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NNLO calculations for 2 → 2 processes
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∑
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2π

)2

dσ̂NNLO
ij +O(α3

s)

Processes of interest

✓ pp → 2 jets

✓ pp → γ+jets

✓ pp → γγ

✓ pp → V+jet

✓ pp → tt̄

✓ pp → V V

✓ pp → H+jet

✓ . . .

Massively reduced theoretical error
Anastasiou, Dixon, Melnikov, Petriello (04)
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Arguments in favour of NNLO

✓ Reduced renormalisation scale dependence

✓ Event has more partons in the final state so perturbation theory can start
to reconstruct the shower
⇒ better matching of jet algorithm between theory and experiment

LO NLO NNLO

✓ Reduced power correction as higher perturbative powers of 1/ ln(Q/Λ)
mimic genuine power corrections like 1/Q
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Arguments in favour of NNLO

✓ Better description of transverse momentum of final state due to double
radiation off initial state

LO NLO NNLO

✓ At LO, final state has no transverse momentum
✓ Single hard radiation gives final state transverse momentum, even if

no additional jet
✓ Double radiation on one side, or single radiation of each incoming

particle gives more complicated transverse momentum to final state

✓ NNLO is the first serious estimate of the error
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Anatomy of a NNLO calculation e.g. pp → 2j

✓ double real radiation matrix elements dσ̂RR
NNLO

✓ implicit poles from double unresolved emission

✓ single radiation one-loop matrix elements dσ̂RV
NNLO

✓ explicit infrared poles from loop integral
✓ implicit poles from soft/collinear emission

✓ two-loop matrix elements dσ̂V V
NNLO

✓ explicit infrared poles from loop integral
✓ including square of one-loop amplitude

dσ̂NNLO ∼
∫

dΦm+2

dσ̂RR
NNLO +

∫

dΦm+1

dσ̂RV
NNLO +

∫

dΦm

dσ̂V V
NNLO

✓ Antenna method to extract implicit poles developed for e+e− → 3 jets
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Basics of subtraction method - I

✓ General form of (renormalised) cross section

dσ̂NNLO ≡
∫

dΦm+2

(

dσ̂RR
NNLO − dσ̂S

NNLO

)

+

∫

dΦm+2

dσ̂S
NNLO

+

∫

dΦm+1

(

dσ̂RV
NNLO − dσ̂V S,1

NNLO

)

+

∫

dΦm+1

dσ̂V S,1
NNLO +

∫

dΦm+1

dσ̂MF,1
NNLO

+

∫

dΦm

dσ̂V V
NNLO +

∫

dΦm

dσ̂MF,2
NNLO

✓ dσ̂S
NNLO is the double real radiation subtraction term - subtracted and

added back in in integrated form

✓ dσ̂V,S,1
NNLO is the real-virtual radiation subtraction term - subtracted and

added back in in integrated form

✓ dσ̂MF,1
NNLO and dσ̂MF,2

NNLO are the mass factorisation counter terms
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Basics of subtraction method - II

✓ The aim is to recast the NNLO cross section in the form

dσ̂NNLO =

∫

dΦm+2

[

dσ̂RR
NNLO − dσ̂S

NNLO

]

+

∫

dΦm+1

[

dσ̂RV
NNLO − dσ̂T

NNLO

]

+

∫

dΦm

[

dσ̂V V
NNLO − dσ̂U

NNLO

]

,

where the terms in each of the square brackets is finite, well behaved in
the infrared singular regions and can be evaluated numerically.

dσ̂T
NNLO = dσ̂V S,1

NNLO −
∫

1

dσ̂S,1
NNLO − dσ̂MF,1

NNLO,

dσ̂U
NNLO = −

∫

1

dσ̂V S,1
NNLO −

∫

2

dσ̂S,2
NNLO − dσ̂MF,2

NNLO.
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Integrated three-parton tree antennae

