Recent Progress in Matching and Merging

Marek Schönherr

IKTP TU Dresden

23/08/2011
Outline

1. ME+PS: CKKW & MLM
2. NLO+PS: POWHEG & MC@NLO
3. ME@NLOPS
4. Conclusions
(NLO)ME vs. PS

Approaches to real emission corrections

(NLO) Matrix Element

- **Exact** to fixed order
- Perturbative series breaks down due to **large logarithms**

Parton Shower

- Resums logarithms to **all orders**
- Only **approximation** to real emission ME

Combine Advantages ⇒ ME⊗PS, NLO⊗PS, MENLOPS

- avoid double-counting by dividing phase space ⇒ Q_{cut}
- ME to describe **hard radiation**, PS for **intraget evolution**
ME+PS: CKKW & MLM

1. ME+PS: CKKW & MLM

2. NLO+PS: POWHEG & MC@NLO

3. MENLOPS

4. Conclusions
\[\langle O \rangle = \int d\Phi_B B(\Phi_B) \left[\Delta(t_0) \ O(\Phi_B) + \int d\Phi_{R|B} K(t, z, \phi) \Delta(t) \ O(\Phi_R) \right] \]

- **ordinary LO+PS** restricted to soft emissions with \(Q < Q_{\text{cut}} \)
- phase space \(Q > Q_{\text{cut}} \) filled by ME
- supplement Sudakov suppression \(\Delta(t) \) to recover unitarity at (N)LL level
- preserves LO accuracy of every ME emission and LL accuracy of PS
- **PS Sudakov form factor** \(\Delta(t) = \exp \left[- \sum \int d\Phi_{R|B} K(t, z, \phi) \right] \)
- unitarity of PS violated at \(\mathcal{O}(\alpha_s) \) beyond (N)LL

Marek Schönherr
IKTP TU Dresden
Recent Progress in Matching and Merging
\[\langle O \rangle = \int d\Phi_B B(\Phi_B) \left[\Delta(t_0) O(\Phi_B) + \int d\Phi_{R|B} \mathcal{K}(t, z, \phi) \Delta(t) \Theta(Q_{\text{cut}} - Q) O(\Phi_R) \right] \]

- ordinary LO+PS restricted to soft emissions with \(Q < Q_{\text{cut}} \)
- phase space \(Q > Q_{\text{cut}} \) filled by ME
- supplement Sudakov suppression \(\Delta(t) \) to recover unitarity at (N)LL level
- preserves LO accuracy of every ME emission and LL accuracy of PS
- PS Sudakov form factor \(\Delta(t) = \exp \left[- \sum \int d\Phi_{R|B} \mathcal{K}(t, z, \phi) \right] \)
- unitarity of PS violated at \(O(\alpha_s) \) beyond (N)LL
ME+PS: CKKW & MLM

\[
\langle O \rangle = \int d\Phi_B \, B(\Phi_B) \left[\Delta(t_0) \, O(\Phi_B) \right. \\
+ \int d\Phi_R|_B \, K(t, z, \phi) \, \Delta(t) \, \Theta(Q_{\text{cut}} - Q) \, O(\Phi_R) \\
+ \int d\Phi_R|_B \, \frac{R(\Phi_R)}{B(\Phi_B)} \, \Delta(t) \, \Theta(Q - Q_{\text{cut}}) \, O(\Phi_R) \right]
\]

- ordinary LO+PS restricted to soft emissions with \(Q < Q_{\text{cut}} \)
- phase space \(Q > Q_{\text{cut}} \) filled by ME
- supplement Sudakov suppression \(\Delta(t) \) to recover unitarity at (N)LL level
- preserves LO accuracy of every ME emission and LL accuracy of PS
- PS Sudakov form factor \(\Delta(t) = \exp \left[- \sum \int d\Phi_R|_B \, K(t, z, \phi) \right] \)
- unitarity of PS violated at \(\mathcal{O}(\alpha_s) \) beyond (N)LL
ME+PS: CKKW & MLM

\[\langle O \rangle = \int d\Phi_B B(\Phi_B) \left[\Delta(t_0) O(\Phi_B) \right. \]
\[\left. + \int d\Phi_{R|B} K(t, z, \phi) \Delta(t) \Theta(Q_{\text{cut}} - Q) O(\Phi_R) \right. \]
\[\left. + \int d\Phi_{R|B} \frac{R(\Phi_R)}{B(\Phi_B)} \Delta(t) \Theta(Q - Q_{\text{cut}}) O(\Phi_R) \right] \]

