Underlying Event and Soft Inclusive Events in Herwig++

Christian Röhr (for the Herwig++ collaboration)

Karlsruhe Institute of Technology

QCD@LHC 2011, St. Andrews, 22-26 August 2011

Soft QCD in Herwig++

1 Multi-parton interactions in Herwig++

- brief introduction
- 2 Summary of tuning status
 - Energy extrapolation and more
- **3** Colour reconnection
 - new developments and characteristics

MPI model basics

Inclusive hard jet cross section in pQCD:

$$\sigma^{\rm inc}(s, p_t^{\rm min}) = \sum_{i,j} \int_{p_t^{\rm min^2}} dp_t^2 \int dx_1 dx_2 \ f_i(x_1, Q^2) f_j(x_2, Q^2) \ \frac{d\hat{\sigma}_{ij}}{dp_t^2}$$

 $\sigma^{\rm inc} > \sigma_{\rm tot}$ eventually

Interpretation:

- σ^{inc} counts all partonic scatters in a single pp collision
- more than a single interaction

$$\sigma^{\rm inc} = \langle n_{\rm dijets} \rangle \sigma_{\rm inel}$$

MPI model basics

Assume a factorization of **b** and *x* dependence in the proton structure function,

spatial parton distribution

$$G(x, \mathbf{b}, Q^2) = \underbrace{f(x, Q^2)}_{\text{PDF}} \cdot \widehat{S(\mathbf{b})}$$

Leads to average number of parton collisions $\bar{n}(b,s) = A(b) \cdot \sigma^{inc}(s, p_t^{min})$

with the overlap function

$$A(b) = \int \mathrm{d}^2 b' \, S_A(\mathbf{b}') \, S_B(\mathbf{b} - \mathbf{b}')$$

MPI model basics

Assume a factorization of **b** and *x* dependence in the proton structure function,

spatial parton distribution

$$G(x, \mathbf{b}, Q^2) = \underbrace{f(x, Q^2)}_{\text{PDF}} \cdot \widehat{S(\mathbf{b})}$$

Leads to average number of parton collisions $\bar{n}(b,s) = A(b) \cdot \sigma^{inc}(s, p_t^{min})$

R. Corke and T. Sjöstrand consider *x*-dependent spatial distribution [arXiv:1101.5953]

Matter distribution

$$A(b,\mu) = \int \mathrm{d}^2 b' \, S_A(\mathbf{b}') \, S_B(\mathbf{b} - \mathbf{b}')$$

 $S(\mathbf{b})$ from electromagnetic FF:

$$S_p(\mathbf{b}) = S_{\overline{p}}(\mathbf{b}) = \int rac{\mathrm{d}^2 k}{(2\pi)^2} rac{\mathrm{e}^{i\mathbf{k}\cdot\mathbf{b}}}{(1+\mathbf{k}^2/\mu^2)^2}$$

But μ^2 not fixed to the *electromagnetic* 0.71 GeV².

Free for colour charges.

```
\Rightarrow free model parameter: \mu^2
```


In the parton model we find

$$\sigma_{\rm inel} = \int {\rm d}^2 b \left(1 - {\rm e}^{-\bar{n}(b,s)}\right) \; . \label{eq:single}$$

Cf. σ_{inel} from scattering theory in eikonal approx. with scattering amplitude $a(\mathbf{b}, s) = \frac{1}{2i}(e^{-\chi(\mathbf{b}, s)} - 1)$

$$\begin{split} \sigma_{\text{inel}} &= \int d^2 b \left(1 - e^{-2\chi(\mathbf{b},s)} \right) \\ \Rightarrow \chi(\mathbf{b},s) &= \frac{1}{2} \bar{n}(b,s) = \frac{1}{2} \left(A(b,\mu) \cdot \sigma_{\text{hard}}^{\text{inc}}(s,p_t^{\text{min}}) \right) \end{split}$$

Christian Röhr

QCD@LHC 2011, St. Andrews, 22-26 August 2011

.