X 0
3 Final-Final Initial-Final Initial-Initial

A ✓ [1] ✓ [2] ✓ [2]
D ✓ [1] ✓ [2] ✓ [2]
E ✓ [1] ✓ [2] ✓ [2]
F ✓ [1] ✓ [2] ✓ [2]
G ✓ [1] ✓ [2] ✓ [2]

[1] Gehrmann-De Ridder, Gehrmann, NG, (05)

[2] Daleo, Gehrmann, Maitre, (06)

S Final-Final Initial-Final Initial-Initial

S ✓ [1] ✓ [2]

[1] Gehrmann-De Ridder, Gehrmann, NG, Heinrich, (07)

[2] Daleo, Gehrmann-De Ridder, Gehrmann, Luisoni, (09)
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Integrated three-parton one-loop antennae

X 1
3 Final-Final Initial-Final Initial-Initial

A, Ã, Â ✓ [1] ✓ [2] ✓ [3]
D, D̂ ✓ [1] ✓ [2] ✓ [3]
F , F̂ ✓ [1] ✓ [2] ✓ [3]

E, Ẽ, Ê ✓ [1] ✓ [2] ✓ [3]
G, G̃, Ĝ ✓ [1] ✓ [2] ✓ [3]

[1] Gehrmann-De Ridder, Gehrmann, NG, (05)

[2] Daleo, Gehrmann-De Ridder, Gehrmann, Luisoni, (09)

[3] Gehrmann, Monni, (11)
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Integrated four-parton tree antennae

X 0
4 Final-Final Initial-Final Initial-Initial

A, Ã ✓ [1] ✓ [2]
B ✓ [1] ✓ [2] ✓ [3]
C ✓ [1] ✓ [2]
D ✓ [1] ✓ [2]

E, Ẽ ✓ [1] ✓ [2] ✓ [3]
F ✓ [1] ✓ [2]

G, G̃ ✓ [1] ✓ [2]
H ✓ [1] ✓ [2] ✓ [3]

[1] Gehrmann-De Ridder, Gehrmann, NG, (05)

[2] Daleo, Gehrmann-De Ridder, Gehrmann, Luisoni, (09)

[3] Boughezal, Gehrmann-De Ridder, Ritzmann, (10)

Remaining Initial-Initial functions depend on further 20 master integrals
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e+e− → 3 jets at NNLO

Method thoroughly tried and tested for partons only in the final state
Gehrmann-De Ridder, Gehrmann, Heinrich, NG (07)

✓ NNLO corrections to jet rate small
✓ stable perturbative prediction
✓ resummation not needed
✓ theory error below 2%
✓ small hadronisation

corrections

✓ αs extraction from jet rates

Dissertori, Gehrmann-De Ridder,
Gehrmann, Heinrich, Stenzel, NG (09)

✓ fit at ycut = 0.02

✓ consistent results at other ycut

αs(MZ) = 0.1175±0.0020(exp)±0.0015(th)

0

0.25

0.5

0.75

-4 -3 -2 -1 0

log10(ycut)

σ 3 
je

t /
 σ

ha
d

Q = MZ

αs (MZ) = 0.1189

ALEPH data

NNLO

NLO

LO

0

0.2

0.4

0.6

0.8

1

-4 -3 -2 -1 0

αs
3 theory

ALEPH data

Q = 206 GeV

αs (MZ) = 0.1189

R2 jet

R3 jet

R4 jet

R5 jet

log10(ycut)
– p. 11



Applications to LHC processes

✓ All relevant matrix elements for pp → 2 jet and pp → V + 1 jet processes
available for some time

✓ Can expect to have parton-level NNLO predictions for pp → 2 jet and
pp → V + 1 jet in next couple of years

✓ Hope for significant reduction in theory (renormalisation
scale/factorisation scale) dependence

✓ LHC already has increased dynamic range for jet studies - rapidity,
transverse energy.

