rapidity gap

No further radiation 
into the gap because 
of color coherence.

This is a contribution to the diffractive events.

Do we have Coulomb like 
contribution in the MPI virtual 
graphs?
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MPI: Coulomb Gluon
In the MPI part the “resolvable” radiation comes from extra 2 →2 scattering. This is very singular 
in the low pT region. This singularity must be cancelled by the corresponding virtual graps.

•
•

•
•

Real 2 →2 scattering adds two extra jets

Pythia and Herwig put this graph into a simple probabilistic framework and exponentiate the 
extra 2➝2 process.
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MPI: Coulomb Gluon
In the MPI part the “resolvable” radiation comes from extra 2 →2 scattering. This is very singular 
in the low pT region. This singularity must be cancelled by the corresponding virtual graps.

•
•

•
•

Real 2 →2 scattering adds two extra jets

•

•

•

•

Corresponding virtual graph. 
This is a forward elastic scattering contribution.
It can produce Coulomb gluon term ➠ Color 
reconnection effect

Pythia and Herwig put this graph into a simple probabilistic framework and exponentiate the 
extra 2➝2 process.
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Single Parton PDF

a1 a1

The PDF has a operator product definition

∝ 2p+
�

dz−

2π
eixz

−p+�
p
��q̄(0)q(z)

��p
�

This expression is UV divergent and needed to be 
renormalized. 

µ
d

dµ
fa/H(x, µ) =

�

b

[Pa,b ⊗ fb/H ](x, µ)

The UV singularity in the PDF corresponds to the IR singularity in hard part of the cross 
section. Everything is consistent.  

How does it work in the mPDF case?
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Multi Parton PDF

∝ 2p+
�

dz−2
2π

eix2z
−
2 p+

�
dz−1
2π

eix1z
−
1 p+�

p
��q̄(− 1

2z2)Γ2q(
1
2z2)q̄(y −

1
2z1)Γ1q(y +

1
2z1)

��p
�

a1 a2 a2 a1
a1 a2 a2 a1

+

transverse separation

This operator is also UV divergent and needed to be renormalized. RGE provides the generalized 
DGLAP equation. 

For y ≠ 0 we have a homogeneous DGLAP equation, there is no contribution from 2→4 transitions  

d

dt
F (xi, y) = P ⊗x1 F + P ⊗x2 F

For ∫dy F(x,y) we have contribution from 2→4 transitions 

Marcus Diehl
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Multi Parton PDF
Let us study the 2→4 transitions in the hard matrix elements. In this example we have double Z 
boson production

There is a 1-loop graph in this process. 
This loop integral is perfectly finite, 
there is NO IR singularities.

This configuration would be a NLO 
effect in the standard shower. 

The MPI and the NLO shower has some 
overlap region. One should arrange the 
calculation in such a way to avoid double 
counting...

Monday, August 22, 2011



Color of mPDF
In Pythia or Herwig the effective mPDF is always color singlet state. But it can be a color octet state 

a1 a2 a2 a1 a1 a2 a2 a1

a1 a2 a2 a1

=

These two gluons became color 
connected.

Two independent 
interactions

➠ Color reconnection effect 
in the perturbative part.
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MPI Evolution Operator

U(t, t�) = T exp

�� t�

t
dτ

�
HI(τ)− VI(τ) +HMI(τ)− VMI(τ)

�
�

From this approach one can find that the full evolution operator is 

•
•

•
•

a1 a2 a2 a1

f{a1,a2}/A(η̂a1 , η̂a2 , µ
2
F )

f{a1,a2}/A(ηa1 , ηa2 , µ
2
F )

f{a1,a2}/A(η̂a1 , η̂a2 , µ
2
F )

f{a1}/A(ηa1 , µ
2
F )

Monday, August 22, 2011



Conclusion
• Multiple Interaction is very complicated from theory point of view.

• There are MC tool available mostly based on some tunable models 
(Color reconnection, simple mPDF assumption,...)

• Running of the mPDF, modeling mPDF 

• Some perturbative effects are not included in our MC (Coulomb 
gluon,...)

•  Lack of theorems (factorization,...)
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Shower Evolution
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Using the factorization properties of the QCD the approximated order by order calculation can be 
organized according to 

resolved radiations unresolved radiation

U(t, t�) = 1 +
� t

t�
dτ U(t, τ)

�
HI(τ)− V(τ)

�

and the Sudakov operator is

The shower form of the solution is

U(t, t�) = N (t, t�) +
� t

t�
dτ U(t, τ)HI (τ)N (τ, t�)

N (t, t�) = T exp
�
−

� t

t�
dτ V(τ)

�

From the unitary condition: 
�
1
��V(t) =

�
1
��HI(t)
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This graph is singular 
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µ = 10GeV

Joint interaction
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