- ordinary LO+PS restricted to soft emissions with \(Q < Q_{\text{cut}} \)
- phase space \(Q > Q_{\text{cut}} \) filled by ME
- supplement Sudakov suppression \(\Delta(t) \) to recover unitarity at (N)LL level
- preserves LO accuracy of every ME emission and LL accuracy of PS
- PS Sudakov form factor \(\Delta(t) = \exp \left[- \sum \int d\Phi_{R|B} K(t, z, \phi) \right] \)
- unitarity of PS violated at \(\mathcal{O}(\alpha_s) \) beyond (N)LL
CKKW-like implementations

- direct implementation
- phase space separation via arbitrary parton-measure
 \[\rightarrow \text{PS and ME treated alike} \]
- Sudakov weight via vetoed shower
- truncated showering if \(Q \) and \(t \) differ

MLM-like implementations

- geometric approximation
- phase space separation via
 \[\rightarrow \text{parton-measure on ME multiplicitywise} \]
 \[\rightarrow \text{jet-measure on PS after full PS} \]
- Sudakov weight via “jet matching”
Importance of truncated showering

- truncated showering necessary to maintain logarithmic accuracy if separation measure deviates from evolution measure
- most prominent in HERWIG/HERWIG++: $Q_{\text{cut}} \sim y_{ij}$ vs. $t \sim \theta^2$
- studied by [Hamilton, Richardson, Tully] JHEP11(2009)038
Importance of truncated showering

- ATLAS-CONF-2011-038
- gap fraction sensitive to resummation effects
- resummation should be identical for HERWIG and ALPGEN + HERWIG
- proper phase space separation crucial
 → neither holes nor doubly filled regions
- truncated showering crucial

ATLAS Preliminary

Selection A

\[Q_0 = 20 \text{ GeV} \]

\[2 < \Delta y < 3 \]
SHERPA – DIS

![Graph showing differential cross sections for different eta ranges.](image)

⇒ higher-order MEs needed to open radiative phase space
data from H1 *PLB542(2002)193-206*
NLO+PS: Powheg & MC@NLO

1. ME+PS: CKKW & MLM

2. NLO+PS: Powheg & MC@NLO

3. Menlops

4. Conclusions
MC@NLO Algorithm

\[\langle O \rangle = \int d\Phi_B B(\Phi_B) \left[\Delta(t_0) O(\Phi_B) + \sum \int_{t_0} d\Phi_{R|B} K(t, z, \phi) \Delta(t) O(\Phi_R) \right] \]

\[+ \int d\Phi_R [R(\Phi_R) - R^{(PS)}(\Phi_R)] O(\Phi_R) \]

- PS approximation \(R^{(PS)} = \sum B \cdot K \)
- modified subtraction with \(\bar{B}^{(PS)} = B + V + \int d\Phi_{R|B} R^{(PS)} \)
 \(\rightarrow \) parton shower needs to be correct in the soft limit
- resums exactly as the parton shower
- implemented for HERWIG/HERWIG++ and PYTHIA showers
- correction events to restore NLO accuracy
 \(\Rightarrow \) preserves both NLO and (N)LL accuracy
MC@NLO Algorithm

\[
\langle O \rangle = \int d\Phi_B \, \tilde{B}^{(PS)}(\Phi_B) \left[\Delta(t_0) \, O(\Phi_B) + \sum \int_{t_0} d\Phi_{R|B} \, \frac{R^{(PS)}(\Phi_R)}{B(\Phi_B)} \, \Delta(t) \, O(\Phi_R) \right] \\
+ \int d\Phi_R \, [R(\Phi_R) - R^{(PS)}(\Phi_R)] \, O(\Phi_R)
\]

- PS approximation \(R^{(PS)} = \sum B \cdot K \)
- modified subtraction with \(\tilde{B}^{(PS)} = B + V + \int d\Phi_{R|B} R^{(PS)} \) → parton shower needs to be correct in the soft limit
 - resums exactly as the parton shower
 - implemented for HERWIG/HERWIG++ and PYTHIA showers
- correction events to restore NLO accuracy
 ⇒ preserves both NLO and (N)LL accuracy
MC@NLO Algorithm

\[
\langle O \rangle = \int d\Phi_B \, \tilde{B}^{(PS)}(\Phi_B) \left[\Delta(t_0) \, O(\Phi_B) + \sum \int_{t_0}^{t} d\Phi_R|_B \, \frac{R^{(PS)}(\Phi_R)}{B(\Phi_B)} \, \Delta(t) \, O(\Phi_R) \right] \\
+ \int d\Phi_R \, [R(\Phi_R) - R^{(PS)}(\Phi_R)] \, O(\Phi_R)
\]

