ME+PS: CKKW & MLM	NLO+PS: Powheg & MC@NLO	MENLOPS	Conclusions

Recent Progress in Matching and Merging

Marek Schönherr

IKTP TU Dresden

23/08/2011

Marek Schönherr

Recent Progress in Matching and Merging

ME+PS: CKKW & MLM	NLO+PS: Powheg & MC@NLO	MENLOPS	Conclusions

Outline

ME+PS: CKKW & MLM

2 NLO+PS: POWHEG & MC@NLO

3 MENLOPS

4 Conclusions

Marek Schönherr Recent Progress in Matching and Merging

(NLO)ME vs. PS

Approaches to real emission corrections

(NLO) Matrix Element

- + **Exact** to fixed order
- Perturbative series breaks down due to large logarithms

Parton Shower

- + Resums logarithms to all orders
 - Only approximation to real emission ME

Combine Advantages \Rightarrow ME \otimes PS, NLO \otimes PS, MENLOPS

- avoid double-counting by dividing phase space $\Rightarrow Q_{\text{cut}}$
- ME to describe hard radiation, PS for intrajet evolution

Marek Schönherr

ME+PS: CKKW & MLM

2 NLO+PS: Powheg & MC@NLO

B MENLOPS

4 Conclusions

$$\langle O \rangle = \int \mathrm{d}\Phi_B \, B(\Phi_B) \left[\Delta(t_0) \; O(\Phi_B) + \int \mathrm{d}\Phi_{R|B} \, \mathcal{K}(t,z,\phi) \, \Delta(t) \; O(\Phi_R) \right]$$

- ordinary LO+PS restricted to soft emissions with $Q < Q_{\rm cut}$
- phase space $Q > Q_{cut}$ filled by ME
- supplement Sudakov suppression $\Delta(t)$ to recover unitarity at (N)LL level
- preserves LO accuracy of every ME emission and LL accuracy of PS
- PS Sudakov form factor $\Delta(t) = \exp\left[-\sum\int \mathrm{d}\Phi_{R|B}\,\mathcal{K}(t,z,\phi)\right]$
- unitarity of PS violated at $\mathcal{O}(\alpha_s)$ beyond (N)LL

$$\begin{split} \langle O \rangle \ = \ \int \mathrm{d} \Phi_B \, B(\Phi_B) \left[\Delta(t_0) \; O(\Phi_B) \right. \\ \left. + \int \mathrm{d} \Phi_{R|B} \, \mathcal{K}(t,z,\phi) \, \Delta(t) \, \Theta(Q_{\mathsf{cut}} - Q) \; O(\Phi_R) \right] \end{split}$$

- ordinary LO+PS restricted to soft emissions with $Q < Q_{\rm cut}$

- phase space $Q > Q_{cut}$ filled by ME
- supplement Sudakov suppression $\Delta(t)$ to recover unitarity at (N)LL level
- preserves LO accuracy of every ME emission and LL accuracy of PS
- PS Sudakov form factor $\Delta(t) = \exp\left[-\sum \int \mathrm{d}\Phi_{R|B}\,\mathcal{K}(t,z,\phi)\right]$
- unitarity of PS violated at $\mathcal{O}(\alpha_s)$ beyond (N)LL

- ordinary LO+PS restricted to soft emissions with $Q < Q_{\rm cut}$
- phase space $Q > Q_{\text{cut}}$ filled by ME
- supplement Sudakov suppression $\Delta(t)$ to recover unitarity at (N)LL level
- preserves LO accuracy of every ME emission and LL accuracy of PS
- PS Sudakov form factor $\Delta(t) = \exp\left[-\sum\int \mathrm{d}\Phi_{R|B}\,\mathcal{K}(t,z,\phi)\right]$
- unitarity of PS violated at $\mathcal{O}(\alpha_s)$ beyond (N)LL

$$\begin{split} \langle O \rangle \ &= \ \int \mathrm{d} \Phi_B \, B(\Phi_B) \left[\Delta(t_0) \, O(\Phi_B) \right. \\ &+ \underbrace{\int \mathrm{d} \Phi_{R|B} \, \mathcal{K}(t,z,\phi) \, \Delta(t) \, \Theta(Q_{\mathsf{cut}} - Q)}_{\mathsf{H}} \, O(\Phi_R) \\ &+ \underbrace{\int \mathrm{d} \Phi_{R|B} \, \frac{R(\Phi_R)}{B(\Phi_B)} \, \Delta(t) \, \Theta(Q - Q_{\mathsf{cut}})}_{\mathsf{ME \ domain}} \, O(\Phi_R) \right] \end{split}$$

