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Parton level Photon MC, 

Process Jetphox Diphox Baur MCFM

pp → γj NLO in frag (BFG) - - LO in Frag (BFG, GdRG)

pp → γγ - NLO in frag (BFG) LO in gg - NLO gg LO in frag

pp → V γ - - No FSR LO frag LO frag gg → Zγ.
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Shown below is the status of public NLO parton level MCs with experimental 
isolation. 

In addition lots of results for smooth cone isolation available now too, a selection of 
recent results are, 

V V γ, V γγ (0.1)

1 Introduction

2 The initialisation phase

Before using the library to return a VME the HMC must first initialise the
variables needed by the program. The first requirement of the HMC is to
provide the interface with the required settings for operation. This done via
the file interface settings.DAT located in the src directory. The HMC must
set values for the following logical variables,

• efficient This variable controls how the VME is evaluated for a specific
process, when efficient is set to true then the interface will use an op-
timised routine to calculate each VME. Therefore this variable should in
general be set to true. efficient = false will use the default MCFM
virtual routine to calculated the VME.

• params This variable controls the method by which the Physical parameters
(see section 2.1) will be initialised. If set to true then the program will
attempt to read the file i2mcfm params.DAT (located in the src directory).
The HMC can instead choose to initialise physical parameters by calling a
series of subroutines by setting params=.false.

• read as This variable controls wether the αs(Mz) is read from i2mcfm params.DAT
( read as=.true.) or is filled by a call to subroutine i2mcfm fill alphas
from within the HMC ( read as=.false.).

• read ew This variable controls wether the electroweak parameters are read
from i2mcfm params.DAT ( read ew=.true.) or are filled by a call to subroutine
i2mcfm fill ew from within the HMC ( read ew=.false.).

• read mv This variable controls wether the masses and widths of the Vec-
tor bosons are read from i2mcfm params.DAT ( read mv=.true.) or are
filled by a call to subroutine i2mcfm fill mv from within the HMC (
read ew=.false.).

• read mQ This variable controls wether the Quark masses are read from
i2mcfm params.DAT ( read mQ=.true.) or is filled by a call to subroutine
i2mcfm fill mQ from within the HMC ( read mQ=.false.).

• read ml This variable controls wether the lepton masses are read from
i2mcfm params.DAT ( read ml=.true.) or are filled by a call to subroutine
i2mcfm fill ml from within the HMC ( read ml=.false.).

• read ckm This variable controls wether the CKM matrix is read from i2mcfm params.DAT
( read ckm=.true.) or is filled by a call to subroutine i2mcfm fill ckm
from within the HMC ( read ckm=.false.).

• alphas eq1 This variable controls whether αs = 1 ( alphas eq1=.true.)
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1 Introduction

2 The initialisation phase

Before using the library to return a VME the HMC must first initialise the
variables needed by the program. The first requirement of the HMC is to
provide the interface with the required settings for operation. This done via
the file interface settings.DAT located in the src directory. The HMC must
set values for the following logical variables,

• efficient This variable controls how the VME is evaluated for a specific
process, when efficient is set to true then the interface will use an op-
timised routine to calculate each VME. Therefore this variable should in
general be set to true. efficient = false will use the default MCFM
virtual routine to calculated the VME.

• params This variable controls the method by which the Physical parameters
(see section 2.1) will be initialised. If set to true then the program will
attempt to read the file i2mcfm params.DAT (located in the src directory).
The HMC can instead choose to initialise physical parameters by calling a
series of subroutines by setting params=.false.

• read as This variable controls wether the αs(Mz) is read from i2mcfm params.DAT
( read as=.true.) or is filled by a call to subroutine i2mcfm fill alphas
from within the HMC ( read as=.false.).

• read ew This variable controls wether the electroweak parameters are read
from i2mcfm params.DAT ( read ew=.true.) or are filled by a call to subroutine
i2mcfm fill ew from within the HMC ( read ew=.false.).

• read mv This variable controls wether the masses and widths of the Vec-
tor bosons are read from i2mcfm params.DAT ( read mv=.true.) or are
filled by a call to subroutine i2mcfm fill mv from within the HMC (
read ew=.false.).

• read mQ This variable controls wether the Quark masses are read from
i2mcfm params.DAT ( read mQ=.true.) or is filled by a call to subroutine
i2mcfm fill mQ from within the HMC ( read mQ=.false.).

• read ml This variable controls wether the lepton masses are read from
i2mcfm params.DAT ( read ml=.true.) or are filled by a call to subroutine
i2mcfm fill ml from within the HMC ( read ml=.false.).
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1 Introduction

2 The initialisation phase

Before using the library to return a VME the HMC must first initialise the
variables needed by the program. The first requirement of the HMC is to
provide the interface with the required settings for operation. This done via
the file interface settings.DAT located in the src directory. The HMC must
set values for the following logical variables,

• efficient This variable controls how the VME is evaluated for a specific
process, when efficient is set to true then the interface will use an op-
timised routine to calculate each VME. Therefore this variable should in
general be set to true. efficient = false will use the default MCFM
virtual routine to calculated the VME.

• params This variable controls the method by which the Physical parameters
(see section 2.1) will be initialised. If set to true then the program will
attempt to read the file i2mcfm params.DAT (located in the src directory).
The HMC can instead choose to initialise physical parameters by calling a
series of subroutines by setting params=.false.

• read as This variable controls wether the αs(Mz) is read from i2mcfm params.DAT
( read as=.true.) or is filled by a call to subroutine i2mcfm fill alphas
from within the HMC ( read as=.false.).

• read ew This variable controls wether the electroweak parameters are read
from i2mcfm params.DAT ( read ew=.true.) or are filled by a call to subroutine
i2mcfm fill ew from within the HMC ( read ew=.false.).

• read mv This variable controls wether the masses and widths of the Vec-
tor bosons are read from i2mcfm params.DAT ( read mv=.true.) or are
filled by a call to subroutine i2mcfm fill mv from within the HMC (
read ew=.false.).

• read mQ This variable controls wether the Quark masses are read from
i2mcfm params.DAT ( read mQ=.true.) or is filled by a call to subroutine
i2mcfm fill mQ from within the HMC ( read mQ=.false.).

• read ml This variable controls wether the lepton masses are read from
i2mcfm params.DAT ( read ml=.true.) or are filled by a call to subroutine
i2mcfm fill ml from within the HMC ( read ml=.false.).
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V γj (0.1)
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1 Introduction

2 The initialisation phase

Before using the library to return a VME the HMC must first initialise the
variables needed by the program. The first requirement of the HMC is to
provide the interface with the required settings for operation. This done via
the file interface settings.DAT located in the src directory. The HMC must
set values for the following logical variables,

• efficient This variable controls how the VME is evaluated for a specific
process, when efficient is set to true then the interface will use an op-
timised routine to calculate each VME. Therefore this variable should in
general be set to true. efficient = false will use the default MCFM
virtual routine to calculated the VME.

• params This variable controls the method by which the Physical parameters
(see section 2.1) will be initialised. If set to true then the program will
attempt to read the file i2mcfm params.DAT (located in the src directory).
The HMC can instead choose to initialise physical parameters by calling a
series of subroutines by setting params=.false.

• read as This variable controls wether the αs(Mz) is read from i2mcfm params.DAT
( read as=.true.) or is filled by a call to subroutine i2mcfm fill alphas
from within the HMC ( read as=.false.).

