Monte-Carlo Event Generators

Stefan Höche

SLAC Theory Group

QCD at the LHC St. Andrews, August 23, 2011

Event generation in standard Monte Carlo

- Matrix Element (ME) generators red blobs simulate "central" part of the event
- Parton Showers (PS) red & blue tree structure produce additional "hard" QCD radiation
- 3 Multiple interaction models purple blob simulate "secondary hard" interactions
- Fragmentation models light green blobs hadronize QCD partons
- S Hadron decay modules dark green blobs decay primary hadrons into observed ones
- Photon emission generators yellow stuff simulate additional QED radiation

Will focus on general-purpose MC plus NLO ME generators in this talk Disclaimer: No attempt to present full status of the field Find more in recently published review [Buckley et al.] Phys.Rept.504(2011)145

State of the art: Automated tree-level ME

Strategies for efficient computation:

- diagrams Amegic++, CompHep, MADGRAPH, ...
- recursion Comix, HELAC, O'Mega, ...
- α -algorithm Alpgen
- phase-space integration using multi-channel
- color/helicity sampling

New models via FeynRules generator-independent

Most codes provide LHEF output to feed into external PS MC ${\sf HerWiG}{++}, {\sf PYTHIA}$ Some built into PS MC ${\sf Amegic}{++}, {\sf Comix}$

Performance example: $t\bar{t}$ + jets MC4LHC workshop 2004 and JHEP12(2008)039

σ [pb]	Number of jets								
$t\overline{t} + jets$	0	1	2	3	4	5	6		
ALPGEN	755.4(8)	748(2)	518(2)	310.9(8)	170.9(5)	87.6(3)	45.1(8)		
AMEGIC	754.4(3)	747(1)	520(1)						
Comix	754.8(8)	745(1)	518(1)	309.8(8)	170.4(7)	89.2(4)	44.4(4)		
CompHEP	757.8(8)	752(1)	519(1)	. ,					
HELAC	745(5)	711(7)	515(5)						
MadGraph	754(2)́	749(2)	516(1)́	306(1)					

Ratio of 3- & 2-jet rate DØ Note 6032-CONF

Multi-leg ME⊗PS "standard" by now

Higher-order ME improve predictions for jet correlations & relative rates

Dijet decorrelation (MC vs. data)

[ATLAS] arXiv:1102.2696

Cutting edge: Automating multi-leg NLO calculations

 $\mathrm{d}\sigma^{NLO} = \mathrm{d}\Phi_B \ (B+V) + \mathrm{d}\Phi_R \ R = \mathrm{d}\Phi_B \ \left[(B+V+I) + \mathrm{d}\Phi_{R|B} \ (R-S) \right]$

S - subtraction term constructed such that IR singularities in R are removed

I - integrated subtraction term locally compensates $S
ightarrow 0 \stackrel{!}{=} I - \int \mathrm{d} \Phi_{(1)} S$

S and I universal and "easy" to automate, V tedious

- \Rightarrow Two pieces combined using the Binoth Les Houches accord ${\tt CPC181(2010)1612}$
 - One-Loop-Engine (OLE) \rightarrow virtual piece BlackHat, GOLEM, HELAC, MADLOOP, MCFM, NLOJET++, Rocket, Samurai, ...
 - $\bullet~MC \rightarrow Born,~real emission, subtraction and phase space SHERPA, HELAC, MADDIPOLE, MADFKS, ...$

Example: Z+4 jets with BlackHat [Ita et al.] arXiv:1108.2229 [hep-ph]