- ordinary LO+PS restricted to soft emissions with $Q < Q_{\rm cut}$
- phase space $Q > Q_{\text{cut}}$ filled by ME
- supplement Sudakov suppression $\Delta(t)$ to recover unitarity at (N)LL level
- preserves LO accuracy of every ME emission and LL accuracy of PS
- PS Sudakov form factor $\Delta(t) = \exp\left[-\sum\int \mathrm{d}\Phi_{R|B}\,\mathcal{K}(t,z,\phi)\right]$
- unitarity of PS violated at $\mathcal{O}(\alpha_s)$ beyond (N)LL

CKKW-like implementations

JHEP05(2009)053, JHEP11(2009)038, JHEP11(2001)063, JHEP08(2002)015, JHEP05(2002)046, JHEP07(2005)054

- direct implementation
- phase space separation via arbitrary parton-measure \rightarrow PS and ME treated alike
- Sudakov weight via vetoed shower
- truncated showering if \boldsymbol{Q} and \boldsymbol{t} differ

MLM-like implementations

JHEP01(2007)013,NBP632(2002)343,JHEP02(2009)017

- geometric approximation
- phase space separation via

 → parton-measure on ME multiplicitywise
 → jet-measure on PS after full PS
- Sudakov weight via "jet matching"

Marek Schönher

JHEP11(2009)038

Importance of truncated showering

- truncated showering necessary to maintain logarithmic accuracy if separation measure deviates from evolution measure
- most prominent in HERWIG/HERWIG++: $Q_{\text{cut}} \sim y_{ij}$ vs. $t \sim \theta^2$
- studied by [Hamilton, Richardson, Tully] JHEP11(2009)038

Importance of truncated showering

- ATLAS-CONF-2011-038
- gap fraction sensitive to resummation effects
- resummation should be identical for HERWIG and ALPGEN+HERWIG
- proper phase space separation crucial
 - \rightarrow neither holes nor doubly filled regions
- truncated showering crucial

SHERPA – DIS

 \Rightarrow higher-order MEs needed to open radiative phase space data from H1 $_{\mathsf{PLB542}(2002)193\text{-}206}$

NLO+PS: POWHEG & MC@NLO

ME+PS: CKKW & MLM

2 NLO+PS: POWHEG & MC@NLO

B MENLOPS

4 Conclusions

MC@NLO Algorithm

$$\begin{split} \langle O \rangle = & \int \mathrm{d}\Phi_B \, B(\Phi_B) \bigg[\Delta(t_0) \, O(\Phi_B) + \sum \int_{t_0} \mathrm{d}\Phi_{R|B} \, \mathcal{K}(t, z, \phi) \, \Delta(t) \, O(\Phi_R) \bigg] \\ & + \int \mathrm{d}\Phi_R \, \left[R(\Phi_R) - R^{(\mathrm{PS})}(\Phi_R) \right] \, O(\Phi_R) \end{split}$$

• [Frixione, Webber] JHEP06(2002)029

- PS approximation $R^{\rm (PS)} = \sum B \cdot \mathcal{K}$
- modified subtraction with $\bar{B}^{(PS)} = B + V + \int d\Phi_{R|B} R^{(PS)}$ \rightarrow parton shower needs to be correct in the soft limit
- resums exactly as the parton shower
- implemented for HERWIG/HERWIG++ and PYTHIA showers [Frixione etal.] JHEP01(2011)053, [Torelli etal.] JHEP04(2010)110
- correction events to restore NLO accuracy
- \Rightarrow preserves both NLO and (N)LL accuracy

Marek Schönherr

MC@NLO Algorithm

$$\begin{split} \langle O \rangle = & \int \mathrm{d}\Phi_B \, \bar{B}^{(\mathrm{PS})}(\Phi_B) \bigg[\Delta(t_0) \, O(\Phi_B) + \sum \int_{t_0} \mathrm{d}\Phi_{R|B} \, \frac{R^{(\mathrm{PS})}(\Phi_R)}{B(\Phi_B)} \, \Delta(t) \, O(\Phi_R) \bigg] \\ & + \int \mathrm{d}\Phi_R \, \left[R(\Phi_R) - R^{(\mathrm{PS})}(\Phi_R) \right] \, O(\Phi_R) \end{split}$$