- PS approximation \(R^{(PS)} = \sum B \cdot K \)
- modified subtraction with \(\tilde{B}^{(PS)} = B + V + \int d\Phi_R|_B R^{(PS)} \)
 \(\rightarrow \) parton shower needs to be correct in the soft limit
- resums exactly as the parton shower
- implemented for HERWIG/HERWIG++ and PYTHIA showers
- correction events to restore NLO accuracy
 \(\Rightarrow \) preserves both NLO and (N)LL accuracy
MC@NLO Algorithm

\[
\langle O \rangle = \int d\Phi_B \, \tilde{B}^{(PS)}(\Phi_B) \left[\Delta(t_0) \, O(\Phi_B) + \sum \int_{t_0} d\Phi_R|_B \, \frac{R^{(PS)}(\Phi_R)}{B(\Phi_B)} \Delta(t) \, O(\Phi_R) \right] \\
+ \int d\Phi_R \left[R(\Phi_R) - R^{(PS)}(\Phi_R) \right] \, O(\Phi_R)
\]

- PS approximation \(R^{(PS)} = \sum B \cdot K \)
- modified subtraction with \(\tilde{B}^{(PS)} = B + V + \int d\Phi_R|_B R^{(PS)} \) → parton shower needs to be correct in the soft limit
- resums exactly as the parton shower
- implemented for HERWIG/HERWIG++ and PYTHIA showers
- correction events to restore NLO accuracy
 ⇒ preserves both NLO and (N)LL accuracy
Recent Progress in Matching and Merging

Marek Schönherr
IKTP TU Dresden

MC@NLO

<table>
<thead>
<tr>
<th>Process</th>
<th>1PRGDC</th>
<th>IV</th>
<th>IL1</th>
<th>IL2</th>
<th>Spin</th>
</tr>
</thead>
<tbody>
<tr>
<td>1350-IL</td>
<td>✓</td>
<td>I</td>
<td>I</td>
<td>X</td>
<td>I</td>
</tr>
<tr>
<td>1360-IL</td>
<td>✓</td>
<td>I</td>
<td>I</td>
<td>X</td>
<td>I</td>
</tr>
<tr>
<td>1370-IL</td>
<td>✓</td>
<td>I</td>
<td>I</td>
<td>X</td>
<td>I</td>
</tr>
<tr>
<td>1460-IL</td>
<td>✓</td>
<td>I</td>
<td>i</td>
<td>X</td>
<td>I</td>
</tr>
<tr>
<td>1470-IL</td>
<td>✓</td>
<td>I</td>
<td>i</td>
<td>X</td>
<td>I</td>
</tr>
<tr>
<td>1397</td>
<td>X</td>
<td>I</td>
<td>i</td>
<td>X</td>
<td>I</td>
</tr>
<tr>
<td>1497</td>
<td>X</td>
<td>I</td>
<td>i</td>
<td>X</td>
<td>I</td>
</tr>
<tr>
<td>1500-1D</td>
<td>✓</td>
<td>I</td>
<td>i</td>
<td>X</td>
<td>I</td>
</tr>
<tr>
<td>1501-1D</td>
<td>✓</td>
<td>I</td>
<td>i</td>
<td>X</td>
<td>I</td>
</tr>
<tr>
<td>2000-1C</td>
<td>✓</td>
<td>I</td>
<td>i</td>
<td>X</td>
<td>I</td>
</tr>
<tr>
<td>2001-1C</td>
<td>✓</td>
<td>I</td>
<td>i</td>
<td>X</td>
<td>I</td>
</tr>
<tr>
<td>2003-1C</td>
<td>✓</td>
<td>I</td>
<td>i</td>
<td>X</td>
<td>I</td>
</tr>
<tr>
<td>2004-1C</td>
<td>✓</td>
<td>I</td>
<td>i</td>
<td>X</td>
<td>I</td>
</tr>
<tr>
<td>2600-1D</td>
<td>✓</td>
<td>I</td>
<td>i</td>
<td>X</td>
<td>I</td>
</tr>
<tr>
<td>2601-1D</td>
<td>✓</td>
<td>I</td>
<td>i</td>
<td>X</td>
<td>I</td>
</tr>
<tr>
<td>2602-1D</td>
<td>✓</td>
<td>I</td>
<td>i</td>
<td>X</td>
<td>I</td>
</tr>
<tr>
<td>2603-1D</td>
<td>✓</td>
<td>I</td>
<td>i</td>
<td>X</td>
<td>I</td>
</tr>
<tr>
<td>2604-1D</td>
<td>✓</td>
<td>I</td>
<td>i</td>
<td>X</td>
<td>I</td>
</tr>
<tr>
<td>2605-1D</td>
<td>✓</td>
<td>I</td>
<td>i</td>
<td>X</td>
<td>I</td>
</tr>
<tr>
<td>2606-1D</td>
<td>✓</td>
<td>I</td>
<td>i</td>
<td>X</td>
<td>I</td>
</tr>
<tr>
<td>2607-1D</td>
<td>✓</td>
<td>I</td>
<td>i</td>
<td>X</td>
<td>I</td>
</tr>
<tr>
<td>2608-1D</td>
<td>✓</td>
<td>I</td>
<td>i</td>
<td>X</td>
<td>I</td>
</tr>
<tr>
<td>2609-1D</td>
<td>✓</td>
<td>I</td>
<td>i</td>
<td>X</td>
<td>I</td>
</tr>
<tr>
<td>2610-1D</td>
<td>✓</td>
<td>I</td>
<td>i</td>
<td>X</td>
<td>I</td>
</tr>
<tr>
<td>2611-1D</td>
<td>✓</td>
<td>I</td>
<td>i</td>
<td>X</td>
<td>I</td>
</tr>
<tr>
<td>2612-1D</td>
<td>✓</td>
<td>I</td>
<td>i</td>
<td>X</td>
<td>I</td>
</tr>
<tr>
<td>2613-1D</td>
<td>✓</td>
<td>I</td>
<td>i</td>
<td>X</td>
<td>I</td>
</tr>
<tr>
<td>2614-1D</td>
<td>✓</td>
<td>I</td>
<td>i</td>
<td>X</td>
<td>I</td>
</tr>
<tr>
<td>2615-1D</td>
<td>✓</td>
<td>I</td>
<td>i</td>
<td>X</td>
<td>I</td>
</tr>
<tr>
<td>2616-1D</td>
<td>✓</td>
<td>I</td>
<td>i</td>
<td>X</td>
<td>I</td>
</tr>
<tr>
<td>2617-1D</td>
<td>✓</td>
<td>I</td>
<td>i</td>
<td>X</td>
<td>I</td>
</tr>
<tr>
<td>2618-1D</td>
<td>✓</td>
<td>I</td>
<td>i</td>
<td>X</td>
<td>I</td>
</tr>
<tr>
<td>2619-1D</td>
<td>✓</td>
<td>I</td>
<td>i</td>
<td>X</td>
<td>I</td>
</tr>
</tbody>
</table>