no. jets	Z LO	Z NLO	Z/W^+ LO	Z/W^+ NLO	Zn/(n-1)LO	Zn/(n-1) NLO
0	$323.1(0.1)^{+39.3}_{-44.3}$	$457.2(0.3)^{+5.7}_{-3.4}$	0.1209(0.0001)	0.1393(0.0003)	_	—
1	$66.69(0.04)^{+5.59}_{-5.30}$	$82.1(0.1)^{+3.3}_{-2.6}$	0.1674(0.0002)	0.166(0.001)	0.2064(0.0001)	0.1795(0.0003)
2	$19.10(0.02)^{+5.32}_{-3.82}$	$20.25(0.07)^{+0.31}_{-1.02}$	0.1636(0.0003)	0.166(0.002)	0.2864(0.0003)	0.247(0.001)
3	$4.76(0.01)^{+2.18}_{-1.35}$	$4.73(0.03)^{+0.05}_{-0.35}$	0.1634(0.0004)	0.169(0.002)	0.2494(0.0004)	0.234(0.002)
4	$1.116(0.002)^{+0.695}_{-0.390}$	$1.06(0.01)^{+0.05}_{-0.14}$	0.1618(0.0003)	0.172(0.002)	0.2343(0.0005)	0.223(0.002)

Synergy between OLE and MC allows to attack e.g. W+3/4 jets, Z+3/4 jets

OLEs attacks higher and higher jet multiplicity

ightarrow need to compute real-radiation & infrared subtraction terms efficiently

 $\label{eq:Tree-level} Tree-level \Rightarrow Use \ color-dressed \ Berends-Giele \ recursion \ [Duhr,Maltoni,SH] \ hep-ph/0607057$

Implemented in matrix-element generator Comix [Gleisberg,SH] arXiv:0808.3674 Similar technique to be applied to integrated subtraction terms

σ_{R-S} [pb]	Number of jets							
n k _T -jets	0	1	2	3	4	5		
		$\alpha_{ m c}=$ 0.1	$lpha_{ m c}=$ 0.03	$\alpha_{ m c}=$ 0.01	$\alpha_{ m c}=$ 0.003	$\alpha_{ m c}=$ 0.001		
AMEGIC++/BlackHat	-200(1)	297(3)	576(6)	342(2)				
Comix	-198(1)	297(3)	586(6)	343(1)	143(1)	31.7(6)		
Speedup	0.4	0.9	0.6	3.39	-	-		

Example: $pp
ightarrow e^+
u_e + {
m jets}$ (7 TeV) real-radiation & subtraction only

MadLoop o	→ fully a	utomated	NLO	predictions	[Hirschi et al.]	JHEP	1105(2011)044
------------	-----------	----------	-----	-------------	------------------	------	---------------