• [Frixione, Webber] JHEP06(2002)029

- PS approximation $R^{\rm (PS)} = \sum B \cdot \mathcal{K}$
- modified subtraction with $\bar{B}^{(PS)} = B + V + \int d\Phi_{R|B} R^{(PS)}$ \rightarrow parton shower needs to be correct in the soft limit
- resums exactly as the parton shower
- implemented for HERWIG/HERWIG++ and PYTHIA showers [Frixione etal.] JHEP01(2011)053, [Torelli etal.] JHEP04(2010)110
- correction events to restore NLO accuracy
- \Rightarrow preserves both NLO and (N)LL accuracy

JHEP06(2002)029

MC@NLO Algorithm

$$\begin{split} \langle O \rangle = & \int \mathrm{d}\Phi_B \, \bar{B}^{(\mathrm{PS})}(\Phi_B) \bigg[\Delta(t_0) \, O(\Phi_B) + \sum \int_{t_0} \mathrm{d}\Phi_{R|B} \, \frac{R^{(\mathrm{PS})}(\Phi_R)}{B(\Phi_B)} \, \Delta(t) \, O(\Phi_R) \bigg] \\ & + \int \mathrm{d}\Phi_R \, \left[R(\Phi_R) - R^{(\mathrm{PS})}(\Phi_R) \right] \, O(\Phi_R) \end{split}$$

- [Frixione, Webber] JHEP06(2002)029
- PS approximation $R^{\rm (PS)} = \sum B \cdot \mathcal{K}$
- modified subtraction with $\bar{B}^{(PS)} = B + V + \int d\Phi_{R|B} R^{(PS)}$ \rightarrow parton shower needs to be correct in the soft limit
- resums exactly as the parton shower
- implemented for HERWIG/HERWIG++ and PYTHIA showers [Frixione etal.] JHEP01(2011)053, [Torelli etal.] JHEP04(2010)110
- correction events to restore NLO accuracy

\Rightarrow preserves both NLO and (N)LL accuracy

IHEP06(2002)029

MC@NLO Algorithm

$$\begin{split} \langle O \rangle = & \int \mathrm{d}\Phi_B \, \bar{B}^{(\mathrm{PS})}(\Phi_B) \bigg[\Delta(t_0) \, O(\Phi_B) + \sum \int_{t_0} \mathrm{d}\Phi_{R|B} \, \frac{R^{(\mathrm{PS})}(\Phi_R)}{B(\Phi_B)} \, \Delta(t) \, O(\Phi_R) \bigg] \\ & + \int \mathrm{d}\Phi_R \, \left[R(\Phi_R) - R^{(\mathrm{PS})}(\Phi_R) \right] \, O(\Phi_R) \end{split}$$

- [Frixione, Webber] JHEP06(2002)029
- PS approximation $R^{\rm (PS)} = \sum B \cdot \mathcal{K}$
- modified subtraction with $\bar{B}^{(PS)} = B + V + \int d\Phi_{R|B} R^{(PS)}$ \rightarrow parton shower needs to be correct in the soft limit
- resums exactly as the parton shower
- implemented for HERWIG/HERWIG++ and PYTHIA showers [Frixione etal.] JHEP01(2011)053, [Torelli etal.] JHEP04(2010)110
- correction events to restore NLO accuracy