Conclusions

aMC@NLO

- automated version of MC@NLO
- uses MADGRAPH/MADLOOP framework
 [Frederix et al.] JHEP05(2011)044
- results published for
 $pp \rightarrow ttH$
 [Frederix et al.] PLB 701(2011)427-433
 and $pp \rightarrow V + b\bar{b}$
 [Frederix et al.] arXiv:1106.6019
- code not public yet
POWHEG Algorithm

\[
\langle O \rangle = \int d\Phi_B \tilde{B}(\Phi_B) \left[\Delta^{(\text{ME})}(t_0) O(\Phi_B) + \sum \int_{t_0} d\Phi_{R|B} \frac{R(\Phi_R)}{B(\Phi_B)} \Delta^{(\text{ME})}(t) O(\Phi_R) \right]
\]

- NLO event weight \(\tilde{B} = B + V + \int d\Phi_{R|B} R \) defined on \(\Phi_B \)
 \(\rightarrow \) wrong observable dependence on \(R(\Phi_R) \)

- POWHEG Sudakov \(\Delta^{(\text{ME})}(t) = \exp \left[- \sum \int_t d\Phi_{R|B} \frac{R(\Phi_R)}{B(\Phi_B)} \right] \)
 \(\rightarrow \) intricate cancellation to correct observable dependence on \(R(\Phi_R) \)

- \(\Delta^{(\text{ME})} = \Delta^{(\text{PS})} \) at LL level
 \(\rightarrow \) resums as PS if interface ensures continuous evolution in phase space and colour space
 \(\rightarrow \) importance of truncated showering [Nason] JHEP11(2004)040

\(\Rightarrow \) preserves both NLO and (N)LL accuracy
POWHEG Algorithm

\[\langle O \rangle = \int d\Phi_B \tilde{B}(\Phi_B) \left[\Delta^{(ME)}(t_0) O(\Phi_B) + \sum \int_{t_0} d\Phi |_B \frac{R(\Phi_R)}{B(\Phi_B)} \Delta^{(ME)}(t) O(\Phi_R) \right] \]

- NLO event weight \(\tilde{B} = B + V + \int d\Phi |_B R \) defined on \(\Phi_B \)
 \(\rightarrow \) wrong observable dependence on \(R(\Phi_R) \)

- POWHEG Sudakov \(\Delta^{(ME)}(t) = \exp \left[- \sum \int_t d\Phi_B \frac{R(\Phi_R)}{B(\Phi_B)} \right] \)
 \(\rightarrow \) intricate cancellation to correct observable dependence on \(R(\Phi_R) \)