• read ew This variable controls wether the electroweak parameters are read
from i2mcfm params.DAT ( read ew=.true.) or are filled by a call to subroutine
i2mcfm fill ew from within the HMC ( read ew=.false.).

• read mv This variable controls wether the masses and widths of the Vec-
tor bosons are read from i2mcfm params.DAT ( read mv=.true.) or are
filled by a call to subroutine i2mcfm fill mv from within the HMC (
read ew=.false.).

• read mQ This variable controls wether the Quark masses are read from
i2mcfm params.DAT ( read mQ=.true.) or is filled by a call to subroutine
i2mcfm fill mQ from within the HMC ( read mQ=.false.).

• read ml This variable controls wether the lepton masses are read from
i2mcfm params.DAT ( read ml=.true.) or are filled by a call to subroutine
i2mcfm fill ml from within the HMC ( read ml=.false.).
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Not to mention photons in Event generator MCs......
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Photons in a hadronic 
environment 

✤ Photons are readily produced from a 
variety of sources. 

✤ Typically we are interested in those 
produced in hard scattering to study 
PDFs, anomalous couplings etc. 

✤ Unfortunately secondary photons 
and those arising from fragmentation 
pollute this sample. 

✤ This talk will discuss some of the 
theoretical issues regarding photon 
production at the LHC. 
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Experimental Procedures 

✤ Have to reduce backgrounds from unwanted photons. 

✤ Define isolated photons as those with requirements on the amount of 
hadronic energy deposited in a certain region in the detector. 

✤ Typically require isolation of the form 
of hadronic energy in a cone of size R0 =

√
(∆η2+∆φ2) around the photon. Experimental

isolation cuts are of the form,

∑

∈R0

ET (had) < εh p
γ
T or

∑

∈R0

ET (had) < Emax
T . (2.1)

Thus the transverse hadronic energy, ET (had), is limited to be some small fraction of the

transverse momentum of the photon or cut off at a fixed, small upper limit.

Matters are complicated both experimentally and theoretically by a second source of

prompt photons. A hard QCD parton can fragment non-perturbatively into a photon. As

a result a typical photon production cross section takes the form,

σ = σγ(M2
F ) +

∫

dz Da(z)σa(z,M2
F ). (2.2)

Here σγ represents the direct component of the photon production cross section whilst the

second term arises from the fragmentation of a parton a into a photon with momentum zpa.

Each contribution separately depends on the fragmentation scale, MF . The fragmentation

functions, taken as solutions to a DGLAP equation are of (leading) order αEW/αs. This

means that they are formally of the same order as the leading order direct term. At high-

energy hadron colliders, the QCD tree-level matrix element, coupled to a fragmentation

function can become the dominant source of prompt photon production. However, the

magnitude of these terms can be drastically reduced by applying the isolation cuts described

above. This is due to the fact that the fragmentation functions strongly favour the low

z region. Once the photon is isolated, z is typically large enough that the fragmentation

contribution drops substantially from the unisolated case.

A theoretical description of isolated photons is complicated because of the occurence

of collinear singularities between photons and final-state quarks. A finite cross section

is only obtained when these singularities are absorbed into the fragmentation functions.

As a result the only theoretically well-defined NLO quantity is the sum of the direct and

fragmentation contributions. Once these two contributions are included one can isolate the

photon using the cuts of Eq. (2.1) in an infrared safe way [6].

Although the underlying dynamics of photon fragmentation are non-perturbative the

evolution of the functions with the scale MF is perturbative. In the same manner as

the parton distribution functions, the fragmentation functions satisfy a DGLAP evolution

equation. In MCFM we use the fragmentation functions of ref. [7], which are NLL solutions

to the DGLAP equation.

Final state quark-photon collinear singularities are removed using a variant [6] of the

Catani-Seymour dipole subtraction formalism [8]. More specifically, we treat the photon in

the same manner as one would treat an identified final state parton (with the appropriate

change of colour and coupling factors). Integration of these subtraction terms over the

additional parton phase space yields pole pieces of the form [6],

Dγ
q = −

1

ε

Γ(1− ε)

Γ(1− 2ε)

(

4πµ2

M2
F

)

α

2π
e2qPγq(z) , (2.3)

– 4 –
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Isolating photons - theoretical 
issues

✤ A given final state consisting of a 
photon + n jets is finite at LO. 

✤ At NLO in QCD problems arise 
from collinear poles associated with 
a quark and a photon. 

✤ Initial state poles are removed by 
demanding central photons, what 
about final state poles?

Thursday, 25 August 2011



Isolating Photons theory 

✤ IR singularity associated with quark - photon collinear pole

✤ Could ban all radiation in a cone around the photon (IR unsafe)  

✤ Could use Frixione (98) isolation 

✤ Could use Fragmentation functions
Thursday, 25 August 2011



Frixione (smooth cone) isolation 

✤ First proposed by Frixione (98), the idea is to remove the collinear 
pole by forbidding QCD radiation in the exact collinear limit whilst 
allowing arbitrarily soft radiation in the surrounding region, i.e. 

✤ This is done pre-jet clustering, then one clusters and applies cuts only 
to the jets found outside of the cone. 

✤ This approach preserves IR safety and does not require fragmentation 
contributions. If desired, one can change the power of the 1-cos terms.

where Pγq(z) is the tree level photon-quark splitting function. This piece Dγ
q is the lowest

order definition of the photon fragmentation function in theMS scheme. This singularity

is then absorbed into the fragmentation functions to yield finite cross sections.

Since the isolation cuts reduce the magnitude of the fragmentation contributions we

calculate the QCD matrix elements σa(z,M2
F ) to LO, i.e. we neglect NLO corrections to

the fragmentation processes.

An alternative procedure, in which one can avoid calculating the fragmentation con-

tributions altogether, is to follow the smooth cone isolation of Frixione [9]. In such an

approach one applies the following isolation prescription to the photon,

∑

Rjγ∈R0

ET (had) < εhp
γ
T

(

1− cosRjγ

1− cosR0

)

. (2.4)

Using this prescription, soft radiation is allowed inside the photon cone but collinear sin-

gularities are removed. Since the smooth-cone isolation is infra-red finite, there is no need

to include fragmentation contributions in this case. Currently this isolation is difficult to

implement experimentally and therefore it is not used in this paper. 1

3. Overview

The results presented in this paper are obtained with the latest version of the MCFM code

(v6.0). We use the default set of electroweak parameters as described in Appendix A.

For the parton distribution functions (pdfs) we use the sets of Martin, Stirling, Thorne

and Watt [10]. For the calculation of the LO results presented here we employ the corre-

sponding LO pdf fit, with 1-loop running of the strong coupling and αs(MZ) = 0.13939.

Similarly, at NLO we use the NLO pdf fit, with αs(MZ) = 0.12018 and 2-loop running.

The fragmentation of partons into photons uses the parametrization “set II” of Bourhis,

Fontannaz and Guillet [7].

As mentioned in the introduction, for several processes we have included contributions

of the form gg → V1V2. These contributions proceed through a closed fermion loop and

form a gauge invariant subset of the one-loop amplitudes. However, since there is no gg

tree level contribution the first time these pieces enter in the perturbative expansion is at

α2
S , (i.e. NNLO). Simple power counting would thus lead one to assume that these pieces

are small, of the order of a few percent of the LO cross section. At the LHC this is often

not the case, since the large gluon flux in the pdfs can overcome the O(α2
S) suppression in

the perturbative expansion. The resulting gluon-gluon contributions are instead O(10%)

of the LO cross section, i.e. these pieces are comparable to the other NLO contributions.