\Rightarrow preserves both NLO and (N)LL accuracy

JHEP01(2011)053,EPJC67(2010)617-636

MC@NLO

TDBOC	TW	TT -	TT .	Colo	Breese
1250.7/	11	11.1	112	Spin	
-1350-1L				~	$H_1H_2 \rightarrow (Z/\gamma \rightarrow) l_{\text{IL}} l_{\text{IL}} + \Lambda$
-1360-1L				~	$H_1H_2 \rightarrow (Z \rightarrow)l_{IL}l_{IL} + X$
-1370-IL				~	$H_1H_2 \rightarrow (\gamma^* \rightarrow)l_{IL}l_{IL} + X$
-1460-IL				1	$H_1H_2 \rightarrow (W^+ \rightarrow)l^+_{IL}\nu_{IL} + X$
-1470-IL				1	$H_1H_2 \rightarrow (W^- \rightarrow)l^{IL}\bar{\nu}_{IL} + X$
-1396				×	$H_1H_2 \rightarrow \gamma^* (\rightarrow \sum_i f_i f_i) + X$
-1397				×	$H_1H_2 \rightarrow Z^0 + X$
-1497				×	$H_1H_2 \rightarrow W^+ + X$
-1498				×	$H_1H_2 \rightarrow W^- + X$
-1600-TD	-		-		$H, H_0 \rightarrow H^0 + Y$
-1705			-		$H_1H_2 \rightarrow H_1 + X$ $H_1H_2 \rightarrow hh \pm X$
1706	-	7	7	×	$H_1H_2 \rightarrow 60 + M$ $H_1H_2 \rightarrow H + V$
2000 TC	-	7	1	÷.	$H_1H_2 \rightarrow H + A$
-2000-10		/	-	^	$H_1H_2 \rightarrow t/t + \Lambda$
-2001-1C		(*	$H_1H_2 \rightarrow t + \lambda$
-2004-1C		1		*	$H_1H_2 \rightarrow t + X$
-2030		7	7	×	$H_1H_2 \rightarrow tW^-/tW^+ + X$
-2031		7	7	×	$H_1H_2 \rightarrow \bar{t}W^+ + X$
-2034		7	7	×	$H_1H_2 \rightarrow tW^- + X$
-2040		7	7	X	$H_1H_2 \rightarrow tH^-/\bar{t}H^+ + X$
-2041		7	7	×	$H_1H_2 \rightarrow tH^+ + X$
-2044		7	7	x	$H_1H_2 \rightarrow tH^- + X$
-2600-ID	1	7	-	×	$H_1H_2 \rightarrow H^0W^+ + X$
-2600-TD	1	i	-	1	$H_1H_2 \rightarrow H^0(W^+ \rightarrow)l^+\nu_1 + X$
-2600-TD	-1	7		x	$H_1 H_2 \rightarrow H^0 W^- + X$
-2600-TD	-1	i	-	1	$H_1H_2 \rightarrow H^0(W^- \rightarrow)l^-\bar{\nu} + X$
=2700=TD	0	7	-	x x	$H_1H_2 \rightarrow H^0Z \pm Y$
=2700=TD	0		-	1	$H_1H_2 \rightarrow H^0(Z \rightarrow)UU + X$
2000 10	- V	7	7	· ·	$H_1H_2 \to H^+(L^-)\mu_1\mu_1 + M^-$
-2850	-	7	7	÷.	$H_1H_2 \rightarrow W W \mp A$ $H H \rightarrow 20.20 \pm V$
-2000	-	7	7	- <u>-</u>	$H_1H_2 \rightarrow L^-L^- \mp A$ $H^-H^- \rightarrow W^+ 2^0 + V$
-2870		7	1	÷	$H_1H_2 \rightarrow W^-Z^+ + \Lambda$ $H^-H^- = W^-Z^0 + V$
-2000		/	1	^	$H_1H_2 \rightarrow W Z^+ + \Lambda$
-1706		2	3	~	$H_1H_2 \rightarrow (t \rightarrow)b_k f_i f'_i (t \rightarrow)b_l f_j f'_j + X$
-2000-IC		i		~	$H_1H_2 \rightarrow (t \rightarrow)b_k f_i f'_i/(t \rightarrow)b_k f_i f'_i + X$
-2001-IC		i		~	$H_1H_2 \rightarrow (t \rightarrow)b_kf_if'_i + X$
-2004-IC		i		1	$H_1H_2 \rightarrow (t \rightarrow)b_k f_i f'_i + X$
-2030		i	j	~	$H_1H_2 \rightarrow (t \rightarrow)b_k f_i f'_i (W^- \rightarrow)f_j f'_j$
					$(\bar{t} \rightarrow)\bar{b}_k f_i f'_i (W^+ \rightarrow) f_j f'_j + X$
-2031		i	j	1	$H_1H_2 \rightarrow (\bar{t} \rightarrow)\bar{b}_k f_i f'_i (W^+ \rightarrow)f_j f'_j + X$
-2034		i	i	1	$H_1H_2 \rightarrow (t \rightarrow)b_k f_i f'_i (W^- \rightarrow)f_i f'_i + X$
-2040		i		1	$H_1H_2 \rightarrow (t \rightarrow)b_k f_i f'_i H^-/$
					$(\bar{t} \rightarrow)\bar{b}_{\bar{t}}f_{\bar{t}}f'_{\bar{t}}H^+ + X$
-2041		i		1	$H_1H_2 \rightarrow (\bar{t} \rightarrow)b_1f_1f'H^+ + X$
-2044	-	i		1	$H_1H_2 \rightarrow (t \rightarrow)b_1 f_1 f'_1H^- + X$
-2850		i	i	1	$H_1H_2 \rightarrow (W^+ \rightarrow)l^+ \nu_i (W^- \rightarrow)l^- \bar{\nu}_i + X$
-2870	-	1	1	1	$H_1H_2 \rightarrow (W^+ \rightarrow)l^+w(Z^0 \rightarrow)l^+l^+ + X$
2890	<u> </u>	1	1	1	$H_1H_2 \rightarrow (W^+ \rightarrow)l^+ \nu_1 (Z^- \rightarrow)l_1 l_1 + X$ $H_1H_2 \rightarrow (W^+ \rightarrow)l^+ \nu_1 (Z^0 \rightarrow)l' l' + Y$
-2680		1	1	· ·	$\pi_1 \pi_2 \rightarrow (W^- \rightarrow) l_i \nu_i (Z^- \rightarrow) l_j l_j + X$

