

Soft QCD Results from ALICE

QCD @ LHC 2011 St. Andrews, Scotland, 22nd-26th August 2011

Klaus Reygers, for the ALICE Collaboration

Physikalisches Institut University of Heidelberg, Germany

- Provide data to constrain and tune Monte Carlo generators and other phenomenological models
- Search for possible signals of a quark-gluon plasma formation in high-multiplicity pp collisions
- Provide baseline measurements for the interpretation of A+A data

Related ALICE talks: K. Safarik, <u>ALICE data for model tuning, QCD@LHC 2010</u> L. Ramello, <u>Soft QCD results from Alice Experiment, PLHC 2011</u>

ALICE: Excellent Momentum Reconstruction and Particle ID Capabilities at Low p_T

- ALICE designed for Heavy-Ion collisions
- Robust tracking over larger p_T range (~0.1 GeV < p_T < 100 GeV)</p>
 - many space points per track
 - Iow material budget (~ 11.4% X₀ for R < 2.5 m and |η| < 0.9)</p>
 - moderate magnetic field (0.5 T)
- Excellent vertexing (6 layers of Si) for charm & beauty
- PID over large p_T range
 - 'Stable' hadrons (π, K, p): 100 MeV
 dE/dx in silicon (ITS) and gas (TPC) + time-of-flight (TOF) + Cherenkov (RICH)
 - Decay topologies: Kinks (K⁺, K⁻) [e.g., K →μ+ν] and invariant mass analysis of decay products (K_S⁰, Λ, φ, D, ...): Secondary vertex reconstruction
 - Leptons (e, μ), photons, η, π⁰:
 Electrons TRD: p > 1 GeV, muons: p > 5 GeV, π⁰ in PHOS/EMCal and via conversions

Cross Sections

Cross Sections for Inelastic p+p Collisions, and Single-Diffractive and Double-Diffractive Dissociation

- σ_{inel} from van der Meer scans
- SD trigger condition: e.g., no particle with η < -1
- DD trigger condition: all events with gap $\Delta \eta > 3$

√s (TeV)	σ _{inel} (mb)	$\sigma_{\text{SD}} / \sigma_{\text{inel}}$	$\sigma_{\text{DD}}(\Delta \eta > 3) / \sigma_{\text{inel}}$
0.9	no v. d. Meer scan	0.202 ± 0.034	0.113 ± 0.029
2.76	62.1 ± 1.6 ± 4.3	0.187 ± 0.054	0.125 ± 0.052
7	72.7 ± 1.1 ± 5.1	0.201 ± 0.039	0.122 ± 0.036

More details: K. Oyama, QM 2011, M. Poghosyan, QM2011

Charged Particles

 $dN_{ch}/d\eta$

- Increase in dN_{ch}/dη from 0.9 TeV to 7 TeV: 60%
- Larger than predicted by Phojet and most Pythia tunes
- Vs dependence of charged multiplicity per participating nucleon stronger in A+A than in p+p

Multiplicity Distributions

- Single negative binomial distribution provides a decent fit, but fails to describe the large multiplicity tail at 7 TeV
- Most pre-LHC tunes fail to describe multiplicity distributions
- 9 K. Reygers, QCD@LHC 2011, Soft QCD Results from Alice

Charged Particles: p_T Spectra

- Invariant yields follow a pure power law p_T^{-n} at high p_T
- No satisfactory description with pre-LHC models
- 10 K. Reygers, QCD@LHC 2011, Soft QCD Results from Alice

Charged Particles: Mean p_T vs. Charged Multiplicity

- $\langle p_T \rangle$ vs. n_{ch} important for modeling multiple partonic interactions
- Increase of $\langle p_T \rangle$ with \sqrt{s} in line with data at lower \sqrt{s}

Underlying Event

- Study charged particles in different regions with respect to leading track
- Results fully corrected for detector effects
- Pre-LHC models underestimate data by 10-20%
- Factor 2 increase in multiplicity in the transverse region between 0.9 and 7 TeV
- 12 K. Reygers, QCD@LHC 2011, Soft QCD Results from Alice

Identified Particles

Identified Particle Spectra: π, K, p

14 K. Reygers, QCD@LHC 2011, Soft QCD Results from Alice

- Proton corrected for feed-down
- Levy/Tsallis function provides a good fit for all particle species

$$\frac{d^2N}{dydp_T} = \frac{(n-1)(n-2)}{nT[nT+m(n-2)]} \times \frac{dN}{dy} \times p_T \times \left(1 + \frac{m_T - m}{nT}\right)^{-n}$$

- Linear increase of (*p_T*) with mass (expected in case of *m_T* scaling)
- π , K, p: increase of $\langle p_T \rangle$ with \sqrt{s}

Strangeness Production: K/π Ratio

- Significantly larger kaon/pion ratio than predicted by MC models
- Almost identical kaon/pion ratio
 vs. p_T for 0.9 and 7 TeV

 No discernible energy dependence for K/π ratio for √s > 0.2 TeV

More details: M.Chojnacki, QM 2011

$\pi^{0}(\eta) p_{T}$ Spectra: Constraining the Gluon Fragmentation Function (I)

QCD factorization: $E_h \frac{d^3 \sigma}{d^3 p_h} = \sum_{a,b,c} f_a \otimes f_b \otimes d\hat{\sigma}_{ab}^c \otimes D_c^h$

- Gluon fragmentation in e⁺e⁻ not well constrained as gluon jets in e⁺e⁻ are a subleading NLO correction
 ⇒ π⁰,η spectra in p+p important constraint for gluon FF
- π⁰ spectra in pp at RHIC (√s = 0.2 TeV) favor large g → π FF's (e.g., DSS FF's describe the data well)
- Gluon fragmentation at LHC more important than at RHIC