Charge conservation ensures that not all diboson processes receive these gluon-gluon

initiated contributions. The allowed processes are gg → {γγ, Zγ,W+W−, ZZ}, each of

which has been studied in some format in the past [11–26]. We refer the reader to the appro-

priate section for details of each calculation. We note that for gg → {Zγ,W+W−, ZZ} →

1Smooth cone isolation is however available in MCFM for theoretical comparisons.

– 5 –
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Comparison with experiment?
✤ Due to its theoretical ease Frixione isolation is routinely used by theorists in 

photon + X calculations. 

✤ How to compare to data?  

✤ I would suggest choosing Frixione parameters such that the total integrated 
energy in the cone is equal to            in the experimentalist set up. This results in 
controlled approximations on both sides.  

dσ

dpT γ
=

∫ ymax

ymin

dy
dσ

dyγ dpT γ
.

Similar studies can be done for photon–jet cross sections [38]. We use the NLO parton distribution
functions of the set MRST-99 [39], and the NLO fragmentation functions of set II in Bourhis et al.
[23]. The calculations are done with Nf = 5 flavours. The renormalization and factorization scales
µ and M are both set equal to pT γ/2.

Table 1 shows the sensitivity of the cross section to the value R of the isolation cone. In this study
we fixed εh = 2/15 ! 0.13333, which means that all events with hadronic transverse energy larger
than 2 GeV in the isolation cone are rejected. The results without isolation are also reported for
comparison. We verify that the Born cross sections are not sensitive to the isolation radius, as they
should.

Isolation radius Direct contribution Fragmentation contribution Total
R Born NLO Born NLO NLO
1.0 1764.6 3318.4 265.0 446.7 3765.1
0.7 1764.6 3603.0 265.0 495.0 4098.0
0.4 1764.6 3968.9 265.0 555.6 4524.5
0.1 1764.6 4758.2 265.0 678.9 5431.1

Without isolation 1764.6 3341.1 1724.3 1876.8 5217.9

Table 1. Isolated cross sections (the values are given in pb/GeV) corresponding to εh = 0.13333.

It is interesting to note that the HO contributions, both to the direct and to the fragmentation
components, increase when R decreases. This is due to the fact that the implementation of isola-
tion amounts to subtracting a contribution proportional to lnR from the non-isolated cross section
(see eqs. (5.2) and (5.11)). Since this subtracted contribution is negative when R < 1, the HO
contribution to the direct component of the isolated cross section is quite large for small values of
R. A similar behaviour is observed in the HO contribution to the fragmentation component. When
all contributions are taken into account, the total cross section (direct + fragmentation) strongly
increases with decreasing R.

In particular, when R = 0.1, the NLO calculation gives an unphysical result: the isolated cross
section turns out to be larger than the non-isolated one! Such a behaviour had to be expected in
view of the discussion at the end of sect. 5.1. The NLO results in table 1 imply that the value R ∼ 0.1
is sufficiently small to demand the inclusion of beyond-NLO perturbative terms and non-perturbative
contributions.

The sensitivity of the cross sections to variations of εh is displayed in table 2. Now we fix R = 0.7.

21

Taken from hep-ph/0204023 (Catani, Fontannaz, Guillet, Pilon)

=
∑

a

∫ 1

0

dz

z
σ̂a,is

(pγ

z
;
zc

z
, R; µ, M, MF

)
Dγ

a(z; MF ) Θ(z − zc) (4.15)

+ σ̂γ,is(pγ ; zc, R; µ, M, MF ) .

The fragmentation function Dγ
a(z; MF ) is the same fragmentation function as appears in the non-

isolated case. In particular, it does not depend on the isolation parameters. The dependence on the
latter is fully embodied in the subprocess cross sections σ̂a,is and σ̂γ,is, which respectively give the
fragmentation and direct contributions to the hadronic cross section. We recall that the subprocess
cross sections σ̂a,is and σ̂γ,is are obtained by convoluting the parton densities of the colliding hadrons
with the cross sections σ̂a,is

ij and σ̂γ,is
ij of the partonic subprocesses i+ j → a+X and i+ j → γ +X .

We have

σ̂a,is
(pγ

z
;
zc

z
, R; µ, M, MF

)
=

∑

i,j

∫ 1

0
dx1 dx2 Gi/A(x1, M) Gj/B(x2, M)

× σ̂a,is
ij

(
x1pA, x2pB,

pγ

z
;
zc

z
, R; µ, M, MF

)
, (4.16)

and a similar formula relates σ̂γ,is to σ̂γ,is
ij .

Note that, according to eqs. (4.8) and (4.2), factorization holds at fixed Ecut
T . Since zc is obtained by

rescaling Ecut
T with the factor pT γ , the variable zc is a scaling variable with respect to factorization.

In other words, the partonic cross section in eq. (4.15) depends on pγ/z and zc/z. In particular, since
zc is constrained to be zc < 1 from eqs. (4.8) and (4.2), this constraint propagates to σ̂a,is(pγ/z; zc/z)
as zc/z < 1. We made this condition explicit in eq. (4.15).

In current experimental practice, ET max is sometimes expressed in terms of the dimensionless pa-
rameter εh defined by

εh =
ET max

pT γ
. (4.17)

This parameter is related to our scaling variable zc by

zc =
1

1 + εh
. (4.18)

The partonic cross sections in eq. (4.15) can be expanded as power series in αs analogously to the
fully inclusive case in eqs. (4.19) and (3.3). Actually, at the Born level, it is straightforward to show
[10] that σ̂γ,is and σ̂a,is exactly coincide with the corresponding expression for the non-isolated case,
apart from the overall constraint zc/z < 1 mentioned above. Up to NLO, we thus have

σ̂γ,is(p; zc, R; µ, M, MF )=

(
αs(µ)

π

)
σγ

Born(p; M) +

(
αs(µ)

π

)2

σγ,is
HO (p; zc, R; µ, M, MF ) , (4.19)

σ̂a,is(p; zc, R; µ, M, MF )=

(
αs(µ)

π

)2

σa
Born(p; M) +

(
αs(µ)

π

)3

σa,is
HO(p; zc, R; µ, M, MF ) . (4.20)

In the following sections we compute the NLO terms σγ,is
HO and σa,is

HO .

We can now consider the variant of the isolation criterion (1.1) with respect to the hadronic c.m.
energy. We can straightforwardly follow the previous discussion on transverse-energy isolation. The
transverse-energy isolation parameter Ecut

T in eq. (4.12) and the scaling variable zc in eq. (4.13) have
to be respectively replaced by the energy isolation parameter Ecut and the scaling variable zE

c :

Ecut = Emax + Eγ , (4.21)

13
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Fragmentation of partons to 
photons

✤ Collinear singularity is of 
course not realised in reality 

✤ As photon becomes collinear 
becomes indistinguishable 
from one produced by a QCD 
parton 

✤ Fragmentation functions 
contain a pole which explicitly 
cancels collinear singularity.