	Process	μ	n _{lf}	LO	NLO
a.1	$pp \rightarrow t\bar{t}$	m _t	5	123.76 ± 0.05	162.08 ± 0.12
a.2	$pp \rightarrow tj$	mt	5	34.78 ± 0.03	41.03 ± 0.07
a.3	$pp \rightarrow tjj$	mt	5	11.851 ± 0.006	13.71 ± 0.02
a.4	$pp \rightarrow t \overline{b} j$	$m_t/4$	4	25.62 ± 0.01	30.96 ± 0.06
a.5	$pp \rightarrow t \bar{b} j j$	$m_t/4$	4	8.195 ± 0.002	8.91 ± 0.01
b.1	$pp ightarrow (W^+ ightarrow) e^+ u_e$	m _W	5	5072.5 ± 2.9	6146.2 ± 9.8
b.2	$pp \rightarrow (W^+ \rightarrow) e^+ \nu_e j$	m_W	5	828.4 ± 0.8	1065.3 ± 1.8
b.3	$pp \rightarrow (W^+ \rightarrow) e^+ \nu_e jj$	m_W	5	298.8 ± 0.4	300.3 ± 0.6
b.4	$pp \rightarrow (\gamma^*/Z \rightarrow)e^+e^-$	mZ	5	1007.0 ± 0.1	1170.0 ± 2.4
b.5	$pp \rightarrow (\gamma^*/Z \rightarrow)e^+e^-j$	mz	5	156.11 ± 0.03	203.0 ± 0.2
b.6	$pp ightarrow (\gamma^*/Z ightarrow) e^+ e^- jj$	mZ	5	54.24 ± 0.02	56.69 ± 0.07
c.1	$pp \rightarrow (W^+ \rightarrow) e^+ \nu_e b \bar{b}$	$m_W + 2m_b$	4	11.557 ± 0.005	22.95 ± 0.07
c.2	$pp \rightarrow (W^+ \rightarrow) e^+ \nu_e t \overline{t}$	$m_W + 2m_t$	5	0.009415 ± 0.000003	0.01159 ± 0.00001
c.3	$pp \rightarrow (\gamma^*/Z \rightarrow)e^+e^-b\overline{b}$	$m_{Z} + 2m_{b}$	4	9.459 ± 0.004	15.31 ± 0.03
c.4	$pp \rightarrow (\gamma^*/Z \rightarrow)e^+e^-t\overline{t}$	$m_{Z} + 2m_{t}$	5	0.0035131 ± 0.0000004	0.004876 ± 0.000002
c.5	$pp \rightarrow \gamma t \overline{t}$	$2m_t$	5	0.2906 ± 0.0001	0.4169 ± 0.0003
d.1	$pp \rightarrow W^+W^-$	$2m_W$	4	29.976 ± 0.004	43.92 ± 0.03
d.2	$pp \rightarrow W^+W^-j$	$2m_W$	4	11.613 ± 0.002	15.174 ± 0.008
d.3	$pp \rightarrow W^+W^+ jj$	$2m_W$	4	0.07048 ± 0.00004	0.1377 ± 0.0005
e.1	$pp \rightarrow HW^+$	$m_W + m_H$	5	0.3428 ± 0.0003	0.4455 ± 0.0003
e.2	$pp \rightarrow HW^+ j$	$m_W + m_H$	5	0.1223 ± 0.0001	0.1501 ± 0.0002
e.3	$pp \rightarrow HZ$	$m_Z + m_H$	5	0.2781 ± 0.0001	0.3659 ± 0.0002
e.4	$pp \rightarrow HZ j$	$m_Z + m_H$	5	0.0988 ± 0.0001	0.1237 ± 0.0001
e.5	$pp \rightarrow Ht\bar{t}$	$m_t + m_H$	5	0.08896 ± 0.00001	0.09869 ± 0.00003
e.6	$pp \rightarrow Hb\bar{b}$	$m_b + m_H$	4	0.16510 ± 0.00009	0.2099 ± 0.0006
e.7	$pp \rightarrow Hjj$	m _H	5	1.104 ± 0.002	1.036 ± 0.002

High Energy Jets (HEJ)

All-order corrections to multi-jet rates from the high-energy limit

Resummation only. Exp. data: [Atlas] arXiv:1107.1641 [hep-ph]

Parton showers

(b) 10-2 **PYTHIA**: Aim at better PS at large p_T POWHEG Pythia Default (Power bridge gap between "power" and "wimpy" 10-3 Pythia Damp, k [GeV[†]] Pythia Damp. Pythia Wim Introduce dampening $k^2 \mu^2 / (k^2 \mu^2 + p_T^2)$ 10 dP / dp for colored massive final states only 10⁻⁵ Improved default PS alleviates matching 10-6 to NLO simulation MC@NLO. POWHEG 10-7 300 100 200 400 500 700 800 900 1000 600 p [GeV] $t\bar{t}$ +jets from [Corke,Sjöstrand] EPJC69(2010)1

Study of PS emission pattern in pure QCD yields good agreement with ME large region of phase space usually well described \rightarrow reduced systematics in NLO merging

Parton showers

PYTHIA: Same evolution variable, k_T , for ISR/FSR and MPI

Interleave PS & MPI to arrive at more inclusive picture [Sjöstrand,Skands] EPJC39(2005)129, [Corke,Sjöstrand] JHEP01(2010)035

$$\frac{\mathrm{d}P}{\mathrm{d}p_{T}} = \frac{\mathrm{d}}{\mathrm{d}p_{T}} \exp\left\{-\int_{p_{T}} \mathrm{d}\bar{p}_{T} \left(\frac{\mathrm{d}\mathcal{P}_{PS}}{\mathrm{d}\bar{p}_{T}} + \frac{\mathrm{d}\mathcal{P}_{MPI}}{\mathrm{d}\bar{p}_{T}}\right)\right\}$$

