Prospects for $2 \rightarrow 2$ NNLO processes at the LHC

Nigel Glover

IPPP, Durham University

based on work of/with Radja Boughezal, James Currie, Pedro Jimenez Delgado, Aude Gehrmann-De Ridder, Thomas Gehrmann, Gudrun Heinrich, Gionata Luisoni, Pier Francesco Monni, Joao Pires, Mathias Ritzmann, Steven Wells

NNLO calculations for $2 \rightarrow 2 \text{ processes}$

$$d\sigma = \sum_{i,j} \int \frac{d\xi_1}{\xi_1} \frac{d\xi_2}{\xi_2} f_i(\xi_1, \mu_F^2) f_j(\xi_2, \mu_F^2) d\hat{\sigma}_{ij}(\alpha_s(\mu_R), \mu_R, \mu_F)$$

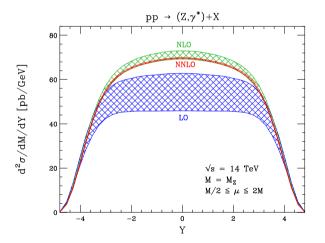
$$d\hat{\sigma}_{ij} = d\hat{\sigma}_{ij}^{LO} + \left(\frac{\alpha_s(\mu_R)}{2\pi}\right) d\hat{\sigma}_{ij}^{NLO} + \left(\frac{\alpha_s(\mu_R)}{2\pi}\right)^2 d\hat{\sigma}_{ij}^{NNLO} + \mathcal{O}(\alpha_s^3)$$

Processes of interest

- ✓ $pp \rightarrow 2$ jets
- $\checkmark \quad pp \to \gamma \text{+jets}$
- $\checkmark \quad pp \to \gamma \gamma$
- ✓ $pp \to V+jet$
- $\checkmark \quad pp \to t\bar{t}$

. . .

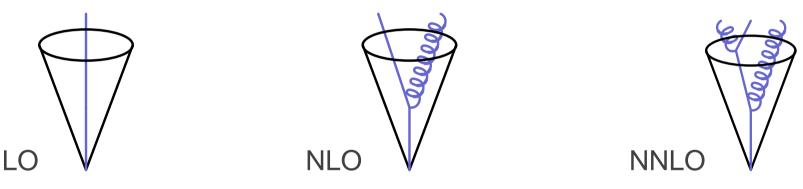
- $\checkmark \quad pp \to VV$
- ✓ $pp \to H+jet$



Massively reduced theoretical error Anastasiou, Dixon, Melnikov, Petriello (04)

Arguments in favour of NNLO

- Reduced renormalisation scale dependence
- Event has more partons in the final state so perturbation theory can start to reconstruct the shower
 - \Rightarrow better matching of jet algorithm between theory and experiment



✓ Reduced power correction as higher perturbative powers of $1/\ln(Q/\Lambda)$ mimic genuine power corrections like 1/Q

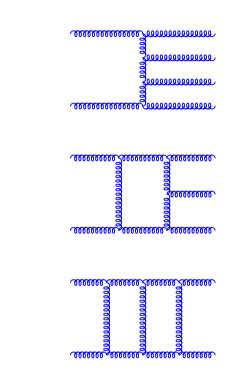
Arguments in favour of NNLO

 Better description of transverse momentum of final state due to double radiation off initial state

- ✓ At LO, final state has no transverse momentum
- Single hard radiation gives final state transverse momentum, even if no additional jet
- ✓ Double radiation on one side, or single radiation of each incoming particle gives more complicated transverse momentum to final state
- ✓ NNLO is the first serious estimate of the error

Anatomy of a NNLO calculation e.g. $pp \rightarrow 2j$

- ✓ double real radiation matrix elements $d\hat{\sigma}_{NNLO}^{RR}$ ✓ implicit poles from double unresolved emission
- single radiation one-loop matrix elements $d\hat{\sigma}_{NNLO}^{RV}$
 - ✓ explicit infrared poles from loop integral
 - ✓ implicit poles from soft/collinear emission
- ✓ two-loop matrix elements $d\hat{\sigma}_{NNLO}^{VV}$
 - ✓ explicit infrared poles from loop integral
 - ✓ including square of one-loop amplitude



$$\mathrm{d}\hat{\sigma}_{NNLO} \sim \int_{\mathrm{d}\Phi_{m+2}} \mathrm{d}\hat{\sigma}_{NNLO}^{RR} + \int_{\mathrm{d}\Phi_{m+1}} \mathrm{d}\hat{\sigma}_{NNLO}^{RV} + \int_{\mathrm{d}\Phi_m} \mathrm{d}\hat{\sigma}_{NNLO}^{VV}$$

✓ Antenna method to extract implicit poles developed for $e^+e^- \rightarrow 3$ jets

