

Hard QCD @ CMS

Piergiulio Lenzi – CERN

QCD@LHC 2011

Outline

- Overview of the QCD physics program at the LHC
- CMS detector
 - Detection techniques for jets
- CMS has produced a large amount of QCD measurements on the 2010 data sample
 - Jet inclusive spectra
 - Di-jet mass, angular correlations
 - Event shapes
 - Forward jets
 - Inclusive photon production differential spectra
 - W/Z + jets, Z+ heavy flavor

Hard QCD at LHC

- Hard QCD processes are important for two broad classes of reasons
 - They represent a ubiquitous source of background for virtually any signal (both SM and searches) at a hadron collider
 - They provide a tool to test the predictions of perturbative QCD
 - The current understanding of our detectors allows both ATLAS and CMS collaborations to do precision QCD measurements

Available predictions

- Accurate predictions for dijet production, W/Z/gamma + jets production at the LHC are available
 - Monte Carlo event generators
 - NLO + parton shower (MC@NLO, POWHEG)
 - LO (many legs) + parton shower (Alpgen, MadGraph, Sherpa)
 - Parton level codes for distributions at NLO
- Modern parton distribution functions

CMS detector

- 4 T solenoid
- Pixel + SiStrip tracker
- Scintillating crystals (PbWO₄)
 - electromagnetic calorimeter
- Brass/plastic hadron calorimeter (noncompensating)
- Muon spectrometer in the magnet iron return yoke

Jet reconstruction

- Jets are reconstructed with the anti-kt algorithm, with radius of 0.5 or 0.7
- 3 available algorithms for jet reconstruction
 - Calo-Jets: use only the calorimeter towers
 - Jet-Plus-Track Jets: improve the calorimeter jets using the tracks in the jet cone
 - Particle-Flow jets: uses particle flow candidates as input to the clustering algorithm
 - Particle flow reconstruction:
 - global event reconstruction
 - Identifies muons, electrons, taus, photons, charged hadron, neutral hadrons
 - Combines the information from all detectors

Jet reconstruction

- Jets are reconstructed with the anti-kt algorithm, with radius of 0.5 or 0.7
- 3 available algorithms for jet reconstruction
 - Calo-Jets: use only the calorimeter towers
 - Jet-Plus-Track Jets: improve the calorimeter jets using the tracks in the jet cone
 - Particle-Flow jets: uses particle flow candidates as input to the clustering algorithm
 - Particle flow reconstruction:
 - global event reconstruction
 - Identifies muons, electrons, taus, photons, charged hadron, neutral hadrons
 - Combines the information from all detectors

- We use a multi-step procedure to correct the energy of our jets

 $p_{\mu}^{cor} = \mathcal{C} \cdot p_{\mu}^{raw}. \qquad \mathcal{C} = C_{\text{offset}}(p_T^{raw}) \cdot C_{\text{MC}}(p_T', \eta) \cdot C_{\text{rel}}(\eta) \cdot C_{\text{abs}}(p_T'')$

- C_{offset} accounts for detector noise and pile-up
- The method uses correction factors extracted from the full simulation of CMS, $\rm C_{_{MC}}$
- Residual differences with respect to data are accounted for as further scaling factors
 - C_{rel} accounts for non-uniformity in eta. It is obtained applying on data and MC the di-jet balance method
 - C_{abs} accounts for residual absolute scale differences between data and MC. It is obtained applying on data and MC the γ +jet and Z +jet pT balancing
- In this MC + residual method effects like the presence of additional radiation spoiling dijet or γ +jet and Z +jet balancing enter only at second order

- Total systematic uncertainty on the energy scale for particle-flow jets
- The main sources of uncertainty are:
 - The photon energy scale, known at 1%
 - The relative response across detector regions
 - Pile-up effects
 - Extrapolations down to 0 for the additional activity in the balance methods
 - Dependency on jet flavor in the MC used

Jet energy resolution

- Determined with di-jet and $\gamma+jet\ pT$ balance
 - Plots show two example regions in $\boldsymbol{\eta}$
 - Resolution is of the order of 10% around 50 GeV

Inclusive jets

- Jet pT spectra are measured in the 18-1100 GeV range
- In 6 rapidity intervals, up to 3
- Resolution effect are unfolded
- Main systematic: jet energy scale
- Data are compared with the predictions at NLO, including nonperturbative (NP) corrections obtained with a shower MC

CERN-PH-EP-2011-053

11

Inclusive jets

- Data/theory ratios for the 6 rapidity bins
 - Experimental uncertainty represented by shaded area
 - Theoretical uncertainty as solid lines
 - The envelope of predictions from CT10, MSTW08 and NNPDF2.0 is used
 - The central values for the three PDF sets are also shown