Marek Schönherr

aMC@NLO

- automated version of MC@NLO
- uses MADGRAPH/MADLOOP framework

[Alwall etal.] JHEP09(2007)028 [Frederix etal.] JHEP05(2011)044

- results published for $pp \rightarrow ttH$ [Frederix etal.] PLB 701(2011)427-433 and $pp \rightarrow V + b\bar{b}$ [Frederix etal.] arXiv:1106.6019
- code not public yet

POWHEG Algorithm

$$\langle O \rangle = \int \mathrm{d}\Phi_B \,\bar{B}(\Phi_B) \left[\Delta^{(\mathrm{ME})}(t_0) \,O(\Phi_B) + \sum \int_{t_0} \mathrm{d}\Phi_{R|B} \,\frac{R(\Phi_R)}{B(\Phi_B)} \,\Delta^{(\mathrm{ME})}(t) \,O(\Phi_R) \right]$$

- [Nason] JHEP11(2004)040, [Frixione etal.] JHEP11(2007)070
- NLO event weight $\bar{B} = B + V + \int d\Phi_{R|B} R$ defined on Φ_B \rightarrow wrong observable dependence on $R(\Phi_R)$
- POWHEG Sudakov $\Delta^{(ME)}(t) = \exp\left[-\sum \int_t d\Phi_{R|B} \frac{R(\Phi_R)}{B(\Phi_B)}\right]$ \rightarrow intricate cancellation to correct observable dependence on $R(\Phi_I)$
- $\Delta^{\rm (ME)} = \Delta^{\rm (PS)}$ at LL level

 \rightarrow resums as PS if interface ensures continuous evolution in phase space and colour space

- \rightarrow importance of truncated showering [Nason] JHEP11(2004)040
- \Rightarrow preserves both NLO and (N)LL accuracy

POWHEG Algorithm

$$\langle O \rangle = \int \mathrm{d}\Phi_B \,\bar{B}(\Phi_B) \left[\Delta^{(\mathrm{ME})}(t_0) \,O(\Phi_B) + \sum \int_{t_0} \mathrm{d}\Phi_{R|B} \,\frac{R(\Phi_R)}{B(\Phi_B)} \,\Delta^{(\mathrm{ME})}(t) \,O(\Phi_R) \right]$$

- [Nason] JHEP11(2004)040, [Frixione etal.] JHEP11(2007)070
- NLO event weight $\bar{B} = B + V + \int d\Phi_{R|B} R$ defined on Φ_B \rightarrow wrong observable dependence on $R(\Phi_R)$
- POWHEG Sudakov $\Delta^{(ME)}(t) = \exp\left[-\sum \int_t d\Phi_{R|B} \frac{R(\Phi_R)}{B(\Phi_B)}\right]$ \rightarrow intricate cancellation to correct observable dependence on $R(\Phi_R)$
- $\Delta^{\rm (ME)} = \Delta^{\rm (PS)}$ at LL level

 \rightarrow resums as PS if interface ensures continuous evolution in phase space and colour space

- \rightarrow importance of truncated showering [Nason] JHEP11(2004)040
- \Rightarrow preserves both NLO and (N)LL accuracy

POWHEG Algorithm

$$\langle O \rangle = \int \mathrm{d}\Phi_B \,\bar{B}(\Phi_B) \left[\Delta^{(\mathrm{ME})}(t_0) \,O(\Phi_B) + \sum \int_{t_0} \mathrm{d}\Phi_{R|B} \,\frac{R(\Phi_R)}{B(\Phi_B)} \,\Delta^{(\mathrm{ME})}(t) \,O(\Phi_R) \right]$$

- [Nason] JHEP11(2004)040, [Frixione etal.] JHEP11(2007)070
- NLO event weight $\bar{B} = B + V + \int d\Phi_{R|B} R$ defined on Φ_B \rightarrow wrong observable dependence on $R(\Phi_R)$
- POWHEG Sudakov $\Delta^{(ME)}(t) = \exp\left[-\sum \int_t d\Phi_{R|B} \frac{R(\Phi_R)}{B(\Phi_B)}\right]$ \rightarrow intricate cancellation to correct observable dependence on $R(\Phi_R)$
- $\Delta^{\rm (ME)} = \Delta^{\rm (PS)}$ at LL level

