

Soft QCD results from ATLAS

QCD@LHC : St Andrews, 22nd August 2011 Emily Nurse

Emily Nurse

Dominant pp interactions

- The pp inelastic cross-section is much larger than that for "new" particle production (only 1 in every 10 billion interactions would produce a Higgs)
- Interactions dominated by soft (low momentum transfer) QCD processes
 - Perturbative QCD breaks down
 - We rely on phenomenological models, tuned to data

Thanks to James Stirling for plot!

Dominant pp interactions

Emily Nurse

SOFT QCD RESULTS

All NEW or UPDATED since QCD@LHC@Trento

- 1. Inelastic pp cross-section [arXiv:1104.0326, accepted by Nature Comm] (NEW)
- 2. pp cross-section differential in rapidity gap size [ATLAS-CONF-2011-059] (NEW)
- 3. Charged particle distributions [New J Phys (2011) 053033] (UPDATED : more phase-spaces)
- 4. Charged particle correlations [ATLAS-CONF-2011-055] (NEW)
- 5. Underlying Event with
 - charged particles [Phys.Rev.D 83, 052005 (2011)] (UPDATED :100 MeV particles)
 - charged+neutral particles [EPJC 71 (2011) 1636] (NEW)

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/StandardModelPublicResults#Soft_QCD

Datasets

- Use only first few runs of 7 TeV data (7 → 190 µb⁻¹) + 0.9 TeV (7 µb⁻¹) and 2.36 TeV (0.1 µb⁻¹) data
- Generally we want to study *all* inelastic pp interactions
- Instantaneous luminosity very low for these runs : on average ~0.007 interactions per bunch crossing → 99.3% of crossings are empty!
- Need to "trigger" on inelastic interactions

Minimum Bias Trigger Scintillator disks sensitive to any charged particle 2.09 < |η| < 3.84
 > 16 counters on each side of ATLAS

Measurement philosophy

- ✓ Correct measurements for detector inefficiencies and resolutions (e.g. present p_T spectrum of *charged particles*, not of *ATLAS tracks*)
- ✓ No extrapolations into regions not "seen" by ATLAS (such as very low p_T or far-forward particles)
 - We measure what we see, not what the MC tells us we should have seen!
- ✓ Define the measured process purely in terms of the final state (e.g. we do not measure "non-single-diffractive" events)
 - Event selection well defined and reproducible

1. Inelastic pp cross-section

[arXiv:1104.0326, accepted by Nature Comm]

- 2. pp cross-section differential in rapidity gap
- 3. Charged particle distributions
- 4. Charged particle correlations
- 5. Underlying Event with
 - charged particles
 - charged+neutral particles

Inelastic cross-section measurement

- Proton-proton σ_{inel} vs \sqrt{s} not well known, 7 TeV measurement needed!
- ATLAS has made a direct measurement of σ_{inel} with a new, simple method :

$$\sigma_{\text{inel}} = \frac{N^{\text{evts}} - N^{\text{bck}}}{\epsilon \times \mathcal{L}}$$

- 1. N^{evts} : count inelastic collisions
- 2. E: Correct for detector efficiency
- 3. \mathcal{L} : Normalise with luminosity (from vDM scans)

MBTS : 2.09 < |η| < 3.84

N^{evts} = # events with ≥ 2 counters above threshold

Emily Nurse

Inelastic cross-section measurement

- MBTS : 2.09 < |η| < 3.84
- Important : Blind to events with no particles with $|\eta| < 3.84$
- Solution: Make measurement in a well defined phase-space region

Inelastic cross-section measurement

 $\sigma_{\text{inel}} (\xi > 5 \times 10^{-6}) = 60.3 \pm 0.05(\text{stat}) \pm 0.5(\text{syst}) \pm 2.1(\text{lumi}) \text{ mb}$

Emily Nurse

1. Inelastic pp cross-section

2. pp cross-section differential in rapidity gap [ATLAS-CONF-2011-059]

- 3. Charged particle distributions
- 4. Charged particle correlations
- 5. Underlying Event with
 - charged particles
 - charged+neutral particles

Gap cross-section

- Diffractive events tend to have large "rapidity gaps"
- Measure σ vs $\Delta \eta$ (large $\Delta \eta$ dominated by diffraction)

Calorimeters : $|\eta| < 4.9$ Inner Tracking Detector : $|\eta| < 2.5$

Emily Nurse

Gap cross-section

- Detector split into η rings (0.2 wide)
- Detector level : a ring is empty if :
 - 1. no calorimeter cells above noise threshold ($|\eta|$ <4.9) and
 - 2. no Inner Detector tracks with $p_T > 200 \text{ MeV} (|\eta| < 2.5)$
- Generator level :
 - 1. no particles with $p_T > 200 \text{ MeV}$

correct for detector effects

Emily Nurse

Dominant systematic uncertainties:

- MC model dependence of corrections
- Calorimeter energy-scale

Emily Nurse

- 1. Inelastic pp cross-section
- 2. pp cross-section differential in rapidity gap

3. Charged particle distributions

[New J Phys (2011) 053033]

- 4. Charged particle correlations
- 5. Underlying Event with
 - charged particles
 - charged+neutral particles

"Minimum bias" results

Minimum bias *adj.* experimental term, to select events with the minimum possible requirements that ensure an inelastic collision occurred.