Hot Spot model (soft MPI)

So far: hard multiple interactions

Extension to soft interactions with

$$\chi_{\text{tot}}(b,s) = \frac{1}{2} \left(A(b,\mu) \sigma_{\text{hard}}^{\text{inc}}(s, p_t^{\text{min}}) + A(b, \mu_{\text{soft}}) \sigma_{\text{soft}}^{\text{inc}} \right)$$

Hot Spot model (soft MPI)

So far: hard multiple interactions

Extension to soft interactions with

$$\chi_{\text{tot}}(b,s) = \frac{1}{2} \left(A(b,\mu) \sigma_{\text{hard}}^{\text{inc}}(s, p_t^{\text{min}}) + A(b,\mu_{\text{soft}}) \sigma_{\text{soft}}^{\text{inc}} \right)$$

Require simultaneous description of σ_{tot} and b_{el} (measured/well predicted),

$$\sigma_{\rm tot}(s) \stackrel{!}{=} 2 \int d^2 b \left(1 - e^{-\chi_{\rm tot}(b,s)} \right) ,$$
$$b_{\rm el}(s) = \left[\frac{d}{dt} \left(\ln \frac{d\sigma_{\rm el}}{dt} \right) \right]_{t=0} \stackrel{!}{=} \int d^2 b \frac{b^2}{\sigma_{\rm tot}} \left(1 - e^{-\chi_{\rm tot}(b,s)} \right)$$

 \Rightarrow This fixes the two parameters $\mu_{\rm soft}$ and $\sigma_{\rm soft}^{\rm inc}$

Only free parameters in the end: p_t^{\min} and μ^2

Christian Röhr

QCD@LHC 2011, St. Andrews, 22-26 August 2011

Colour reconnection in Herwig++

- perturbative QCD provides preconfinement
- i.e. small cluster masses $M_{\rm cl} \gtrsim M_{\rm parton\,1} + M_{\rm parton\,2}$

Colour reconnection in Herwig++

- perturbative QCD provides preconfinement
- i.e. small cluster masses $M_{\rm cl} \gtrsim M_{\rm parton 1} + M_{\rm parton 2}$

- improved description of soft events/UE at hadron colliders: manually reduce cluster masses
- $M_C + M_D < M_A + M_B$

Colour reconnection in hadron collisions

- colour connections to proton remnants
- MPI leads to even more colour charge

Colour reconnection in hadron collisions

- colour connections to proton remnants
- MPI leads to even more colour charge

Colour reconnection + tuning

 \Rightarrow "soft inclusive" model requires colour reconnection

Colour reconnection has small effects in e^+e^- annihilation (understood, \rightarrow see later)

- \Rightarrow tuning procedure factorizes :
 - can use (well tested) default LEP tune for parton shower and hadronization parameters
 - tune only MPI parameters to hadron collider data:

 $p_t^{\min}, \mu^2, p_{\text{disrupt}}, p_{\text{reconnection}}$

\sqrt{s}/GeV	MB	UE	MB+UE
900	1	\uparrow	~
1800	?	1	?
7000	X	\downarrow	×

Our best tunes with these ingredients:

 900 GeV and 7 TeV MB
 ATLAS_2010_S8918562

 900 GeV and 7 TeV UE
 ATLAS_2010_S8894728

 1800 GeV UE
 CDF_2001_S4751469

Christian Röhr

QCD@LHC 2011, St. Andrews, 22-26 August 2011

\sqrt{s}/GeV	MB	UE	MB+UE
900	1	\uparrow	~
1800	?	1	?
7000	X	\downarrow	×

Our best tunes with these ingredients:

Herwig++ has no model for diffraction

- ⇒ consider diffraction-suppressed data only (e.g. $N_{ch} \ge 6 + p_T > 500$ MeV)
- \Rightarrow put only few effort in describing MinBias at 1.8 TeV

Our best tunes with these ingredients:

Christian Röhr

MC/data

 OCD@LHC 2011, St. Andrews, 22-26 August 2011

 $N_{\rm ch}$

Christian Röhr

QCD@LHC 2011, St. Andrews, 22-26 August 2011

Energy extrapolation

Make predictions for other energies?