✤ Only the combination is 
physical at NLO. 

overview, describing the parameters that we use and outlining the processes that receive

extra corrections from gluon initiated production mechanisms. Section 4 discusses the

phenomenology of γγ production at the LHC. We investigate the role of isolation on the

cross section and the impact of Higgs search cuts on di-photon production. Sections 5 and 6

contain our predictions for Wγ and Zγ production at the LHC. We investigate the role

of final-state radiation in our calculations and compare our NLO results with the recently

reported cross sections from CMS [3]. Sections 7, 8 and 9 turn to the production of two

massive vector bosons. We are able to compare our prediction for the WW cross section

with early results from ATLAS and CMS [4, 5]. We examine the effect of the gluon initiated

processes in the WW and ZZ final states, with particular emphasis on their role as Higgs

backgrounds. For WZ production we discuss briefly the properties of boosted Z’s. Finally

in section 10 we draw our conclusions. Appendix A contains a more detailed discussion

of our electroweak parameters whilst appendix B presents formulae for the gg → V1V2

amplitudes as implemented in MCFM.

2. Photon fragmentation

Since we will consider a number of final states including photons we must first discuss

the additional complications that this involves, compared to the production of W and Z

bosons. Experimentally, the production of photons occurs via two mechanisms. Prompt

photons are produced in hard scattering processes whilst secondary photons arise from the

decays of particles such as the π0. Since secondary photons are typically associated with

hadronic activity one can attempt to separate these contributions by limiting the amount

of hadronic energy in a cone of size R0 =
√

(∆η2 +∆φ2) around the photon. Experimental

isolation cuts are of the form,

∑

∈R0

ET (had) < εh pγ
T or

∑

∈R0

ET (had) < Emax
T . (2.1)

Thus the transverse hadronic energy, ET (had), is limited to be some small fraction of the

transverse momentum of the photon or cut off at a fixed, small upper limit.

Matters are complicated both experimentally and theoretically by a second source of

prompt photons. A hard QCD parton can fragment non-perturbatively into a photon. As

a result a typical photon production cross section takes the form,

σ = σγ(M2
F ) +

∫

dz Da(z)σa(z,M2
F ). (2.2)

Here σγ represents the direct component of the photon production cross section whilst the

second term arises from the fragmentation of a parton a into a photon with momentum zpa.

Each contribution separately depends on the fragmentation scale, MF . The fragmentation

functions, taken as solutions to a DGLAP equation are of (leading) order αEW /αs. This

means that they are formally of the same order as the leading order direct term. At high-

energy hadron colliders, the QCD tree-level matrix element, coupled to a fragmentation

function can become the dominant source of prompt photon production. However, the

– 4 –
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Fragmentation functions - theory 

The evolution of fragmentation functions is given by the 
DGLAP equation, 

2 Theoretical Background

The fragmentation functions Dγ
a(z, M2) verify the inhomogeneous DGLAP (Dok-

shitzer, Gribov, Lipatov, Altarisi, Parisi) equations [12, 13] (the convolution
f ⊗ g(z) is defined by

�1
0 du dv f(u) g(v)δ(uv − z))

M2
∂Dγ

ns,i

∂M2
= Cns,i Kγq + Pns ⊗ Dγ

ns,i (1)

for the non-singlet sector (Cns,i = 2(e2
i− < e2

i >)), and

M2 ∂Dγ
q

∂M2
= Cs Kγq + Pqq ⊗ Dγ

q + Pgq ⊗ Dγ
g

M2 ∂Dγ
g

∂M2
= Cs Kγg + Pqg ⊗ Dγ

q + Pgg ⊗ Dγ
g (2)

for the singlet sector (Cs = 2Nf < e2
i >), with Dγ

q =
Nf�

i=1
(Dγ

qi
+ Dγ

q̄i
) and Dγ

ns,i =

(Dγ
qi

+ Dγ
q̄i
)−Dγ

q /Nf . The inhomogeneous kernels have a perturbative expansion

Kγa(z, M
2) =

α

2π

�
K(0)

γa (z) +
αs

2π
(M2) K(1)

γa (z) + · · ·
�

(3)

as do the homogeneous kernels Pab. The kernels Kγa are given in [2], and the
homogeneous ones can be obtained from [14]. Let us notice that the coupling of
the gluon to the photon can only take place through a quark loop ; therefore the
expansion (3) of Kγg starts at order O(αs).

In the moment space (f(n) =
�1

0 dz zn−1f(z)), (1) and (2) can easily be solved
[15,16,17]. For instance for the non-singlet distribution we obtain

Dγ,AN(n, M2) = C

�αs(M2)

αs(M2
0 )

dλ

β(λ)
Kγq(n) e

�αs(M2)
λ

dλ′

β(λ′)
P (n)

(4)

where we have dropped the suffixes ns and i. The suffix AN means anomalous,
a qualifier given by Witten to the solutions of eq. (1),(2) in order to characterize
their asymptotic behaviours. Indeed, with the definitions r = αs(M2)/αs(M2

0 )
and dn = 2P (0)(n)/β0, the solution (4) can be written, in the LL approximation,

Dγ,AN(n, M2) =
4π

αs(M2)

α

2π

C

β0

K(0)
γq (n)

1 − dn

�
1 − r1−dn

�
(5)

an expression which explicitly displays an asymptotic behavior proportional to
ln M2

Λ2 (in (5) we kept only the lowest order term of the β-function :

M2∂αs/∂M2 = β(αs) = −αs(β0αs/4π + β1(αs/4π)2 + · · ·)

3

The solutions to this equation require non perturbative input for 
some given scale. 
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The quark-to-photon fragmentation function satisfying the evolution equation reads,

D(NLO)
q→γ (x, µF ) = Dnp

q→γ(x, µ0) +

(

αe2
q

2π

)

ln

(

µ2
F

µ2
0

)

P (0)
q→γ(x)

+

(

αe2
q

2π

)

(

αs

2π

)

ln

(

µ2
F

µ2
0

)

P (1)
q→γ(x)

+
1

2

(

αe2
q

2π

)

(

αs

2π

)

ln2

(

µ2
F

µ2
0

)

P (0)
q→q ⊗ P (0)

q→γ(x)

+
(

αs

2π

)

ln

(

µ2
F

µ2
0

)

P (0)
q→q ⊗ Dnp

q→γ(x, µ0). (2.12)

This solution has some interesting properties. First, it is exact at the order of the cal-
culation i.e. O(ααs), and yields no terms of higher orders. The inclusive rate with this
solution implemented is therefore independent of the choice of the factorization scale µF .
The exact lowest order (O(α)) evolution equation and its solution D(LO)

q→γ (x, µF ) are natu-
rally contained in eq. (2.9) and eq. (2.12) respectively; they can be obtained by dropping all
terms proportional to αs in these equations.

In eq. (2.12), all a priori unknown non-perturbative contributions associated with the
fragmentation function are contained in Dnp

q→γ(x, µ0) which has to be determined from the
data. This non-perturbative input has been extracted from the ALEPH ‘photon’ + 1 jet
data [1] for ycut = 0.06 and z > 0.7. At lowest order, we have [1],

Dnp(LO)
q→γ (x, µ0) =

(

αe2
q

2π

)

(

−P (0)
q→γ(x) ln(1 − x)2 − 13.26

)

, (2.13)

with µ0 = 0.14 GeV while at next-to-leading order [6],

Dnp(NLO)
q→γ (x, µ0) =

(

αe2
q

2π

)

(

−P (0)
q→γ(x) ln(1 − x)2 + 20.8 (1 − x) − 11.07

)

, (2.14)

where µ0 = 0.64 GeV and for αs(MZ) = 0.124.