 \rightarrow resums as PS if interface ensures continuous evolution in phase space and colour space

 \rightarrow importance of truncated showering [Nason] JHEP11(2004)040

 \Rightarrow preserves both NLO and (N)LL accuracy

Ambiguities/freedom/choices in the exponentiation

- divide $R(\Phi_R)$ into singular and regular [Alioli etal.] JHEP07(2008)060

$$R(\Phi_R) = R^{(s)}(\Phi_R) + R^{(r)}(\Phi_R)$$

then

- different $K\text{-}\mathsf{factors}$ for reweighted PS, different exponentiation behaviour \rightarrow beyond NLO and (N)LL accuracy
- specific choice:

 $R^{\rm (s)}(\Phi_R) = R^{\rm (PS)}(\Phi_R) \quad \Rightarrow \quad {\sf MC@NLO[Frixione, Webber]JHEP06(2002)029}$

Recent Progress in Matching and Merging

POWHEG-BOX – toolkit for POWHEG implementations

Toolkit to implement new process given

- Born matrix elements, flavour structures & phase space
- colour and spin correlated Born matrix elements B_{ij} and $B_{\mu
 u}$
- virtual matrix elements
- real matrix elements and flavour structures
- Born colour structures in $N_c \to \infty$
- \Rightarrow internal FKS subtraction and real emission phase space integration
- \Rightarrow generates radiation using POWHEG Sudakov form factor

Wide range of processes

- V, VV, $Q\bar{Q}$, $Wb\bar{b}$, W^+W^+jj , $H(\mathsf{GF},\mathsf{VBF})$, single-top
- Vj, dijets
- $t\bar{t}H$, $t\bar{t}j$
- interface to HERWIG/PYTHIA
 - \rightarrow truncated showering needed but not available

Powheg-Box – $pp \rightarrow \ell^+ \ell^- j$

$$p\bar{p} \to Z + j$$

 $D \emptyset Z + j$ analyses Phys.Lett.B669(2008)278-286 Phys.Lett.B682(2010)370-380

good description of data

some dependence on PYTHIA tune

POWHEG-BOX – $pp \rightarrow Wbb$

 $pp \to W b \bar{b}$

large ratio \overline{B}/B \rightarrow large effect of choice what to exponentiate and what to generate explicitly

small deviation of POWHEG-BOX⊗HERWIG & POWHEG-BOX⊗PYTHIA

POWHEG-BOX – dijets

ATLAS-CONF-2011-047:

- $p_{\perp,j}$ supposedly described at NLO \otimes LL
- $\sim 20\%$ difference between using HERWIG or PYTHIA for parton showering

Issues for logarithmic accuracy:

- truncated showering implemented neither for HERWIG or PYTHIA interfaces
 → especially important for HERWIG's angular ordering
- consistent settings for PDFs, μ_R and μ_F scales, etc.
- no conclusive answers so far

Marek Schönher

POWHEG in HERWIG++

- Processes:
 - *V*, *VV*, *H*(GF,VBF), *VH*
 - $ee \rightarrow q\bar{q}$, DIS
 - $H
 ightarrow q \bar{q}$ decay
- includes truncated showering

JHEP04(2011)024

POWHEG – Automation in SHERPA

- [Höche,Krauss,MS,Siegert] JHEP04(2011)024
- reinterprete POWHEG as ME reweighted PS with local K-factor
- NLO event weight $\bar{B} = B + V + I + \int d\Phi_{R|B} [R S]$
 - Born, Real from automated tree-level generators
 - automated phase space
 - Virtual e.g. via Binoth Les Houches Accord CPC181(2010)1612 \rightarrow for results here BLACKHAT & MCFM libraries interfaced
 - Integrated/Subtraction terms from automated implementation of Catani-Seymour subtraction terms EPJC53(2008)501
 - dedicated automated CS-like phase-space for R-S integral
- correct PS to ME via weight $w(\Phi_R)=R(\Phi_R)/R^{\rm (PS)}(\Phi_R)$
 - \rightarrow alleviated by good approximation of CSSHOWER++ JHEP03(2008)038
 - \rightarrow truncated showering not needed
- included since SHERPA-1.2.3 (Nov '10)