- \(\Delta^{(ME)} = \Delta^{(PS)} \) at LL level
 \(\rightarrow \) resums as PS if interface ensures continuous evolution in phase space and colour space
 \(\rightarrow \) importance of truncated showering [Nason] JHEP11(2004)040
 \(\Rightarrow \) preserves both NLO and (N)LL accuracy
POWHEG Algorithm

\[
\langle O \rangle = \int d\Phi_B \tilde{B}(\Phi_B) \left[\Delta^{(\text{ME})}(t_0) O(\Phi_B) + \sum \int_{t_0} \frac{R(\Phi_R)}{B(\Phi_B)} \Delta^{(\text{ME})}(t) O(\Phi_R) \right]
\]

- NLO event weight \(\tilde{B} = B + V + \int d\Phi_{R|B} R \) defined on \(\Phi_B \)
 \(\rightarrow \) wrong observable dependence on \(R(\Phi_R) \)
- POWHEG Sudakov \(\Delta^{(\text{ME})}(t) = \exp \left[- \sum \int_t d\Phi_{R|B} \frac{R(\Phi_R)}{B(\Phi_B)} \right] \)
 \(\rightarrow \) intricate cancellation to correct observable dependence on \(R(\Phi_R) \)
- \(\Delta^{(\text{ME})} = \Delta^{(\text{PS})} \) at LL level
 \(\rightarrow \) resums as PS if interface ensures continuous evolution in phase space and colour space
 \(\rightarrow \) importance of truncated showering [Nason] JHEP11(2004)040

\(\Rightarrow \) preserves both NLO and (N)LL accuracy
Ambiguities/freedom/choices in the exponentiation

• divide $R(\Phi_R)$ into singular and regular \cite{Alioli et al. JHEP07(2008)060}

$$R(\Phi_R) = R^{(s)}(\Phi_R) + R^{(r)}(\Phi_R)$$

then

$$\langle O \rangle = \int d\Phi_B \bar{B}^{(s)}(\Phi_B) \left[\Delta^{(\text{ME})}_{(s)}(t_0) O(\Phi_B) + \sum \int_{t_0} d\Phi_R|R_B \frac{R^{(s)}(\Phi_R)}{B(\Phi_B)} \Delta^{(\text{ME})}_{(s)}(t) O(\Phi_R) \right]$$

$$+ \int d\Phi_R R^{(r)}(\Phi_R) O(\Phi_R)$$

with $\bar{B}^{(s)} = B + V + \int d\Phi_R|R_B R^{(s)}$

and $\Delta^{(\text{ME})}_{(s)}(t) = \exp \left[- \sum \int_t d\Phi_R|R_B \frac{R^{(s)}(\Phi_R)}{B(\Phi_B)} \right]$.

• different K-factors for reweighted PS, different exponentiation behaviour
 \rightarrow beyond NLO and (N)LL accuracy

• specific choice:

$$R^{(s)}(\Phi_R) = R^{(\text{PS})}(\Phi_R) \quad \Rightarrow \quad \text{MC@NLO} \cite{Frixione, Webber JHEP06(2002)029}$$
POWHEG-BOX — toolkit for POWHEG implementations

Toolkit to implement new process given

- Born matrix elements, flavour structures & phase space
- colour and spin correlated Born matrix elements B_{ij} and $B_{\mu\nu}$
- virtual matrix elements
- real matrix elements and flavour structures
- Born colour structures in $N_c \to \infty$

\Rightarrow internal FKS subtraction and real emission phase space integration

\Rightarrow generates radiation using POWHEG Sudakov form factor

Wide range of processes

- $V, VV, Q\bar{Q}, Wb\bar{b}, W^+W^+jj, H(GF,VBF)$, single-top
- Vj, dijets
- ttH, ttj
- interface to HERWIG/PYTHIA
 \rightarrow truncated showering needed but not available
POWHEG-BOX → $pp \rightarrow \ell^+ \ell^- j$

$p\bar{p} \rightarrow Z + j$

DØ $Z + j$ analyses

good description of data

some dependence on

PYTHIA tune
POWHEG-BOX — $pp \rightarrow Wb\bar{b}$

Large ratio \bar{B}/B

→ large effect of choice

what to exponentiate and what to generate explicitly

Small deviation of

POWHEG-BOX \otimes HERWIG & POWHEG-BOX \otimes PYTHIA
POWHEG-BOX – dijets

ATLAS-CONF-2011-047:

- $p_{\perp,j}$ supposedly described at NLO⊗LL
- ~20% difference between using HERWIG or PYTHIA for parton showering

Issues for logarithmic accuracy:

- truncated showering implemented neither for HERWIG or PYTHIA interfaces → especially important for HERWIG’s angular ordering
- consistent settings for PDFs, μ_R and μ_F scales, etc.
- no conclusive answers so far
POWHEG in HERWIG++