However, in the ‘photon’ + 1 jet data, the process independent fragmentation function
is extracted as a function of z, the fraction of the ‘photon’ jet momentum carried by the
photon. This is in general different from the variable relevant for the inclusive rate which is
xγ, the fraction of the beam momentum carried by the photon. To see this, let us consider
the lowest order process e+e− → qq̄γ, where the photon is emitted by the quark. For this
process the two variables xγ and z are defined as follows,

xγ =
2Eγ√

s
= 1 − yqq̄ = yqγ + yq̄γ, z =

Eγ

Eγ + Eq

=
yqγ + yq̄γ

1 + yqγ

(2.15)

where Eγ and Eq are respectively the energies carried by the photon and the quark in the
event and the dimensionless invariants yij = (pi + pj)2/s. Over most of phase space, the
two variables are clearly different and results derived for the ‘photon’ + 1 jet cross section

Commonly used Fragmentation functions are those of Bourhis, 
Fontannaz and Guillet (97) (BFG). 

In addition, a different approach was proposed by Gehrmann-De 
Ridder and Glover (98). 
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Fragmentation functions BFG  

BFG use NLL solutions to the 
DGLAP equation in which
logs of the form, 

Are summed to all orders. 
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The quark-to-photon fragmentation function satisfying the evolution equation reads,

D(NLO)
q→γ (x, µF ) = Dnp

q→γ(x, µ0) +

(

αe2
q

2π

)

ln

(

µ2
F

µ2
0

)

P (0)
q→γ(x)

+

(

αe2
q

2π

)

(

αs

2π

)

ln

(

µ2
F

µ2
0

)

P (1)
q→γ(x)

+
1

2

(

αe2
q

2π

)

(

αs

2π

)

ln2

(

µ2
F

µ2
0

)

P (0)
q→q ⊗ P (0)

q→γ(x)

+
(

αs

2π

)

ln

(

µ2
F

µ2
0

)

P (0)
q→q ⊗ Dnp

q→γ(x, µ0). (2.12)

This solution has some interesting properties. First, it is exact at the order of the cal-
culation i.e. O(ααs), and yields no terms of higher orders. The inclusive rate with this
solution implemented is therefore independent of the choice of the factorization scale µF .
The exact lowest order (O(α)) evolution equation and its solution D(LO)

q→γ (x, µF ) are natu-
rally contained in eq. (2.9) and eq. (2.12) respectively; they can be obtained by dropping all
terms proportional to αs in these equations.

In eq. (2.12), all a priori unknown non-perturbative contributions associated with the
fragmentation function are contained in Dnp

q→γ(x, µ0) which has to be determined from the
data. This non-perturbative input has been extracted from the ALEPH ‘photon’ + 1 jet
data [1] for ycut = 0.06 and z > 0.7. At lowest order, we have [1],

Dnp(LO)
q→γ (x, µ0) =

(

αe2
q

2π

)

(

−P (0)
q→γ(x) ln(1 − x)2 − 13.26

)

, (2.13)

with µ0 = 0.14 GeV while at next-to-leading order [6],

Dnp(NLO)
q→γ (x, µ0) =

(

αe2
q

2π

)

(

−P (0)
q→γ(x) ln(1 − x)2 + 20.8 (1 − x) − 11.07

)

, (2.14)

where µ0 = 0.64 GeV and for αs(MZ) = 0.124.

However, in the ‘photon’ + 1 jet data, the process independent fragmentation function
is extracted as a function of z, the fraction of the ‘photon’ jet momentum carried by the
photon. This is in general different from the variable relevant for the inclusive rate which is
xγ, the fraction of the beam momentum carried by the photon. To see this, let us consider
the lowest order process e+e− → qq̄γ, where the photon is emitted by the quark. For this
process the two variables xγ and z are defined as follows,

xγ =
2Eγ√

s
= 1 − yqq̄ = yqγ + yq̄γ, z =

Eγ

Eγ + Eq

=
yqγ + yq̄γ

1 + yqγ

(2.15)

where Eγ and Eq are respectively the energies carried by the photon and the quark in the
event and the dimensionless invariants yij = (pi + pj)2/s. Over most of phase space, the
two variables are clearly different and results derived for the ‘photon’ + 1 jet cross section

The non perturbative input is taken from ALEPH and HRS data and 
assumes a Vector-dominance model (VDM) of the photon. 
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Gluon fragmentation 
is more sensitive to 
NP input, especially 
at lower scales. 

Dependence on the 
fragmentation scale 
is small for up 
quarks. Gluon 
function changes 
shape more. 
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Fragmentation functions - GdRG

✤ Gehrmann-De Ridder and Glover (98) calculated the fragmentation 
functions using a fixed order expansion. The motivation being that 
logs of (1-z) can be compete with resumed logs for isolated photons. 

✤ They found at NLO, 
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The quark-to-photon fragmentation function satisfying the evolution equation reads,

D(NLO)
q→γ (x, µF ) = Dnp

q→γ(x, µ0) +

(

αe2
q

2π

)

ln
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µ2
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)

P (0)
q→γ(x)

+

(

αe2
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2π

)

(
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)
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0

)

P (1)
q→γ(x)

+
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(
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)

(

αs

2π

)

ln2

(

µ2
F

µ2
0

)

P (0)
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q→γ(x)

+
(

αs

2π

)

ln

(
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F
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0

)

P (0)
q→q ⊗ Dnp

q→γ(x, µ0). (2.12)

This solution has some interesting properties. First, it is exact at the order of the cal-
culation i.e. O(ααs), and yields no terms of higher orders. The inclusive rate with this
solution implemented is therefore independent of the choice of the factorization scale µF .
The exact lowest order (O(α)) evolution equation and its solution D(LO)

q→γ (x, µF ) are natu-
rally contained in eq. (2.9) and eq. (2.12) respectively; they can be obtained by dropping all
terms proportional to αs in these equations.

In eq. (2.12), all a priori unknown non-perturbative contributions associated with the
fragmentation function are contained in Dnp

q→γ(x, µ0) which has to be determined from the
data. This non-perturbative input has been extracted from the ALEPH ‘photon’ + 1 jet
data [1] for ycut = 0.06 and z > 0.7. At lowest order, we have [1],

Dnp(LO)
q→γ (x, µ0) =

(

αe2
q

2π

)

(

−P (0)
q→γ(x) ln(1 − x)2 − 13.26

)

, (2.13)

with µ0 = 0.14 GeV while at next-to-leading order [6],

Dnp(NLO)
q→γ (x, µ0) =

(

αe2
q

2π

)

(

−P (0)
q→γ(x) ln(1 − x)2 + 20.8 (1 − x) − 11.07

)

, (2.14)

where µ0 = 0.64 GeV and for αs(MZ) = 0.124.

However, in the ‘photon’ + 1 jet data, the process independent fragmentation function
is extracted as a function of z, the fraction of the ‘photon’ jet momentum carried by the
photon. This is in general different from the variable relevant for the inclusive rate which is
xγ, the fraction of the beam momentum carried by the photon. To see this, let us consider
the lowest order process e+e− → qq̄γ, where the photon is emitted by the quark. For this
process the two variables xγ and z are defined as follows,

xγ =
2Eγ√

s
= 1 − yqq̄ = yqγ + yq̄γ, z =

Eγ

Eγ + Eq

=
yqγ + yq̄γ

1 + yqγ

(2.15)

where Eγ and Eq are respectively the energies carried by the photon and the quark in the
event and the dimensionless invariants yij = (pi + pj)2/s. Over most of phase space, the
two variables are clearly different and results derived for the ‘photon’ + 1 jet cross section
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GdRG II 

✤ The NP pieces are fitted 
to ALEPH data at LO 
and at NLO. 