More details: K. Reygers, QM 2011

$\pi^{0}(\eta) p_{T}$ Spectra: Constraining the Gluon Fragmentation Function (II)

- NLO pQCD with DSS FF describes 0.9 TeV data, but overestimates cross sections at 2.76 TeV and 7 TeV for all scales (same trend for η, not shown)
- DSS FF, which nicely describes $p+p \rightarrow \pi^0+X$ at RHIC, fails at LHC
- 17 K. Reygers, QCD@LHC 2011, Soft QCD Results from Alice

Multi-strange Hadrons (I): Yields in p+p at 7 TeV

- Pythia tunes Perugia-0 and Z2 significantly underestimate measured Ξ⁻ + Ξ⁺ and Ω⁻ + Ω⁺ yields
- Ξ⁺/Ξ⁻ and Ω⁺/Ω⁻ ratios consistent with unity for all p_T (not shown)

More details: D. D. Chinellato, QM 2011

Multi-strange Hadrons (II): \sqrt{s} Dependence of dN/dy and $\langle p_T \rangle$

■ Also for multi-strange hadrons: increase with of <p_T> with Vs and mass

 K^{*0} , Ξ^{*0} , and Φ

- Large discrepancy between Ξ^{*0} (ssu) data and MC
- Better agreement for Φ (s \overline{s})

More details: A. Pulvirenti, QM 2011

p_T Spectra for Φ and ω Mesons (di-muon channel)

- Φ and ω yields extracted from di-muon mass spectrum
- Cross section for 2.5 < y < 4, $1 < p_T < 5$ GeV/c: $\sigma_{\Phi} = 0.940 \pm 0.084$ (stat.) ± 0.095 (syst.) mb, $\sigma_{\omega} = 5.28 \pm 0.46$ (stat.) ± 0.58 (syst.) mb
- Ratio $\sigma_{\Phi}/\sigma_{\omega}$ is constant vs. p_T

More details: <u>A. De Falco, QM 2011</u>

Particle Ratios vs. Statistical Model Predictions

- Particle ratios in general not well described by statistical model fit
- However, statistical model predictions for multi-strange hadron yields better than Pythia predictions

Hanbury Brown / Twiss Correlations (HBT)

Bose-Einstein Correlations of Identical Pions (I)

out

Study space-time characteristics of particle emission

- Characterized by HBT radii R_{long}, R_{side},
 R_{out} (homogeneity region)
- Large particle multiplicities, comparable to peripheral Pb+Pb data, can now be reached in p+p:
 Compare with A+A and address the question of collectivity in p+p

 $\vec{q} = \vec{p}_1 - \vec{p}_2, \quad \vec{k} = \frac{(\vec{p}_1 + \vec{p}_2)}{2}, \quad \vec{k}_T = \frac{(\vec{p}_{T,1} + \vec{p}_{T,2})}{2}$

out-side-long ref. frame:

side

HBT in p+p at 0.9 and 7 TeV with ALICE: <u>arXiv:1101.3665</u>

Bose-Einstein Correlations of Identical Pions (II): HBT Radii vs. k_T

- Radii falling with k_T a signature of collective medium in heavy-ion collisions
- *R*_{out} and *R*_{side} in p+p at 7 TeV decrease with
 *k*_T for large multiplicities
- EPOS event generator describes the p+p HBT data under the assumption of a phase with hydrodynamical evolution (arXiv:1104.2405)

25 K. Reygers, QCD@LHC 2011, Soft QCD Results from Alice

Bose-Einstein Correlations of Identical Pions (III): pp vs. AA

- pp HBT result compared to AA
- Radii scale with (dN_{ch}/dη)^{1/3}: Indication for a constant freeze-out density
- Freeze-out volume in p+p for same dN_{ch}/dη smaller than in A+A: p+p collisions and AA collisions with the same multiplicity are different

Heavy Quarks

J/ Ψ : Rapidity Distr. and p_T Spectrum in p+p at 2.76 and 7 TeV

• Unique feature of Alice: broad y coverage down to $p_T \approx 0$

J/Ψ Yield as a Function of Charged-Particle Multiplicity

- In heavy-ion collisions J/Ψ is an important probe of the quark-gluon plasma
- J/Ψ potentially also a probe of medium effects in high-multiplicity p+p events at the LHC
- J/Ψ yields scales linearly with charged-particle multiplicity
- Interesting: Normalized to muons (mostly from heavy flavor decays), the J/Ψ yield shows a slight suppression in high multiplicity events

More details: R. Arnaldi, QM 2011

D Meson and Total Charm Cross Section

D⁰, D⁺, D^{*+} cross sections in agreement with pQCD (FONLL, GM-VFNS)

• Total $c\overline{c}$ cross section: extrapolation from $p_T = 2 \text{ GeV}/c$ to $p_T = 0$ with FONNL

More details: <u>D. Caffarri, PLHC2011</u>

Conclusions

- $dN_{ch}/d\eta$, Multiplicity distributions, Charged Particle p_T Spectra, Underlying Event
 - In general not well described by pre-LHC Pythia tunes and Phojet
- Identified Particles
 - π , K, p, π^0 , η , hyperons, ω , Φ , and other resonances measured
 - Hyperons: Large discrepancy between data and Pythia
 - π^0 : Gluon FF's that work at RHIC fail to describe data in p+p at 7 TeV

HBT

- Indications for collective (hydro-like) behavior in large-multiplicity p+p collisions
- However, p+p and A+A collisions with same multiplicity have a different HBT volume
- Heavy Quarks
 - D mesons and total cc cross section described by pQCD
- ALICE has taken a first look into heavy-ion-like effects in high-multiplicity p+p collisions (HBT, J/Φ).
 - Results are encouraging enough to further pursue this