- **Processes:**
 - $V, VV, H(GF,VBF), VH$
 - $ee \rightarrow q\bar{q},$ DIS
 - $H \rightarrow q\bar{q}$ decay
- includes truncated showering
POWHEG – Automation in SHERPA

- [Höche, Krauss, MS, Siegert] JHEP04(2011)024
- reinterprete POWHEG as ME reweighted PS with local K-factor
- NLO event weight $\bar{B} = B + V + I + \int d\Phi_{R|B} [R - S]$
 - Born, Real from automated tree-level generators
 - automated phase space
 - Virtual e.g. via Binoth Les Houches Accord CPC181(2010)1612
 → for results here BLACKHAT & MCFM libraries interfaced
 - Integrated/Subtraction terms from automated implementation of Catani-Seymour subtraction terms EPJC53(2008)501
 - dedicated automated CS-like phase-space for $R - S$ integral
 - correct PS to ME via weight $w(\Phi_R) = R(\Phi_R)/R^{(PS)}(\Phi_R)$
 → alleviated by good approximation of CSSHOWER++ JHEP03(2008)038
 → truncated showering not needed
- included since SHERPA-1.2.3 (Nov ’10)
SHERPA – inclusive W/Z production at Tevatron

Data from DØ :

Data from DØ :
SHERPA – Non-trivial colour structures – \(pp \rightarrow Wj \)

- **POWHEG** method sufficiently general
- Subtraction and PS need to have identical phase space maps
- \(N_c \rightarrow \infty \) in parton shower vs. \(N_c = 3 \) in matrix elements
 - \(\rightarrow \) no issue for \(O(\Phi_R) \) if parton shower can fill full phase space
 - \(\rightarrow O(\Phi_B) \) formally at LC-NLO\(\times (N)\)LL accuracy

Inclusive jet multiplicity (electron channel)

\[
\sigma(W^+ + \geq N_{\text{jet}}) \ [\text{pb}]
\]

\[
\frac{d^2\sigma}{dp_T^2} \ [\text{pb/GeV}]
\]

\[
p_T \text{ of 1st jet (electron channel)}
\]

\[
p_T \text{ of 2nd jet (electron channel)}
\]

inclusively jet multiplicity and \(p_T \) of 1st & 2nd jet in \(W+jets \) events,

data from ATLAS *Phys.Lett.B698(2011)325-345*
SHERPA – $p\bar{p} \rightarrow Z j$ at Tevatron

Differential cross section in $Z/\gamma^* p_{\perp}$

$\frac{d\sigma}{dp_{\perp}(Z)}$ [pb/GeV]

$0 \rightarrow 0.6 \rightarrow 1 \rightarrow 1.2 \rightarrow 1.4 \rightarrow 1.6 \rightarrow 200$

$0.6 \rightarrow 0.8 \rightarrow 1 \rightarrow 1.2 \rightarrow 1.4 \rightarrow 1.6 \rightarrow 200$

Azimuthal distribution for $p_{\perp}^Z > 25$ GeV

$\frac{d\sigma}{d\Delta\phi(Z, \text{jet})}$ [pb/rad]

$0 \rightarrow 0.5 \rightarrow 1 \rightarrow 1.5 \rightarrow 2 \rightarrow 2.5 \rightarrow \Delta\phi(Z, \text{jet}) [\text{rad}]$

Rapidity difference for $p_{\perp}^Z > 25$ GeV

$\frac{d\sigma}{d|\Delta y(Z, \text{jet})|}$ [pb]

$0 \rightarrow 0.5 \rightarrow 1 \rightarrow 1.5 \rightarrow 2 \rightarrow 2.5 \rightarrow |\Delta y(Z, \text{jet})|$

$p\bar{p} \rightarrow Z + j$

DØ $Z + j$ analyses

LC-NLO⊗(N)LL

accuracy
1. ME+PS: CKKW & MLM

2. NLO+PS: POWHEG & MC@NLO

3. MENLOPS

4. Conclusions
Multijet Merging with NLO MEs – MENLOPS

\[\langle O \rangle = \int d\Phi_B \bar{B}(\Phi_B) \left[\Delta^{(\text{ME})}(t_0) O(\Phi_B) \right. \]
\[+ \int d\Phi_R|B \frac{R(\Phi_R)}{B(\Phi_B)} \Delta^{(\text{ME})}(t) \Theta(Q_{\text{cut}} - Q) O(\Phi_R) \]
\[+ \int d\Phi_R|B \frac{R(\Phi_R)}{B(\Phi_B)} \Delta^{(\text{PS})}(t) \Theta(Q - Q_{\text{cut}}) O(\Phi_R) \]