✤ The plot shows the LO 
fragmentation functions, 
which are sufficient to 
remove the collinear 
singularity 

✤ Biggest difference 
between BFG and GdRG 
is at  large z
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The quark-to-photon fragmentation function satisfying the evolution equation reads,

D(NLO)
q→γ (x, µF ) = Dnp

q→γ(x, µ0) +

(

αe2
q

2π

)
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(

µ2
F
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0

)

P (0)
q→γ(x)

+

(

αe2
q

2π

)

(

αs
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)
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0
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+
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)
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0
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+
(
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)
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0

)

P (0)
q→q ⊗ Dnp

q→γ(x, µ0). (2.12)

This solution has some interesting properties. First, it is exact at the order of the cal-
culation i.e. O(ααs), and yields no terms of higher orders. The inclusive rate with this
solution implemented is therefore independent of the choice of the factorization scale µF .
The exact lowest order (O(α)) evolution equation and its solution D(LO)

q→γ (x, µF ) are natu-
rally contained in eq. (2.9) and eq. (2.12) respectively; they can be obtained by dropping all
terms proportional to αs in these equations.

In eq. (2.12), all a priori unknown non-perturbative contributions associated with the
fragmentation function are contained in Dnp

q→γ(x, µ0) which has to be determined from the
data. This non-perturbative input has been extracted from the ALEPH ‘photon’ + 1 jet
data [1] for ycut = 0.06 and z > 0.7. At lowest order, we have [1],

Dnp(LO)
q→γ (x, µ0) =

(

αe2
q

2π

)

(

−P (0)
q→γ(x) ln(1 − x)2 − 13.26

)

, (2.13)

with µ0 = 0.14 GeV while at next-to-leading order [6],

Dnp(NLO)
q→γ (x, µ0) =

(

αe2
q

2π

)

(

−P (0)
q→γ(x) ln(1 − x)2 + 20.8 (1 − x) − 11.07

)

, (2.14)

where µ0 = 0.64 GeV and for αs(MZ) = 0.124.

However, in the ‘photon’ + 1 jet data, the process independent fragmentation function
is extracted as a function of z, the fraction of the ‘photon’ jet momentum carried by the
photon. This is in general different from the variable relevant for the inclusive rate which is
xγ, the fraction of the beam momentum carried by the photon. To see this, let us consider
the lowest order process e+e− → qq̄γ, where the photon is emitted by the quark. For this
process the two variables xγ and z are defined as follows,

xγ =
2Eγ√

s
= 1 − yqq̄ = yqγ + yq̄γ, z =

Eγ

Eγ + Eq

=
yqγ + yq̄γ

1 + yqγ

(2.15)

where Eγ and Eq are respectively the energies carried by the photon and the quark in the
event and the dimensionless invariants yij = (pi + pj)2/s. Over most of phase space, the
two variables are clearly different and results derived for the ‘photon’ + 1 jet cross section
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Impact of isolation 

✤ Upper limit on z is now pT 
dependent

✤ Typically 20 GeV => z > 0.8 
whereas 200 GeV => z > 0.98

of hadronic energy in a cone of size R0 =
√
(∆η2+∆φ2) around the photon. Experimental

isolation cuts are of the form,

∑

∈R0

ET (had) < εh p
γ
T or

∑

∈R0

ET (had) < Emax
T . (2.1)

Thus the transverse hadronic energy, ET (had), is limited to be some small fraction of the

transverse momentum of the photon or cut off at a fixed, small upper limit.

Matters are complicated both experimentally and theoretically by a second source of

prompt photons. A hard QCD parton can fragment non-perturbatively into a photon. As

a result a typical photon production cross section takes the form,

σ = σγ(M2
F ) +

∫

dz Da(z)σa(z,M2
F ). (2.2)

Here σγ represents the direct component of the photon production cross section whilst the

second term arises from the fragmentation of a parton a into a photon with momentum zpa.

Each contribution separately depends on the fragmentation scale, MF . The fragmentation

functions, taken as solutions to a DGLAP equation are of (leading) order αEW/αs. This

means that they are formally of the same order as the leading order direct term. At high-

energy hadron colliders, the QCD tree-level matrix element, coupled to a fragmentation

function can become the dominant source of prompt photon production. However, the

magnitude of these terms can be drastically reduced by applying the isolation cuts described

above. This is due to the fact that the fragmentation functions strongly favour the low

z region. Once the photon is isolated, z is typically large enough that the fragmentation

contribution drops substantially from the unisolated case.

A theoretical description of isolated photons is complicated because of the occurence

of collinear singularities between photons and final-state quarks. A finite cross section

is only obtained when these singularities are absorbed into the fragmentation functions.

As a result the only theoretically well-defined NLO quantity is the sum of the direct and

fragmentation contributions. Once these two contributions are included one can isolate the

photon using the cuts of Eq. (2.1) in an infrared safe way [6].

Although the underlying dynamics of photon fragmentation are non-perturbative the

evolution of the functions with the scale MF is perturbative. In the same manner as

the parton distribution functions, the fragmentation functions satisfy a DGLAP evolution

equation. In MCFM we use the fragmentation functions of ref. [7], which are NLL solutions

to the DGLAP equation.

Final state quark-photon collinear singularities are removed using a variant [6] of the

Catani-Seymour dipole subtraction formalism [8]. More specifically, we treat the photon in

the same manner as one would treat an identified final state parton (with the appropriate

change of colour and coupling factors). Integration of these subtraction terms over the

additional parton phase space yields pole pieces of the form [6],

Dγ
q = −

1

ε

Γ(1− ε)

Γ(1− 2ε)

(

4πµ2

M2
F

)

α

2π
e2qPγq(z) , (2.3)

– 4 –
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a result a typical photon production cross section takes the form,
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∫
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Here σγ represents the direct component of the photon production cross section whilst the

second term arises from the fragmentation of a parton a into a photon with momentum zpa.

Each contribution separately depends on the fragmentation scale, MF . The fragmentation

functions, taken as solutions to a DGLAP equation are of (leading) order αEW/αs. This

means that they are formally of the same order as the leading order direct term. At high-

energy hadron colliders, the QCD tree-level matrix element, coupled to a fragmentation

function can become the dominant source of prompt photon production. However, the

magnitude of these terms can be drastically reduced by applying the isolation cuts described

above. This is due to the fact that the fragmentation functions strongly favour the low

z region. Once the photon is isolated, z is typically large enough that the fragmentation

contribution drops substantially from the unisolated case.

A theoretical description of isolated photons is complicated because of the occurence

of collinear singularities between photons and final-state quarks. A finite cross section

is only obtained when these singularities are absorbed into the fragmentation functions.

As a result the only theoretically well-defined NLO quantity is the sum of the direct and

fragmentation contributions. Once these two contributions are included one can isolate the

photon using the cuts of Eq. (2.1) in an infrared safe way [6].

Although the underlying dynamics of photon fragmentation are non-perturbative the

evolution of the functions with the scale MF is perturbative. In the same manner as

the parton distribution functions, the fragmentation functions satisfy a DGLAP evolution

equation. In MCFM we use the fragmentation functions of ref. [7], which are NLL solutions

to the DGLAP equation.