- Exact definition depends on detector (and analysis)
- ATLAS : Measurement made with Inner Detector Tracking (tracks with |n| < 2.5 and p_T > 100 MeV)
- Measure kinematics (multiplicity, p_T and η spectra, etc) of charged particles in "minimum bias" events

Emily Nurse

Phase spaces

Event selection well defined (and reproducible) : $\geq x$ charged particles (N_{ch}) with p_T > y and |η| < z

	Most inclusive		Diffraction suppressed		High p _T	ALICE/CMS comparison	
N _{ch} (≥)	2	1	20	6	1	1	1
p_T [MeV]	100	500	100	500	2500	500	1000
η	2.5	2.5	2.5	2.5	2.5	0.8	0.8

Emily Nurse

Correcting the data

- MBTS Trigger efficiency from data (small "control" sample recorded requiring presence of ID hits at L2 only)
- Tracking efficiency from MC with GEANT detector simulation (systematic uncertainties determined from comparisons with data)

MC model comparisons

- Pythia and Phojet have "soft inclusive" models including diffraction
- Compare to various pre-LHC PYTHIA6 tunes, PYTHIA8 and PHOJET and...
- AMBT1 tune : Pythia v6.4.21 tuned to earlier version of diffraction suppressed data : N_{ch} ≥ 6, p_T > 500 MeV, |η| < 2.5 [ATL-PHYS-PUB-2010-002]
 - More recently AMBT2 [ATL-PHYS-PUB-2011-008] does a bit better in some distributions

See Andy Buckley's dedicated ATLAS tuning talk Thursday at 14:30

Emily Nurse

particle multiplicity

Emily Nurse

ATLAS: soft QCD

particle multiplicity

Emily Nurse

ATLAS: soft QCD

Emily Nurse

Results at 0.9, 2.36 and 7 TeV

Comparison with CMS and ALICE!

- 1. Inelastic pp cross-section
- 2. pp cross-section differential in rapidity gap
- 3. Charged particle distributions

4. Charged particle correlations [ATLAS-CONF-2011-055]

- 5. Underlying Event with
 - charged particles
 - charged+neutral particles

Two particle correlations

1D projections on $\Delta \eta$ axis : ($\Delta \Phi$ projections not shown)

See Craig Buttar's dedicated talk Tuesday at 15:00 $\mathsf{R}(\Delta\eta,\Delta\Phi) = (\mathsf{F}(\Delta\eta,\Delta\Phi) - \mathsf{B}(\Delta\eta,\Delta\Phi)) / \mathsf{B}(\Delta\eta,\Delta\Phi)$

- F : all particle pairs in same event
- B : pair particles from different events

(+ normalisation factors)

Emily Nurse

Two particle correlations : correction procedure

Emily Nurse

1. Inelastic pp cross-section

- 2. pp cross-section differential in rapidity gap
- 3. Charged particle distributions
- 4. Charged particle correlations

5. Underlying Event with

- Charged particles [Phys.Rev.D 83, 052005 (2011)]
- charged+neutral particles [EPJC 71 (2011) 1636]

Multiple Parton Interactions

- Protons are made of quarks and gluons (partons)
- Additional partons from the same proton can interact (e.g. at the same time as Higgs production)
- Again : we rely on phenomenological models, tuned to data
- Need to measure distributions sensitive to Underlying Event (can include MPI, beam-beam remnants)

Emily Nurse

"Underlying Event" Measurements

- Define the direction of the "hard scatter" as the highest p_T particle.
- Study the activity (# of particles or sum p_T) in the region "transverse" to the hard scatter

Emily Nurse

UE results

Emily Nurse

UE results

Emily Nurse

UE results

Emily Nurse

UE results with calorimeter

Emily Nurse

Summary

- Inelastic pp cross-section (new method!) and pp cross-section vs. $\Delta \eta$
 - cross-section lower than predictions
- Measurements of "minimum bias" and "underlying event" indicate a deficit of activity in models tuned to Tevatron data (tension with different energies, can this be resolved with new 2.76 TeV data?)
- Some tension between minimum bias and underlying event results (limitations in the models?)
- Models are being retuned (and new ones developed)
- Important to get it right as can affect : lepton ID, E_T^{miss} resolution, jets, jet vetos, high pileup simulations for upgrade, etc...