- not possible to have all parameters energy-independent
- but: p_t^{\min} energy-dependent, and all else fixed

Energy extrapolation tuning (UE at 0.9 TeV)

Energy extrapolation tuning (UE at 1.8 TeV)

Energy extrapolation tuning (UE at 7 TeV)

"Single" UE tune for different energies

\sqrt{s}/GeV	MB	UE	MB+UE
900	1	\uparrow	\sim
1800	?	1	?
7000	X	\downarrow	×

\sqrt{s}/GeV	MB	UE	MB+UE
900	1	\uparrow	~
1800	?	\checkmark	?
7000	×	\downarrow	×

Can we improve the "soft inclusive" model? \rightarrow pile-up!

Back to colour reconnection

Original CR model (in Herwig++ 2.5)

In simplified terms:

• always aims at finding lightest clusters, *C* and *D*, with

 $m_{\rm C} + m_D < m_A + m_B$

- But: each cluster is offered for colour reconnection once
- non-deterministic , since sensitive to the chosen sequence → unphysical?

 $i \in \{\text{clusters}\}$

 $\lambda \equiv \sum m_i^2 ,$

using a simulated annealing algorithm:

- try random swaps $(A, B \rightarrow C, D)$
 - always accept the steps that reduce λ
 - accept 'bad' steps ($\lambda_2 > \lambda_1$) with Boltzmann probability,

$$p = \exp\left[-(\lambda_2 - \lambda_1)/T\right]$$

- $T_{\text{start}} \sim \text{median}\{|\Delta \lambda|, \text{a few dry-run swaps}\}$
- gradually decrease *T*

Colour reconnection at work

- CR breaks up very heavy clusters
- λ often reduced by large factor

Quantifying the effect of colour reconnection

Christian Röhr

QCD@LHC 2011, St. Andrews, 22-26 August 2011

Quantifying the effect of colour reconnection

observe extreme decrease of λ in hadron collisions only \Rightarrow almost no colour reconnection at LEP!

Christian Röhr

QCD@LHC 2011, St. Andrews, 22-26 August 2011

ATLAS MinBias at 7000 GeV slightly better now:

original colour reconnection

statistical colour reconnection

- current MPI model describes UE data well with tuning
- energy extrapolation for UE possible (UE-EE-3 out soon)
- statistical colour reconnection improves description of MinBias at 7 TeV
- common tunes for MB and UE
 - for 900 GeV possible (MU-900-2)
 - 7 TeV work in progress
- new tunes and plots are published here:

http://projects.hepforge.org/herwig/trac/wiki/MB_UE_tunes

- *x*-dependent matter profile
- achieve better common tunes for MB and UE (if possible)
- validate/improve "soft inclusive" model with data from Tevatron energy scan
- model for diffraction

BACKUP SLIDES

Assume independent scatters

 \Rightarrow number *m* of scatters Poisson-distributed,

$$\mathcal{P}_m(b,s) = \frac{\bar{n}(b,s)^m}{m!} e^{-\bar{n}(b,s)}$$

(with impact parameter *b* and \bar{n} scatters on average)

Sample number *m* of scatters according to

$$P_m(s) = \frac{\sigma_m}{\sum_{k=1}^{\infty} \sigma_k} ,$$

with the cross section for m scatters

$$\sigma_m(s) = \int \mathrm{d}^2 b \; \mathcal{P}_k(b,s)$$

Christian Röhr

Hot Spot model (soft MPI)

Continuation of the differential cross section into the soft region $p_t < p_t^{\min}$

QCD@LHC 2011, St. Andrews, 22-26 August 2011

Restricted MPI parameter space

Heavy clusters