3-jets over 2-jets ratio

- Phys. Lett. B 702 (2011) 336
 Measurement of the ratio of events with 3 or more jets over events with 2 or more jets, as a function of H_T (scalar sum of jets' pT)
 - Jets: pT > 50 GeV, |y|<2.5
- Provides a stringent test of hard gluon radiation and higher order effects
- Several systematic effects cancel (largely or completely)
 - Luminosity
 - Jet energy scale

3-jets over 2-jets ratio

- Data fully corrected for detector effects with bin-by-bin corrections
- Main systematics:
 - Jet energy scale, unfolding uncertainties
- Comparison to several MC models:
 - Madgraph is the closest to data
 - Matched sample with up to 4 partons
- Alpgen doesn't do quite as good
 - Why? Could the difference between Madgraph and alpgen be regarded as an estimate of the theory uncertainty?
- Pure shower models overestimate the ratio for H_{T} <0.5 TeV

Azimuthal decorrelation

Phys. Rev. Lett. 106 (2011) 122003

 $\Delta \phi$ between the two leading jets in the event

 It is very sensitive to additional radiation effects (hence to higher order corrections) but also to MPI and hadronization

 $\Delta\phi_{dijet} = \pi$

 $\Delta\phi_{dijet} << \pi$

- Anti-kt (0.5) jets are required to have pT>30 GeV and |y|<1.1
- Five bins of leading jet pT
- Data corrected to hadron level
- Main sources of systematics
 - Jet energy scale
 - Transverse momentum resolution
 - Unfolding

Azimuthal decorrelation

- Comparison to several MC models
 - Pythia6 and Herwig++ provide the best description of data
 - Madgraph (Pythia8) predict less (more) decorrelation
 - - Might be due to interplay between higher order corrections and tuning aspects
 - Might learn something about tuning
 - It would be useful to compare to other ME + PS models

Event shapes

Phys. Lett. B 699 (2011) 48

- Distributions of central transverse thrust and thrust minor, using central ($|\eta| < 1.3$) jets as input, in the transverse plane

$$\tau_{\perp,\mathcal{C}} \equiv 1 - \max_{\hat{n}_{\mathrm{T}}} \frac{\sum_{i} |\vec{p}_{\perp,i} \cdot \hat{n}_{\mathrm{T}}|}{\sum_{i} p_{\perp,i}}$$

- Is a measurement of radiation along the thrust axis
- A dijet event has small values of central transverse thrust, while an isotropic multi jet has large values

$$- T_{m,C} \equiv \frac{\sum_{i} |\vec{p}_{\perp,i} \times \hat{n}_{T,C}|}{\sum_{i} p_{\perp,i}}$$

- Is a measurement of the radiation out of the plane defined by the thrust axis and the beams
- A dijet event has small values of central thrust minor, while an isotropic multi jet has large values
- Jets are reconstructed with the anti-kt algorithm
 - pT > 30 GeV
 - 3 bins of leading jet pT

Event shapes

- 90 GeV <pT(leading) < 125 GeV

- pT(leading) > 200 GeV

Event shapes

- Pythia6 and Herwig++ do a good job in all bins
- Pythia8 tends to underestimate high values, i.e. very busy multi-jet events
- Both Alpgen and Madgraph are worse than the pure shower models
 - Why?
 - A pattern seems to emerge: it looks like ME+Shower are in general good at describing rates, but not as good at describing angles
 - Does tuning play a role here?
 - Checks with other tools are needed

Di-jet mass

Phys. Lett. B 700 (2011) 187

- A measurement of the di-jet mass in 5 bins of leading jet rapidity, ranging from 0.2 to 2.5 TeV
- Anti-kt 0.7 jets, |y|<2.5
- Experimental resolution unfolded to hadron level with MC correction factors
- Comparison with pure NLO + non perturbative corrections
 - Theory prediction with CT10, MSTW2008, NNPDF2.0, folded according to PDF4LHC prescription
- Main systematic is the Jet energy scale
 - Experimental error comparable to theory uncertainty
 - With improved energy scale systematic it will be possible to constrain PDFs

- Data show good agreement with predictions in all rapidity bins
- The experimental uncertainty is comparable with the theoretical uncertainty
- Data can be used to constrain PDFs

CMS $L_{int} = 36 \text{ pb}^{-1}$ $\sqrt{s} = 7 \text{ TeV}$ anti-k_T R = 0.7 • Data/Theory Exp. Uncertainty PDF $\oplus \alpha_s$ Uncertainty Scale Uncertainty ---- Non. Pert. Uncertainty