Final state quark-photon collinear singularities are removed using a variant [6] of the

Catani-Seymour dipole subtraction formalism [8]. More specifically, we treat the photon in

the same manner as one would treat an identified final state parton (with the appropriate

change of colour and coupling factors). Integration of these subtraction terms over the

additional parton phase space yields pole pieces of the form [6],

Dγ
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✤ Upper limit on z is fixed

✤ Typically  z > 0.85                               

=
∑

a

∫ 1

0

dz

z
σ̂a,is

(pγ

z
;
zc

z
, R; µ, M, MF

)
Dγ

a(z; MF ) Θ(z − zc) (4.15)

+ σ̂γ,is(pγ ; zc, R; µ, M, MF ) .

The fragmentation function Dγ
a(z; MF ) is the same fragmentation function as appears in the non-

isolated case. In particular, it does not depend on the isolation parameters. The dependence on the
latter is fully embodied in the subprocess cross sections σ̂a,is and σ̂γ,is, which respectively give the
fragmentation and direct contributions to the hadronic cross section. We recall that the subprocess
cross sections σ̂a,is and σ̂γ,is are obtained by convoluting the parton densities of the colliding hadrons
with the cross sections σ̂a,is

ij and σ̂γ,is
ij of the partonic subprocesses i+ j → a+X and i+ j → γ +X .

We have

σ̂a,is
(pγ

z
;
zc

z
, R; µ, M, MF

)
=

∑

i,j

∫ 1

0
dx1 dx2 Gi/A(x1, M) Gj/B(x2, M)

× σ̂a,is
ij

(
x1pA, x2pB,

pγ

z
;
zc

z
, R; µ, M, MF

)
, (4.16)

and a similar formula relates σ̂γ,is to σ̂γ,is
ij .

Note that, according to eqs. (4.8) and (4.2), factorization holds at fixed Ecut
T . Since zc is obtained by

rescaling Ecut
T with the factor pT γ , the variable zc is a scaling variable with respect to factorization.

In other words, the partonic cross section in eq. (4.15) depends on pγ/z and zc/z. In particular, since
zc is constrained to be zc < 1 from eqs. (4.8) and (4.2), this constraint propagates to σ̂a,is(pγ/z; zc/z)
as zc/z < 1. We made this condition explicit in eq. (4.15).

In current experimental practice, ET max is sometimes expressed in terms of the dimensionless pa-
rameter εh defined by

εh =
ET max

pT γ
. (4.17)

This parameter is related to our scaling variable zc by

zc =
1

1 + εh
. (4.18)

The partonic cross sections in eq. (4.15) can be expanded as power series in αs analogously to the
fully inclusive case in eqs. (4.19) and (3.3). Actually, at the Born level, it is straightforward to show
[10] that σ̂γ,is and σ̂a,is exactly coincide with the corresponding expression for the non-isolated case,
apart from the overall constraint zc/z < 1 mentioned above. Up to NLO, we thus have

σ̂γ,is(p; zc, R; µ, M, MF )=

(
αs(µ)

π

)
σγ

Born(p; M) +

(
αs(µ)

π

)2

σγ,is
HO (p; zc, R; µ, M, MF ) , (4.19)

σ̂a,is(p; zc, R; µ, M, MF )=

(
αs(µ)

π

)2

σa
Born(p; M) +

(
αs(µ)

π

)3

σa,is
HO(p; zc, R; µ, M, MF ) . (4.20)

In the following sections we compute the NLO terms σγ,is
HO and σa,is

HO .

We can now consider the variant of the isolation criterion (1.1) with respect to the hadronic c.m.
energy. We can straightforwardly follow the previous discussion on transverse-energy isolation. The
transverse-energy isolation parameter Ecut

T in eq. (4.12) and the scaling variable zc in eq. (4.13) have
to be respectively replaced by the energy isolation parameter Ecut and the scaling variable zE

c :

Ecut = Emax + Eγ , (4.21)
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and R and Qcut
µ are external isolation parameters. The term in the square bracket on the right-hand

side of eq. (4.8) is the total (hadron+photon) four-momentum inside the cone of radius R. Thus we
have

pγ +
n+1∑

j=1

pj Θ(R − Rjγ)
pi ‖ pγ
→ (pγ + pi) +

n+1∑

j=1

j !=i

pj Θ(R − Rjγ) , (4.10)

and the function F (n+1)
{Qcut,R} fulfils eq. (4.6).

Then, we can observe that the momentum pγ of the photon and the isolation parameter Qµ in
eq. (4.1) are both kept fixed in the measurement of the cross section, so they can be regarded as
external variables that are independent of the momenta pA, pB, pγ , p1, . . . pn+1. Therefore, by simply
making the identification

Qcut
µ = Qµ + pµ γ , (4.11)

the isolation criterion in eq. (4.1) can be recast in the form of eq. (4.8), which manifestly satisfies
eq. (4.6).

The properties in eqs. (4.4)–(4.6) are sufficient to prove factorization in the case of e+e− collisions
[21]. In hadron–hadron collisions, the cross section is affected by additional long-distance phenomena
related to the non-perturbative binding of the colliding partons into the incoming hadrons. At the
parton level, these phenomena lead to initial-state collinear singularities that have to be absorbed and
factorized in the non-perturbative parton distributions of the hadrons HA and HB. The property
in eq. (4.7) guarantees that the photon-isolation criterion does not spoil the factorization of the
initial-state collinear singularities. Since the expression on the right-hand side of eq. (4.8) does not
explicitly depend either on the incoming momenta pA, pB or on any final-state momentum parallel
to them, the property in eq. (4.7) is thus evidently fulfilled by the generalized isolation criterion in
eq. (4.1).

The main conclusion of our discussion on the generalized isolation criterion in eq. (4.1) is that QCD
factorization is valid at any order in perturbation theory. Factorization for the isolation criterion
(1.1) with respect to the hadronic transverse energy (or to the hadronic energy) thus follows from
eq. (4.2). Note, however, that dσg−is/d4Q factorizes as a function of the fixed isolation parameter
Qcut

µ rather than as a function of Qµ (see eqs. (4.8) and (4.11)). As discussed below, this functional
dependence has influence upon the kinematical structure of the factorization formula for the isolated
cross sections.

We first discuss the isolation criterion (1.1) with respect to the hadronic transverse energy. Since
dσg−is/d4Q factorizes at fixed Qcut

µ = Qµ + pµ γ , the constrained integration in eq. (4.2) leads to a
dependence on the variable Ecut

T :

Ecut
T = ET max + ET γ = ET max + pT γ . (4.12)

The inclusive cross section is thus a function on the photon momentum pγ and on the isolation
parameters R and Ecut

T . It is convenient to define the variable

zc ≡
pT γ

Ecut
T

=
pT γ

ET max + pT γ
< 1 . (4.13)

The inclusive distribution dσis/dpT γdyγ with transverse-energy isolation, which we simply denote
by σis(pγ ; zc, R), fulfils a factorization formula analogous to eq. (3.1):

σis(pγ ; zc, R)=
∑

a

∫ 1

0

dz

z
σ̂a,is

(pγ

z
;
zc

z
, R; µ, M, MF

)
Dγ

a(z; MF ) + σ̂γ,is(pγ ; zc, R; µ, M, MF )(4.14)
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Final impact on distributions 

✤ Differences between 
fragmentation functions are at the 
level of 1 % on the scale of the 
total cross section.  