SHERPA – inclusive W/Z production at Tevatron

Sherpa – Non-trivial colour structures – $pp \rightarrow Wj$

- POWHEG method sufficiently general
- Subtraction and PS need to have identical phase space maps
- $N_c \rightarrow \infty$ in parton shower vs. $N_c = 3$ in matrix elements
 - \rightarrow no issue for $O(\Phi_R)$ if parton shower can fill full phase space
 - $\rightarrow O(\Phi_B)$ formally at LC-NLO \otimes (N)LL accuracy

inclusive jet multiplicity and p_{\perp} of 1st & 2nd jet in W+ jets events, data from ATLAS Phys.Lett.B698(2011)325-345

Marek Schönherr

Recent Progress in Matching and Merging

SHERPA – $p\bar{p} \rightarrow Zj$ at Tevatron

 $p\bar{p} \to Z+j$

 $D \emptyset \ Z + j$ analyses Phys.Lett.B669(2008)278-286 Phys.Lett.B682(2010)370-380

LC-NLO⊗(N)LL accuracy

Marek Schönherr

MENLOPS

ME+PS: CKKW & MLM

2 NLO+PS: Powheg & MC@NLO

3 MENLOPS

4 Conclusions

JHEP06(2010)039, arXiv:1009.1127

Multijet Merging with NLO MEs – MENLOPS

$$\begin{split} \langle O \rangle &= \int \mathrm{d}\Phi_B \, \bar{B}(\Phi_B) \left[\Delta^{(\mathrm{ME})}(t_0) \, O(\Phi_B) \right]_{\mathsf{POWHEG domain}} \\ &+ \int \mathrm{d}\Phi_{R|B} \, \frac{R(\Phi_R)}{B(\Phi_B)} \Delta^{(\mathrm{ME})}(t) \, \Theta(Q_{\mathsf{cut}} - Q) \, O(\Phi_R) \\ &+ \int \mathrm{d}\Phi_{R|B} \, \frac{R(\Phi_R)}{B(\Phi_B)} \Delta^{(\mathrm{PS})}(t) \, \Theta(Q - Q_{\mathsf{cut}}) \, O(\Phi_R) \right]_{\mathsf{ME domain}} \end{split}$$

- [Hamilton,Nason] JHEP06(2010)039, [Höche,Krauss,MS,Siegert] arXiv:1009.1127
- POWHEG domain restricted to soft emissions $Q < Q_{cut}$ \Rightarrow NLO accuracy preserved for inclusive observables
- ME⊗PS used for hard emission & higher order emissions
 ⇒ preserves LO accuracy of every ME emission & LL accuracy of
- higher order emissions receive local K-factor $\frac{B(\Phi_B)}{B(\Phi_B)}$
- inherits unitarity violation from $\mathsf{ME}{\otimes}\mathsf{PS}$
 - ightarrow pushed to ${\cal O}(lpha_s^2)$ beyond (N)LL

JHEP06(2010)039, arXiv:1009.1127

Multijet Merging with NLO MEs – MENLOPS

- [Hamilton,Nason] JHEP06(2010)039, [Höche,Krauss,MS,Siegert] arXiv:1009.1127
- POWHEG domain restricted to soft emissions Q < Q_{cut} ⇒ NLO accuracy preserved for inclusive observables
- ME⊗PS used for hard emission & higher order emissions

 \Rightarrow preserves LO accuracy of every ME emission & LL accuracy of PS

- higher order emissions receive local K-factor $\frac{\bar{B}(\Phi_B)}{B(\Phi_B)}$
- inherits unitarity violation from $\mathsf{ME}{\otimes}\mathsf{PS}$
 - \rightarrow pushed to $\mathcal{O}(\alpha_s^2)$ beyond (N)LL

JHEP06(2010)039, arXiv:1009.1127

Multijet Merging with NLO MEs – MENLOPS

- [Hamilton,Nason] JHEP06(2010)039, [Höche,Krauss,MS,Siegert] arXiv:1009.1127
- POWHEG domain restricted to soft emissions Q < Q_{cut}
 ⇒ NLO accuracy preserved for inclusive observables
- $\mathsf{ME}{\otimes}\mathsf{PS}$ used for hard emission & higher order emissions

 \Rightarrow preserves LO accuracy of every ME emission & LL accuracy of PS

- higher order emissions receive local K-factor $\frac{\overline{B}(\Phi_B)}{B(\Phi_B)}$
- inherits unitarity violation from $\mathsf{ME}{\otimes}\mathsf{PS}$
 - \rightarrow pushed to $\mathcal{O}(\alpha_s^2)$ beyond (N)LL