Basics of subtraction method - I

✓ General form of (renormalised) cross section

$$\begin{aligned} \mathrm{d}\hat{\sigma}_{NNLO} &\equiv \int_{\mathrm{d}\Phi_{m+2}} \left(\mathrm{d}\hat{\sigma}_{NNLO}^{RR} - \mathrm{d}\hat{\sigma}_{NNLO}^{S} \right) + \int_{\mathrm{d}\Phi_{m+2}} \mathrm{d}\hat{\sigma}_{NNLO}^{S} \\ &+ \int_{\mathrm{d}\Phi_{m+1}} \left(\mathrm{d}\hat{\sigma}_{NNLO}^{RV} - \mathrm{d}\hat{\sigma}_{NNLO}^{VS,1} \right) + \int_{\mathrm{d}\Phi_{m+1}} \mathrm{d}\hat{\sigma}_{NNLO}^{VS,1} + \int_{\mathrm{d}\Phi_{m+1}} \mathrm{d}\hat{\sigma}_{NNLO}^{MF,1} \\ &+ \int_{\mathrm{d}\Phi_{m}} \mathrm{d}\hat{\sigma}_{NNLO}^{VV} + \int_{\mathrm{d}\Phi_{m}} \mathrm{d}\hat{\sigma}_{NNLO}^{MF,2} \end{aligned}$$

- ✓ $d\hat{\sigma}^{S}_{NNLO}$ is the double real radiation subtraction term subtracted and added back in in integrated form
- ✓ $d\hat{\sigma}_{NNLO}^{V,S,1}$ is the real-virtual radiation subtraction term subtracted and added back in in integrated form
- ✓ $d\hat{\sigma}_{NNLO}^{MF,1}$ and $d\hat{\sigma}_{NNLO}^{MF,2}$ are the mass factorisation counter terms

Basics of subtraction method - II

 \checkmark The aim is to recast the NNLO cross section in the form

$$\begin{aligned} \mathrm{d}\hat{\sigma}_{NNLO} &= \int_{\mathrm{d}\Phi_{m+2}} \left[\mathrm{d}\hat{\sigma}_{NNLO}^{RR} - \mathrm{d}\hat{\sigma}_{NNLO}^{S} \right] \\ &+ \int_{\mathrm{d}\Phi_{m+1}} \left[\mathrm{d}\hat{\sigma}_{NNLO}^{RV} - \mathrm{d}\hat{\sigma}_{NNLO}^{T} \right] \\ &+ \int_{\mathrm{d}\Phi_{m}} \left[\mathrm{d}\hat{\sigma}_{NNLO}^{VV} - \mathrm{d}\hat{\sigma}_{NNLO}^{U} \right], \end{aligned}$$

where the terms in each of the square brackets is finite, well behaved in the infrared singular regions and can be evaluated numerically.

$$d\hat{\sigma}_{NNLO}^{T} = d\hat{\sigma}_{NNLO}^{VS,1} - \int_{1} d\hat{\sigma}_{NNLO}^{S,1} - d\hat{\sigma}_{NNLO}^{MF,1},$$

$$d\hat{\sigma}_{NNLO}^{U} = -\int_{1} d\hat{\sigma}_{NNLO}^{VS,1} - \int_{2} d\hat{\sigma}_{NNLO}^{S,2} - d\hat{\sigma}_{NNLO}^{MF,2}.$$

Integrated three-parton tree antennae

\mathcal{X}_3^0	Final-Final	Initial-Final	Initial-Initial
A	✓ [1]	✓ [2]	✓ [2]
$\mid D \mid$	✓ [1]	✓ [2]	✓ [2]
$\mid E \mid$	✓ [1]	✓ [2]	✓ [2]
F	✓ [1]	✓ [2]	✓ [2]
G	✓ [1]	✓ [2]	✓ [2]

- [1] Gehrmann-De Ridder, Gehrmann, NG, (05)
- [2] Daleo, Gehrmann, Maitre, (06)

S	Final-Final	Initial-Final	Initial-Initial
S	✓ [1]	✓ [2]	

[1] Gehrmann-De Ridder, Gehrmann, NG, Heinrich, (07)

[2] Daleo, Gehrmann-De Ridder, Gehrmann, Luisoni, (09)

Integrated three-parton one-loop antennae

\mathcal{X}_3^1	Final-Final	Initial-Final	Initial-Initial
A, \tilde{A}, \hat{A}	✓ [1]	✓ [2]	✓ [3]
D, \hat{D}	✓ [1]	✓ [2]	✓ [3]
F, \hat{F}	✓ [1]	✓ [2]	✓ [3]
$ E, \tilde{E}, \hat{E} $	✓ [1]	✓ [2]	✓ [3]
G, \tilde{G}, \hat{G}	✓ [1]	✓ [2]	✓ [3]

- [1] Gehrmann-De Ridder, Gehrmann, NG, (05)
- [2] Daleo, Gehrmann-De Ridder, Gehrmann, Luisoni, (09)
- [3] Gehrmann, Monni, (11)