Rescattering effects important at higher energies

	Tev	atron	LHC		
	Min Bias	QCD Jets	Min Bias	QCD Jets	
Normal scattering	2.81	5.09	5.19	12.19	
Single rescatterings	0.41	1.32	1.03	4.10	
Double rescatterings	0.01	0.04	0.03	0.15	

Also: New MPI model: x-dependent proton size intuitive picture of protons spreading out to lower x \rightarrow large x implies small b [Corke,Sjöstrand]JHEP05(2011)009

Parton showers

New PS developments based on Catani-Seymour subtraction formalism

Few model ambiguities, excellent approximation of higher-order real ME

→ ii + OCD=OED show

Connecting ME and PS

ME⊗PS idea: Use ME/PS in regime of their respective strengths

 $ME \rightarrow$ hard emissions / PS \rightarrow soft/collinear regime JHEP11(2001)063, JHEP05(2009)053

Connecting ME and PS

Matrix elements can have very different PS equivalents depending on kinematics

Must reduce full high-multi ME to either of these configurations in order to start PS

Radiation effects off intermediate legs must be modeled to account for Sudakov suppression \rightarrow truncated PS

Method: PRD57(1998)5767, JHEP05(2009)053

- Probability to identify splitting given by PS's branching eqns
- Reduced ME configuration defined by "inverted" PS splitting kinematics
- Continue until $2 \rightarrow 2$ "core"

Core processes set the hardness scale of events $ightarrow \mu_F$

i.e. no scale should be larger than this PRD70(2004)114009, JHEP05(2009)053

Connecting ME and PS

Must define ME regime and compute no-emission weights \rightarrow methods differ

- Truncated shower scheme SHERPA, HERWIG++ JHEP05(2009)053, JHEP11(2009)038 flexible phase-space separation criterion Sudakov suppression via truncated vetoed shower
- CKKW-L scheme ARIADNE JHEP05(2002)046, JHEP07(2005)054 phase-space separation in terms of shower evolution variable ⇒ no truncated PS Sudakov suppression via vetoed shower Dipole shower including low-x effects
- MLM scheme ALPGEN NPB632(2002)343, JHEP01(2007)013 phase-space separation via cone-like algorithm Sudakov suppression via "jet matching" Geometrical picture, no truncated shower would be needed!
- CKKW scheme SHERPA before v1.2.0 JHEP11(2001)063, JHEP08(2002)015 phase-space separation via k_T -algorithm Sudakov suppression via weight from NLL formalism NLL \leftrightarrow PS mismatch, no truncated shower would be needed!
- mixed schemes MADGRAPH, HELAC JHEP02(2009)017 employing techniques similar to MLM / CKKW

Predictions mostly agree hep-ph/0602031, EPJC53(2008)473 & arXiv:1003.1643 [hep-ph]

Tree-level ME⊗PS for DIS di-jets

Tree-level $\mathsf{ME}{\otimes}\mathsf{PS}$ for prompt photons

Photon p_T spectra PLB666(2008)435 in regions of jet rapidity/orientation scaled by 5, 1, 0.3 and 0.1 top to bottom

"Democratic" model ZPC62(1994)311

- $\, \bullet \,$ Treat partons and γ equally
- $\bullet~$ Combine ME of various parton/ $\gamma~$ multiplicity with
- Interleaved QCD \oplus QED PS

Ratio of photon p_T spectra PLB666(2008)435 compare regions of jet rapidity/orientation

NLO challenge: B-, V-, I- and S-terms kinematically different from R

Requirements for NLO \otimes PS:

- Preserve resummation as in PS
 Implement O(α_s) accuracy from ME
 Problems much like for ME⊗PS:
 - Real-emission term and PS populate same phase-space region
 - Naively adding PS on top of ME leads to double-counting

Unlike for ME $\otimes \mathsf{PS}$ one cannot simply divide up the phase space !