MENLOPS – Unitarity violations

 \Rightarrow reduced unitarity violation $\mathcal{O}(\alpha_s)$ and beyond (N)LL for ME \otimes PS $\mathcal{O}(\alpha_s^2)$ and beyond (N)LL for MENLOPS

Sherpa – DIS

 \Rightarrow good description, data from H1 PLB542(2002)193-206,EPJC19(2001)289-311

Marek Schönherr

Recent Progress in Matching and Merging

$\mathbf{Sherpa} - p\bar{p} \rightarrow \ell^+ \ell^- + X$

Data from DØ : Phys.Lett.B658(2008)112-119 Phys.Lett.B678(2009)45-54

POWHEG and MENLOPS agree well on p_{\perp} of hardest jet

MENLOPS superior for 2nd and 3rd jet

Marek Schönherr

arXiv:1009.1127

Sherpa – $pp \rightarrow W^+W^- + X$

 \Rightarrow considerable corrections from higher-order tree-level matrix elements

Conclusions

- ME⊗PS works well for shapes, but needs K-factor
 → truncated showering essential to recover PS resummation
- MC@NLO & POWHEG reproduce NLO cross section and shape of first emission, but additional hard jets at (N)LL only
- various implementations with various degrees of automation
- MENLOPS combines ME $\otimes PS$ and POWHEG
 - \Rightarrow NLO accuracy in core process
 - \Rightarrow multijet observables as in ME \otimes PS
- ME \otimes PS, POWHEG & MENLOPS automated (except V) in SHERPA framework
 - \Rightarrow for trivial colour structures included in current release v1.3.0
 - \Rightarrow for new process need function V($\Phi_B, \mu_R) \rightarrow$ (BLHA) interface
- also want NLO accuracy in higher order emission in inclusive sample ⇒ multijet emission dependent observables described at NLO
- crucial to recover desired accuracies for arbitrary observables ... working on it

Marek Schönherr

Available processes*

	Powheg			MC@NLO	
Process	POWHEG-BOX	HERWIG++	Sherpa	MC@NLO	aMC@NLO
$e^+e^- \rightarrow jj$	X	1	1	X	×
DIS	X	1		1	×
$pp \rightarrow W/Z$	 ✓ 	1	1	✓	×
$pp \to H (GF)$		1		1	×
$pp \rightarrow V + H$	×	1		1	×
$pp \rightarrow VV$	X	1		1	×
VBF	1	1	in prep.	X	×
$pp \rightarrow Q\bar{Q}$		×	X	1	×
$pp \rightarrow Q\bar{Q} + j$	1	×	X	X	×
single-top	1	×	X	1	×
$pp \rightarrow V + j$	1	×	in prep.	X	×
$pp \rightarrow V + jj$	in prep.	×	in prep.	X	×
$pp \rightarrow H + j \text{ (GF)}$	×	×	in prep.	×	×
$pp \rightarrow H + t\bar{t}$	1	×	X	X	1
$pp \rightarrow W^+W^+jj$		×	X	X	×
$pp \rightarrow V + b\bar{b}$		×	in prep.	X	1
diphotons	?	1	in prep.	X	×
dijets	1	×	in prep.	×	×

* Table includes SM processes presented so far. Automated codes and toolkits can, in principle, be used for any process.

ME+PS: CKKW & MLM	NLO+PS: Powheg & MC@NLO	MENLOPS	Conclusions

Thank you.

Backup: ME⊗PS Merging – Scales

Divide phase space using jet measure Q_{cut} : \rightarrow emissions with $Q > Q_{cut}$ by ME

 \rightarrow emissions with $Q < Q_{\rm cut}$ by PS

Shower on top of higher order ME:

- Problem: ME only gives final state, no history as PS input
- Solution: Backward clustering (inverted probabilistic PS splittings)
- $\Rightarrow ME final state with branching history and PS starting scale <math>\mu$ and branching scales t_i

 $\alpha_s^{k+n}(\mu_{\text{eff}}) = \alpha_s^k(\mu) \, \alpha_s(t_1) \cdots \alpha_s(t_n)$

Veto PS emissions with $Q > Q_{cut}$ \rightarrow Reject event \rightarrow Sudokov suppression

If $t \neq Q^2$ then truncated shower necessary

Backup: Unitarity Violation in MENLOPS & ME+PS

Formally of $\mathcal{O}(\alpha_s^2)$ in MENLOPS $\rightarrow N_{\max} = 1$ shows size of unitarity violation in MENLOPS alone

Due to mismatch in non-logarithmic terms in ME and PS in real emission correction and Sudakov

Indicates potential size of higher order corrections

Marek Schönherr