✤ Changes the shape however, 
typically by around 5 %, certainly 
worth comparing both against 
data. 

✤ Using Frixione isolation with 
naive parameters gives quite 
different results. 

✤ MSTW2008 NLO pdfs used here.  
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Prompt photon production: data

✤ ATLAS data from 
1108.0253 shows good 
agreement between SM 
predictions and data. 

✤ With isolation used z  > 
0.93 so fragmentation 
contribution is small. 

✤ Typical 10 % uncertainty 
from NLO calculation 
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Figure 2: Measured (dots) and expected (shaded area) inclusive prompt photon production cross-sections, and their ratio, as a function of the photon ET and in the
range (a) |η| < 0.6, (b) 0.6 ≤ |η| < 1.37, (c) 1.52 ≤ |η| < 1.81 and (d) 1.81 ≤ |η| < 2.37.
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Prompt photon production : data 

✤ CMS 1108.2044 
also observe nice 
agreement with 
Jetphox over a 
wider pT range.

✤ Theory overshoots 
in some of the 
lowest pT bins at 
present.  

22 11 Conclusion
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Figure 8: Measured isolated prompt photon differential cross sections (markers) as a function
of transverse energy in the four pseudorapidity regions and the predictions from JETPHOX 1.3.0
using the CT10 PDFs (histograms). The error bars are the quadrature sums of statistical and
systematic uncertainties on the measurements. The cross sections are scaled by the factors
shown in the legend for easier viewing.

wider ranges of photon ET and pseudorapidity, establishes a benchmark for photon identifica-
tion and background estimation, and determines the rate of one of the background processes
affecting searches for new physics involving photons.
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Di-photon Production at hadron 
colliders

✤ At LO two photons are 
produced by a quark pair 

✤ At higher orders in 
perturbation theory one 
encounters gluon initiated 
pieces 

✤ Separately gauge invariant, 
at higher operating energies 
can become a significant 
contribution.
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Higher order pieces to gg pieces

✤ In principle of order NNNLO, but large gluon flux means 
contribution is significant 

✤ Due to finite nature of gg initiated pieces have same singularity 
structure as one-loop amplitudes

✤ Possible to implement in general NLO MC setting. We use the 
results of Bern, De Freitas and Dixon (2001). 
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Di-photon production 

Figure 2: The NLO prediction for the diphoton cross section (in picobarns) as a function of the
centre of mass energy,

√
s. The cross sections are shown for three sets of cuts: only the basic cuts of

Eq. (4.3) (upper, blue curve); the staggered cuts of Eq. (4.4) (middle, magenta curve); the isolated
photon cross section, Eqs. (4.4, 4.5) (lower, red curve).

staggered transverse momentum cuts,

pγ1T > 40 GeV , pγ2T > 25 GeV , |ηγi | < 2.5 , (4.4)

and are isolated using a fixed maximum hadronic energy in a photon cone (c.f. Eq. (2.1)),

R0 = 0.4 , Emax
T = 3 GeV . (4.5)

The effect of these cuts, as a function of
√
s, is shown in Fig. 2. The effect of the staggered

cuts, Eq. (4.4), is to lower the cross section by approximately a factor of three compared

to the basic cuts of Eq. (4.3). The isolation condition, Eq. (4.5), further reduces the cross

section from the nominal unisolated prediction by about 9%. We note that this reduction

is smaller than one would typically expect when going from unisolated to isolated cross

sections. This is due mostly to the staggered cuts which favour the 3 particle final state.

In fact the cross section is rather insensitive to the amount of transverse hadronic

energy allowed in the isolation cone. This is illustrated in Fig. 3, which shows the de-

pendence of the cross section on the value of the isolation parameter Emax
T . As a result

of the small variation over this range, isolation cuts of the form E + δpγT where E and δ

are constants and δ " E are well-approximated theoretically by using a simple constant

Emax
T = E + δpγT,min.

For the cross sections presented so far we have chosen to set all scales entering our

calculation equal to the invariant mass of the two photons, µR = µF = MF ≡ µ0, with

– 8 –

Shown is the invariant mass 
of the photon pair over the 
range of interest for Higgs 
searches. Clearly the gg 
pieces are important at both 
LO and NLO. 

Somewhat surprising at 
first glance is the large K 
factor when going from LO 
to NLO. 
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Scale dependence of di photon 
production. 

✤ Large K factor is a 
result of the 
staggered cuts 
applied to 
photons.

✤ Can be seen by 
dominance of the 
qg type pieces 
which are real 
only at NLO. 

Figure 4: Dependence of the LO and NLO diphoton cross sections at
√
s = 7 TeV (in pb) on the

scale choice µ. We vary µ ≡ µR = µF = MF about the central scale choice µ0 = mγγ . Total cross
sections are shown in black whilst colours are used to denote the scale dependence of particular initial
states: quark-antiquark (red), quark-gluon (magenta), gluon-gluon (blue). Photons are defined and
isolated according to Eqs. (4.4, 4.5).

5. W±γ production

5.1 Description of the calculation

The production of a W boson and a photon proceeds at Born level via quark-antiquark

annihilation,

q + q̄′ → W±γ . (5.1)

This process was first calculated several decades ago [31], with the effect of radiative correc-

tions subsequently accounted for in ref. [32]. Since then the subject has been revisited sev-

eral times. A fully differential Monte Carlo implementation of the NLO result is presented

in ref. [33], making use of the helicity amplitudes calculated in ref. [34]. Spin correlations

in the decay of the W boson are included although no photon radiation from the lepton

is allowed. Electroweak corrections to this process [35] and NLO QCD corrections to the

related Wγ+jet final state have also been computed [36].

In this section we present results using the current implementation of this process in

MCFM. The diagrams that contribute to this process at leading order are shown in Fig. 6.

The next-to-leading order diagrams are obtained by dressing these diagrams with both

virtual and real gluon radiation. The contribution to the full amplitude arising from three

of these diagrams is readily obtained from the helicity amplitudes of ref. [34]. The final

diagram, including appropriate dressings that are straightforward to compute, accounts for

the additional contribution from photon radiation in the leptonic decay of the W boson.

The resulting amplitude retains full spin correlations in the decay.

– 10 –
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Staggering Photons 

✤ Interesting feature for 
back to back photons. 

✤ Arises from restricted 
phase space for real 
corrections. (Frixione, 
Ridolfi 97). 

✤ Would be very 
interesting to see this 
plot made with LHC 
data!
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Conclusions 

✤ I have presented an overview of photon physics at the LHC, concentrating on the role of 
isolation, fragmentation and higher order corrections. 

✤ Using current isolation conditions z is constrained to be close to 1 where the fragmentation 
functions are small. Different fragmentation functions yield similar results, but GdRG predicts 
harder photons than BFG.  

✤ Frixione isolation can be used, probably some tuning required to obtain the best results. I 
personally am not sure that this is something experimentalists have to pursue.  

✤ Data agrees well with theory within uncertainties, typically around the 10 % at NLO. 

✤ Diphotons are also interesting, lots of stagger applied to photons can lead to large K factors. 
Although with no stagger NLO breaks down due to large logs of soft gluons. 

✤ Higher orders in gg give a relatively large contribution, even tho they are NNNLO in 
perturbation theory.
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