Inclusive forward jets

CMS-PAS-FWD-10-003

- Inclusive measurement of the rate of jets in the forward region 3.2 < $|\eta| < 4.7$
- Sensitive to PDFs
- Also sensitive to tuning aspects

- With more statistics and improved JES we will become more and more sensitive to PDFs

Forward-central jets

CMS-PAS-FWD-10-006

- An even more complicated topology:
 - One central jet ($|\eta| < 2.8$) and one forward jet (3.2 < $|\eta| < 4.7$)
 - PT > 35 GeV
- It is sensitive to the details of the UE model and on the details of the shower
- Several MC generators were compared to the data

- A particularly tough topology to get right

Forward-central jets

- All models overestimate the total rate
- Herwig seems to be best at describing both spectra
- Pythia8 and Pythia6 tune Z2 describe data better than D6T
- Powheg + Herwig is (), hp dp but ok in shape but doesn't get the normalization right HEJ (pure parton level) describes data reasonably well - Powheg + Herwig is
- HEJ (pure parton

Inclusive photon production Phys. Rev. Lett. 106 (2011) 082001

- Prompt photon production is a stringent test of pQCD
- Measurement of differential production rate as a function of pT in bins of η
- The prompt photon signal is defined at particle level through an isolation cut of 5 GeV on the scalar sum of charged and neutral particles in a cone of 0.4 around the photon
- Analysis strategy:
 - Fit of the isolation distributions (non converted component)
 - Fit of the ratio Et in calorimeters to pT of the electrons from conversions (converted component)
- Main systematics:
 - Signal and background modeling in fits
 - Photon identification efficiency

Inclusive photon production

- The measurement has been performed in 4 photon rapidity bins, for transverse energies between 25 and 400 GeV
- Good agreement with NLO predictions from JETPHOX
 - Predictions are corrected for non-perturbative effects
 - MC predictions show a slight tendency to overshoot the data at low pT

CMS-PAS-EWK-10-012

- Important as background for searches and as testing ground for higher order corrections in pQCD
- Detector's jet energy scale is the main systematic effect.
- CMS measured rates of events with jets accompanying the vector boson
 - Results are given within the kinematic acceptance for leptons, unfolding detector effects
 - Jets are reconstructed with the anti-kT algorithm, with a radius of 0.5, pT > 30 GeV in CMS reliminary

CMS-PAS-EWK-10-012

- Pure parton shower (Pythia) is not able to describe multi jet rates
- Several Matrix Element + shower predictions compared to data
 - General agreement with these predictions is found

CMS measured the associated production of Z + b-jets

- Z selection plus high purity b-tagging
- Main systematics: JES, btagging efficiency and mistag rate
- The ratio between the Z+ b jets and Z + any jet has been measured for both electron and muon decay channels

CMS-PAS-EWK-10-015

Sample	$\mathcal{R}(Z ightarrow ee)$ (%), $\mathrm{p}_T^e > 25~\mathrm{GeV}$, $ \eta^e < 2.5$	$\mathcal{R}(Z ightarrow \mu \mu)$ (%), $\mathrm{p}_T^\mu > 20$ GeV, $ \eta^\mu < 2.1$
Data HE	$4.3 \pm 0.6(stat) \pm 1.1(syst)$	$5.1 \pm 0.6(stat) \pm 1.3(syst)$
Data HP	$5.4 \pm 1.0(stat) \pm 1.2(syst)$	$4.6 \pm 0.8(stat) \pm 1.1(syst)$
MADGRAPH	$5.1 \pm 0.2(stat) \pm 0.2(syst) \pm 0.6(theory)$	$5.3 \pm 0.1(stat) \pm 0.2(syst) \pm 0.6(theory)$
MCFM	$4.3 \pm 0.5 (theory)$	$4.7 \pm 0.5 (theory)$

Conclusion

- The CMS QCD program is progressing very well!
- CMS produced an large number of results with 2010 data
 - Cross sections
 - Differential distributions
 - Associated production of vector boson with jets (and b-jets)
 - Forward jet measurements
- Plenty of data to test different codes and different models
- And more results are coming from the 2011 data!

Backup

31

- W polarization for large transverse momentum
 - Effect unique to pp collisions!
 - CMS measured the effect for pT > 50 GeV and found that Ws are predominantly left-handed in pp collisions, as predicted by the SM
 - Since the kinematic is not closed, the lepton-projection (LP) variable was used and fitted to data $\vec{p}_T(\ell)\cdot\vec{p}_T(W)$

Inclusive photon production

- Data to theory ratios in the four rapidity bins
- Shaded area is the data uncertainty
- PDF and scale uncertainties on the predictions are also shown