 $\textbf{MC@NLO} \rightarrow first \; general \; solution \; to \; NLO \; ME \; \otimes \; PS \; \mbox{[Frixione,Webber]} \; \mbox{JHEP06(2002)029}$

- Subtraction terms used to regularize NLO ME based on PS
- Finite remainder of NLO correction added explicitly on top of PS

Explicitly PS dependent need MC subtraction terms in ME calculation Currently implemented for fHERWIG, HERWIG++ and PYTHIA

Extensive list of available processes

IPROC	IV	IL_1	IL_2	Spin	Process
-1350-IL				~	$H_1H_2 \rightarrow (Z/\gamma^* \rightarrow)l_{IL}l_{IL} + X$
-1360-IL				~	$H_1H_2 \rightarrow (Z \rightarrow)l_{IL}l_{IL} + X$
-1370-IL				~	$H_1H_2 \rightarrow (\gamma^* \rightarrow)l_{IL}l_{IL} + X$
-1460-IL				~	$H_1H_2 \rightarrow (W^+ \rightarrow)l^+_{IL}\nu_{IL} + X$
-1470-IL				~	$H_1H_2 \rightarrow (W^- \rightarrow)l_{IL}^- \bar{\nu}_{IL} + X$
-1396				×	$H_1H_2 \rightarrow \gamma^* (\rightarrow \sum_i f_i f_i) + X$
-1397				×	$H_1H_2 \rightarrow Z^0 + X$
-1497				×	$H_1H_2 \rightarrow W^+ + X$
-1498				×	$H_1H_2 \rightarrow W^- + X$
-1600-ID					$H_1H_2 \rightarrow H^0 + X$
-1705					$H_1H_2 \rightarrow bb + X$
-1706		7	7	×	$H_1H_2 \rightarrow t\bar{t} + X$
-2000-IC		7		×	$H_1H_2 \rightarrow t/\bar{t} + X$
-2001-IC		7		×	$H_1H_2 \rightarrow \bar{t} + X$
-2004-IC		7		×	$H_1H_2 \rightarrow t + X$
-2030		7	7	×	$H_1H_2 \rightarrow tW^-/\bar{t}W^+ + X$
-2031		7	7	×	$H_1H_2 \rightarrow \bar{t}W^+ + X$
-2034		7	7	×	$H_1H_2 \rightarrow tW^- + X$
-2040		7	7	×	$H_1H_2 \rightarrow tH^-/\bar{t}H^+ + X$
-2041		7	7	×	$H_1H_2 \rightarrow \bar{t}H^+ + X$
-2044		7	7	×	$H_1H_2 \rightarrow tH^- + X$
-2600-ID	1	7		×	$H_1H_2 \rightarrow H^0W^+ + X$
-2600-ID	1	i		~	$H_1H_2 \rightarrow H^0(W^+ \rightarrow)l_i^+\nu_i + X$
-2600-ID	-1	7		×	$H_1H_2 \rightarrow H^0W^- + X$
-2600-ID	-1	i		~	$H_1H_2 \rightarrow H^0(W^- \rightarrow)l_i^- \bar{\nu}_i + X$
-2700-ID	0	7		×	$H_1H_2 \rightarrow H^0Z + X$
-2700-ID	0	i		~	$H_1H_2 \rightarrow H^0(Z \rightarrow)l_i\overline{l_i} + X$
-2850		7	7	×	$H_1H_2 \rightarrow W^+W^- + X$
-2860		7	7	×	$H_1H_2 \rightarrow Z^0Z^0 + X$
-2870		7	7	×	$H_1H_2 \rightarrow W^+Z^0 + X$
-2880		7	7	×	$H_1H_2 \rightarrow W^-Z^0 + X$

... and more, full list available at

http://www.hep.phy.cam.ac.uk/theory/webber/MCatNLO

Many contributors

Automated using MADLOOP

POWHEG \rightarrow NLO ME \otimes PS with positive weights [Nason] JHEP11(2004)040

- PS for 1st emission based on exponentiated NLO real correction
- $\bullet\,$ Subsequent emissions from PS \rightarrow truncated showers potentially needed