✓ Combined with excellent experimental jet energy scale uncertainty, there
is the opportunity for improved measurements of
✓ Parton distributions
✓ Strong coupling
✓ Internal structure of the jet
✓ Rapidity gaps between the jets
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Maximising the impact of NNLO calculations

Triple differential form of the cross section

d3σ

dETdη1dη2
=

1

8π

∑

ij

x1fi(x1, µF ) x2fj(x2, µF )
α2
s(µR)

E3
T

|Mij(η
∗)|2

cosh4 η∗

✓ Direct link between observables
ET , η1, η2 and momentum
fractions/parton luminosities

x1 =
ET
√

s
(exp(η1) + exp(η2)) ,

x2 =
ET
√

s
(exp(−η1) + exp(−η2))

✓ and matrix elements that only
depend on

η∗ =
1

2
(η1 − η2)

x1

ET2
η 2

η1ΕΤ1

x2
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Triple differential distribution

✓ Range of x1 and x2 fixed allowed
LO phase space for jets
ET ∼ 200 GeV at

√
s = 7 TeV
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✓ Shape of distribution can be
understood by looking at parton
luminosities and matrix elements
(in for example the single effective
subprocess approximation)

Giele, NG, Kosower, hep-ph/9412338 – p. 14



Phase space considerations

✓ Phase space boundary fixed
when one or more parton
fractions → 1.

I η1 > 0 and η2 > 0 OR η1 < 0 and
η2 < 0
⇒ one x1 or x2 is less than xT

- small x

II η1 > 0 and η2 < 0 OR η1 < 0 and
η2 > 0
⇒ both x1 and x2 are bigger
than xT

- large x

III growth of phase space at NLO
(if ET1 > ET2)

[

x2

T
< x1x2 < 1 and xT = 2ET /

√

s

]

-5 -4 -3 -2 -1 0 1 2 3 4 5

η1

-5

-4

-3

-2

-1

0

1

2

3

4

5

η 2

I

I
II

II

III

III

– p. 15



Single Jet Inclusive Distribution

✓ Single Jet Inclusive Distribution is just a slice of the triple differential
distribution, moving from (x1, x2) = (1, x2

T cosh2(η∗)) to (x2
T cosh2(η∗), 1)

where η∗ = 1

2
(η1 − η2)
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Measurements of strong coupling

We can extract αs using input PDF’s (with varying αs) fixed by DIS, etc e.g.
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Measurements of strong coupling

✓ With incredible jet energy resolution, the LHC can do better

✓ and simultaneously fit the parton density functions and strong coupling

✓ If the systematic errors can be understood, the way to do this is via the
triple differential cross section

Giele, NG, Yu, hep-ph/9506442

✓ and add NNLO W±+jet, Z+jet, γ+jet calculations as they become
available

D0 preliminary, 1994
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Applications to LHC processes - status

✓ All relevant matrix elements for pp → 2 jet and pp → V + 1 jet processes
available for some time

Aim to push “leading colour gluons-only" pp → 2 jets all the way to the
end to demonstrate proof of concept

✓ Double unresolved subtraction terms for leading colour six-gluon
process tested

1 2

ijk

l

(a) Example configuration of a triple
collinear event with sijk → 0.
(b) Distribution of dσ̂R

NNLO/dσ̂
S
NNLO

for 10000 triple collinear phase space
points.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0.99996  0.99998  1  1.00002  1.00004

# 
ev

en
ts

R

Triple collinear limit for gg→gggg

#PS points=10000
x=sijk/s

x=10-7

x=10-8

x=10-9

1419 outside the plot
77  outside the plot
17 outside the plot

Pires, NG, (10)
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Applications to LHC processes - status

Real Virtual subtraction terms for one-loop five-gluon process almost
complete Gehrmann-De Ridder, Pires, NG

Few remaining “initial-initial" integrals necessary to complete “leading
colour gluons-only" pp → 2 jet (same type of integrals as already
encountered)

✓ Same integrals are needed for all other processes

Aim to have “leading colour gluons-only" pp → 2 jet in place in next few
months

In parallel, coding of sub-leading colour contributions, quark processes
and pp → V + 1 jet underway
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