- POWHEG domain restricted to soft emissions \(Q < Q_{\text{cut}} \)
 \[\Rightarrow \text{NLO accuracy preserved for inclusive observables} \]
- ME\(\otimes \)PS used for hard emission & higher order emissions
 \[\Rightarrow \text{preserves LO accuracy of every ME emission & LL accuracy of PS} \]
- higher order emissions receive local K-factor \(\frac{\bar{B}(\Phi_B)}{B(\Phi_B)} \)
- inherits unitarity violation from ME\(\otimes \)PS
 \[\rightarrow \text{pushed to } \mathcal{O}(\alpha_s^2) \text{ beyond (N)LL} \]
Multijet Merging with NLO MEs – MENLOPS

\[\langle O \rangle = \int d\Phi_B \bar{B}(\Phi_B) \left[\Delta^{(\text{ME})}(t_0) O(\Phi_B) + \int d\Phi_R |_{B} \frac{R(\Phi_R)}{B(\Phi_B)} \Delta^{(\text{ME})}(t) \Theta(Q_{\text{cut}} - Q) O(\Phi_R) + \int d\Phi_R |_{B} \frac{R(\Phi_R)}{B(\Phi_B)} \Delta^{(\text{PS})}(t) \Theta(Q - Q_{\text{cut}}) O(\Phi_R) \right] \]

- POWHEG domain restricted to soft emissions \(Q < Q_{\text{cut}} \) ⇒ NLO accuracy preserved for inclusive observables
- ME⊗PS used for hard emission & higher order emissions ⇒ preserves LO accuracy of every ME emission & LL accuracy of PS
- higher order emissions receive local K-factor \(\frac{\bar{B}(\Phi_B)}{B(\Phi_B)} \)
- inherits unitarity violation from ME⊗PS → pushed to \(\mathcal{O}(\alpha_s^2) \) beyond (N)LL
Multijet Merging with NLO MEs – MENLOPS

\[
\langle O \rangle = \int d\Phi_B \, B(\Phi_B) \left[\Delta^{(\text{ME})}(t_0) \, O(\Phi_B) + \int d\Phi_{R|B} \, \frac{R(\Phi_R)}{B(\Phi_B)} \Delta^{(\text{ME})}(t) \, \Theta(Q_{\text{cut}} - Q) \, O(\Phi_R) + \int d\Phi_{R|B} \, \frac{R(\Phi_R)}{B(\Phi_B)} \Delta^{(\text{PS})}(t) \, \Theta(Q - Q_{\text{cut}}) \, O(\Phi_R) \right]
\]

- POWHEG domain restricted to soft emissions \(Q < Q_{\text{cut}} \) ⇒ **NLO accuracy preserved for inclusive observables**
- ME⊗PS used for hard emission & higher order emissions ⇒ **preserves LO accuracy of every ME emission & LL accuracy of PS**
- higher order emissions receive local K-factor \(\frac{B(\Phi_B)}{\bar{B}(\Phi_B)} \)
- inherits unitarity violation from ME⊗PS → pushed to \(\mathcal{O}(\alpha_s^2) \) beyond (N)LL
MENLOPS – Unitarity violations

\[e^+e^- \rightarrow \text{jets at } \sqrt{s} = 91.25 \text{ GeV} \]

- \(\log \frac{y_{\text{cut}}}{\text{GeV}} = -1.25/-1.75/-2.25 \) (ME+PS)
- \(\log \frac{y_{\text{cut}}}{\text{GeV}} = -1.25/-1.75/-2.25 \) (MENLOPS)

\[pp \rightarrow W^+W^- + \text{jets at } \sqrt{s} = 14 \text{ TeV} \]

- \(Q_{\text{cut}} = 20/40/80 \text{ GeV} \) (ME+PS)
- \(Q_{\text{cut}} = 20/40/80 \text{ GeV} \) (MENLOPS)

\[\Rightarrow \text{reduced unitarity violation} \]

\[\mathcal{O}(\alpha_s) \text{ and beyond (N)LL for ME} \otimes \text{PS} \]

\[\mathcal{O}(\alpha_s^2) \text{ and beyond (N)LL for MENLOPS} \]
SHERPA – DIS

SHERPA - $p\bar{p} \rightarrow \ell^+\ell^- + X$

Data from DØ:

POWHEG and **MENLOPS** agree well on p_\perp of hardest jet

MENLOPS superior for 2nd and 3rd jet
SHERPA \(- pp \rightarrow W^+ W^- + X \)

\[\frac{d\sigma}{dH_T} [\text{pb}/\text{GeV}] \]

\[\frac{d\sigma}{d\Delta \phi(jet_1, jet_2)} [\text{pb}] \]