EXTRA SLIDES

TOTEM/ALPHA method

TOTEM Total Cross Section, Elastic Scattering and Diffraction Dissociation at the LHC The experimental method Well known "luminosity independent" method Only method of practical use Total cross section and machine integrated Luminosity $N_{al} + N_{inal} = L\sigma_{ini}$ Total cross section and imaginary part of forward amplitude (Optical Theorem) $\left(\frac{dN_{el}}{dt}\right)_{t=0} = L\left(\frac{d\sigma}{dt}\right)_{t=0} = L\frac{\sigma_{tot}^2\left(1+\rho^2\right)}{16\pi}$ Combining the two, one writes the total cross section as a function of measurable quantities $\sigma_{tot} = \frac{16\pi \left(\frac{dN_{el}}{dt} \right)_{t=0}}{\left(1 + \rho^2 \right) \left(N_{el} + N_{ind} \right)}$ Simultaneous measurement of low t elastic scattering and of inelastic interactions $ho = \mathcal{R}[f_{el}(0)]/\mathcal{I}[f_{el}(0)], \ {}^{ ext{1st LHC Machine Experiments workshop}}_{ ext{on Luminosity Measurements}}$ Marco Bozzo - 3

Cosmic ray measurements translate to pp with Glauber theory

Emily Nurse

Tracking

Emily Nurse

Van der Meer scans

$$\mathscr{L} = n_b f_r n_1 n_2 \int \hat{\rho}_1(x, y) \hat{\rho}_2(x, y) dx dy$$

 $n_b = \#$ bunches $f_r = revolution frequency$ $n_{1,2} = \#$ protons per bunch $\rho_{1,2} = normalised particle density in transverse plane$

- ρ_{1,2} obtained from beam scans (where inelastic collisions are counted as beam separation is varied)
- Visible cross-section of luminosity detectors are normalised in special VdM runs and measured in subsequent runs.

Models

- Pythia (Schuler and Sjostrand) : Total cross-section from Regge theory: dominated at high energy by Pomeron exchange → DL paramerisation : σ^{pp} = Xs^ε + Ys^η (ε = 0.081). Inelastic cross-section from optical theorem.
- Archilli *et al.* : Explicit calculation of inelastic cross-section dependent on average number of interactions (pQCD and soft gluon resummation)
- Phojet : Dual Parton Model (takes large N_{colour} limit) calculates cross-sections and uses Reggeon Field Theory. Uses a hard and soft pomeron with explicit cut-off of 3 GeV.

Extrapolation based on Donnachie +Landshoff :

 $d\sigma_{sd}/d\xi \sim (1 + \xi) / \xi^{(1+\epsilon)}$ with $\epsilon = 0.085$

Emily Nurse

Emily Nurse

Pythia diffractive model

• PYTHIA 6 :

- For $M_X M_p < 1$ GeV : isotropic 2-body decay of diffractive system
- Otherwise : parton extracted from proton and string forms

• PYTHIA 8 only :

 For M_X > 10 GeV : Pomeron ← → proton interactions occur using a Pomeron PDF, standard Pythia parton showering, MPI etc is then used

Pythia ND model

Regularisation of divergence in low $p_T QCD 2 \rightarrow 2$ scattering via $\alpha_S^2(p_T^2)/p_T^4 \rightarrow \alpha_S^2(p_T^2 + p_{T0}^2)/(p_T^2 + p_{T0}^2)^2$

Screening : Wavelength of exchanged particle becomes too large to resolve colour

(smaller $p_{T0} \rightarrow$ more low p_T activity)

Matter distribution of protons described by double Gaussian

PARP(83) = fraction in core Gaussian PARP(84) = a_2 / a_1

(denser matter distribution \rightarrow more multiple interactions \rightarrow more activity)

PARP(X) = tunable parameters

Emily Nurse

Colour reconnection

```
Colour reconnection :
```

• Probability that a string piece *does not* participate in colour annealing :

$$(1 - PARP(78))^{n_{MI}}$$
 (n_{MI} =# of MPI)

Suppression factor for colour annealing : 1 / (1 + PARP(77)²•p_{avg}²)

PARP(77) : colour-reconnection suppression
factor for high momentum hadrons

colour-reconnection leads to less hadrons for a given parton final state

Emily Nurse

2pc delta-phi projections

Emily Nurse

Minbias comparisons

Emily Nurse