MC independent technique hardest emission decoupled from PS

Available POWHEG implementations SM

Process	PowhegBox	HERWIG++	Sherpa
$e^+e^- \rightarrow jj$	Х	\checkmark	\checkmark
DIS	Х	\checkmark	\checkmark
$pp \rightarrow W/Z$	 ✓ 	\checkmark	~
$pp \rightarrow H (GF)$	\checkmark	\checkmark	\checkmark
$pp \rightarrow V + H$	X	\checkmark	 ✓
$pp \rightarrow VV$	X	\checkmark	 ✓
VBF	\checkmark	\checkmark	in prep.
$pp \rightarrow Q\bar{Q}$	\checkmark	Х	X
$pp \rightarrow Q\bar{Q} + j$	\checkmark	Х	X
single-top	\checkmark	Х	Х
$pp \rightarrow V + j$	\checkmark	Х	in prep.
$pp \rightarrow V + jj$	in prep.	Х	in prep.
$pp \rightarrow H + j$ (GF)	X	Х	in prep.
$pp \rightarrow H + t\bar{t}$	\checkmark	Х	X
$pp \rightarrow W^+W^+jj$	\checkmark	х	X
$pp \rightarrow V + b\bar{b}$	\checkmark	Х	in prep.
diphotons	?	\checkmark	in prep.
dijets	\checkmark	X	in prep.

20

[D'Errico, Richardson] arXiv:1106.2983 [hep-ph]

 $m_{\gamma\gamma}$ and $p_{T\gamma\gamma}$ in di-photon events at the Tevatron

 $\Delta \phi_{\gamma\gamma}$ in di-photon events at Tevatron

[D'Errico,Richardson] arXiv:1106.3939 [hep-ph]

Example: Z/W+j+X

[Krauss,Schönherr,Siegert,SH] leading colour

The MENLOPS idea

Note that we don't merge NLO with higher-multi NLO yet !

MENLOPS predictions

 $t\bar{t}$ -rapidity in $t\bar{t}$ +jets $p_{T,j1}$ in $W[\rightarrow l\nu]$ +jets Compare:

- ME⊗PS 0+1-jet
- POWHEG
- MENLOPS 0+1-jet

Differential jet rates in $t\bar{t}$ +jets and $W[\rightarrow l\nu]$ +jets

MENLOPS likely to become new standard for high-multiplicity MC simulations

MENLOPS predictions

Jet multiplicity / $p_{T,j1}$ in Z+jets Compare:

- ME⊗PS 0+1+2+3-jet
- MENLOPS 0+1+2+3-jet

 $\Delta \phi_{jj} / \Delta R_{jj}$ in WW+jets / h+jets Compare:

- ME⊗PS 0+1+2+3-jet
- MENLOPS 0+1+2+3-jet

 $\mathsf{ME}{\otimes}\mathsf{PS}/$ MENLOPS cross sections compared to 2 \rightarrow 2 LO / NLO

Large "unitarity violations" in ME⊗PS reduced by MENLOPS arXiv:1009.1127 [hep-ph]

MENLOPS predictions

Can we improve over ME \otimes PS?

Not always ! $Q^2 < \bar{E}_{T,B}$ is unlikely in POWHEG

 \rightarrow same scale uncertainty from MENLOPS Need inclusive MENLOPS ...

[Krauss,Schönherr,Siegert,SH] arXiv:1009.1127 [hep-ph], H1 data: EPJC19(2001)289

Monte-Carlo event generators have improved:

- Reduced uncertainty due to fully/partially automated NLO MEs
- ${\circ}$ Largely reduced systematics with ME ${\otimes} \mathsf{PS},$ POWHEG & MC@NLO
- Reliable predictions for LEP, HERA, Tevatron and LHC
- ${\scriptstyle \bullet}$ ME ${\otimes} PS$ and MENLOPS fully automated, to become new standard

More and more higher-order pQCD built into MC event generators! Models only where necessary mostly for non-perturbative aspects