⇒ considerable corrections from higher-order tree-level matrix elements
Conclusions

- **ME⊗PS** works well for shapes, but needs K-factor
 → truncated showering essential to recover PS resummation
- **MC@NLO & POWHEG** reproduce NLO cross section and shape of first emission, but additional hard jets at (N)LL only
- various implementations with various degrees of automation
- **MENLOPS** combines **ME⊗PS** and **POWHEG**
 ⇒ NLO accuracy in core process
 ⇒ multijet observables as in **ME⊗PS**

- **ME⊗PS, POWHEG & MENLOPS** automated (except V) in SHERPA framework
 ⇒ for trivial colour structures included in current release v1.3.0
 ⇒ for new process need function $V(\Phi_B, \mu_R) \rightarrow (BLHA)$ interface
- also want NLO accuracy in higher order emission in inclusive sample
 ⇒ multijet emission dependent observables described at NLO
- crucial to recover desired accuracies for arbitrary observables
 ... working on it
Available processes*

<table>
<thead>
<tr>
<th>Process</th>
<th>POWHEG</th>
<th>HERWIG++</th>
<th>SHERPA</th>
<th>MC@NLO</th>
<th>aMC@NLO</th>
</tr>
</thead>
<tbody>
<tr>
<td>$e^+e^- \rightarrow jj$</td>
<td>x</td>
<td>✓</td>
<td>✓</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>DIS</td>
<td>x</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>x</td>
</tr>
<tr>
<td>$pp \rightarrow W/Z$</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>x</td>
</tr>
<tr>
<td>$pp \rightarrow H$ (GF)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>x</td>
</tr>
<tr>
<td>$pp \rightarrow V + H$</td>
<td>x</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>x</td>
</tr>
<tr>
<td>$pp \rightarrow VV$</td>
<td>x</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>x</td>
</tr>
<tr>
<td>VBF</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>x</td>
</tr>
<tr>
<td>$pp \rightarrow Q\bar{Q}$</td>
<td>✓</td>
<td>x</td>
<td>x</td>
<td>✓</td>
<td>x</td>
</tr>
<tr>
<td>$pp \rightarrow Q\bar{Q} + j$</td>
<td>✓</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>single-top</td>
<td>✓</td>
<td>x</td>
<td>x</td>
<td>✓</td>
<td>x</td>
</tr>
<tr>
<td>$pp \rightarrow V + j$</td>
<td>✓</td>
<td>x</td>
<td>in prep.</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>$pp \rightarrow V + jj$</td>
<td>in prep.</td>
<td>x</td>
<td>in prep.</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>$pp \rightarrow H + j$ (GF)</td>
<td>x</td>
<td>x</td>
<td>in prep.</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>$pp \rightarrow H + t\bar{t}$</td>
<td>✓</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>✓</td>
</tr>
<tr>
<td>$pp \rightarrow W^+W^-jj$</td>
<td>✓</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>$pp \rightarrow V + bb$</td>
<td>✓</td>
<td>x</td>
<td>in prep.</td>
<td>x</td>
<td>✓</td>
</tr>
<tr>
<td>diphotons</td>
<td>?</td>
<td>✓</td>
<td>in prep.</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>dijets</td>
<td>✓</td>
<td>x</td>
<td>in prep.</td>
<td>x</td>
<td>x</td>
</tr>
</tbody>
</table>

Table includes SM processes presented so far. Automated codes and toolkits can, in principle, be used for any process.

Marek Schönher
IKTP TU Dresden
Recent Progress in Matching and Merging
Thank you.
Backup: ME⊗PS Merging – Scales

Divide phase space using jet measure Q_{cut}:

\rightarrow emissions with $Q > Q_{\text{cut}}$ by ME
\rightarrow emissions with $Q < Q_{\text{cut}}$ by PS

Shower on top of higher order ME:

Problem: ME only gives final state, no history as PS input

Solution: Backward clustering (inverted probabilistic PS splittings)

\Rightarrow ME final state with branching history and PS starting scale μ and branching scales t_i

\[\alpha_s^{k+n}(\mu_{\text{eff}}) = \alpha_s^k(\mu) \alpha_s(t_1) \cdots \alpha_s(t_n) \]

Veto PS emissions with $Q > Q_{\text{cut}}$

\rightarrow Reject event \rightarrow Sudakov suppression

If $t \neq Q^2$ then truncated shower necessary
Backup: Unitarity Violation in MENLOPS & ME+PS

Formally of $\mathcal{O}(\alpha_s^2)$ in MENLOPS

$\rightarrow N_{\text{max}} = 1$ shows size of unitarity violation in MENLOPS alone

Due to mismatch in non-logarithmic terms in ME and PS in real emission correction and Sudakov

Indicates potential size of higher order corrections