Integrated four-parton tree antennae

\mathcal{X}_4^0	Final-Final	Initial-Final	Initial-Initial
A, \tilde{A}	✓ [1]	✓ [2]	
B	✓ [1]	✓ [2]	✓ [3]
	✓ [1]	✓ [2]	
D	✓ [1]	✓ [2]	
$ E, \tilde{E}$	✓ [1]	✓ [2]	√ [3]
F	✓ [1]	✓ [2]	
G, \tilde{G}	✓ [1]	✓ [2]	
H	✓ [1]	✓ [2]	√ [3]

- [1] Gehrmann-De Ridder, Gehrmann, NG, (05)
- [2] Daleo, Gehrmann-De Ridder, Gehrmann, Luisoni, (09)
- [3] Boughezal, Gehrmann-De Ridder, Ritzmann, (10)

Remaining Initial-Initial functions depend on further 20 master integrals

$e^+e^- \rightarrow 3~{\rm jets}$ at NNLO

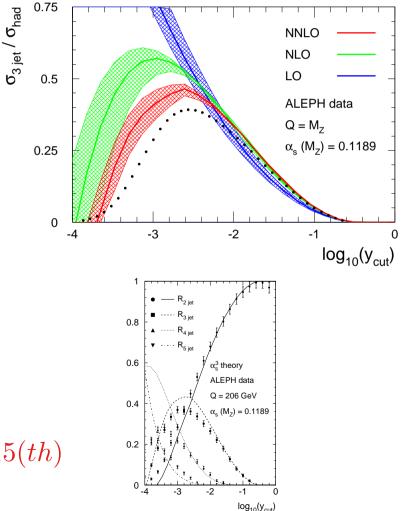
Method thoroughly tried and tested for partons only in the final state Gehrmann-De Ridder, Gehrmann, Heinrich, NG (07)

- ✓ NNLO corrections to jet rate small
 - stable perturbative prediction
 - resummation not needed
 - ✓ theory error below 2%
 - small hadronisation corrections
- $\checkmark \alpha_s$ extraction from jet rates

Dissertori, Gehrmann-De Ridder, Gehrmann, Heinrich, Stenzel, NG (09)

- $\checkmark \quad \text{fit at } y_{cut} = 0.02$
- \checkmark consistent results at other y_{cut}

 $\alpha_s(M_Z) = 0.1175 \pm 0.0020(exp) \pm 0.0015(th)$



Applications to LHC processes

- ✓ All relevant matrix elements for $pp \rightarrow 2$ jet and $pp \rightarrow V + 1$ jet processes available for some time
- ✓ Can expect to have parton-level NNLO predictions for $pp \rightarrow 2$ jet and $pp \rightarrow V + 1$ jet in next couple of years
- Hope for significant reduction in theory (renormalisation scale/factorisation scale) dependence
- LHC already has increased dynamic range for jet studies rapidity, transverse energy.
- Combined with excellent experimental jet energy scale uncertainty, there
 is the opportunity for improved measurements of
 - Parton distributions
 - ✓ Strong coupling
 - ✓ Internal structure of the jet
 - Rapidity gaps between the jets

Maximising the impact of NNLO calculations

Triple differential form of the cross section

$$\frac{d^3\sigma}{dE_T d\eta_1 d\eta_2} = \frac{1}{8\pi} \sum_{ij} x_1 f_i(x_1, \mu_F) \ x_2 f_j(x_2, \mu_F) \ \frac{\alpha_s^2(\mu_R)}{E_T^3} \frac{|\mathcal{M}_{ij}(\eta^*)|^2}{\cosh^4 \eta^*}$$

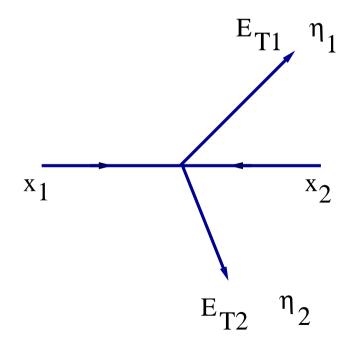
✓ Direct link between observables E_T , η_1 , η_2 and momentum fractions/parton luminosities

$$x_1 = \frac{E_T}{\sqrt{s}} \left(\exp(\eta_1) + \exp(\eta_2) \right),$$

$$x_2 = \frac{E_T}{\sqrt{s}} \left(\exp(-\eta_1) + \exp(-\eta_2) \right)$$

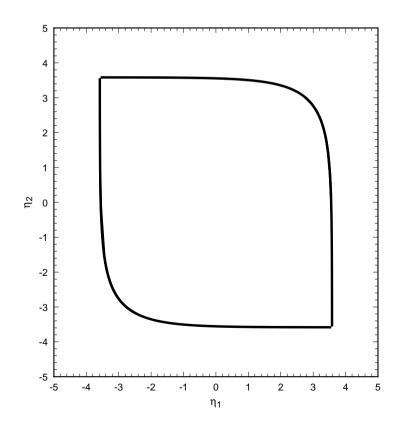
 and matrix elements that only depend on

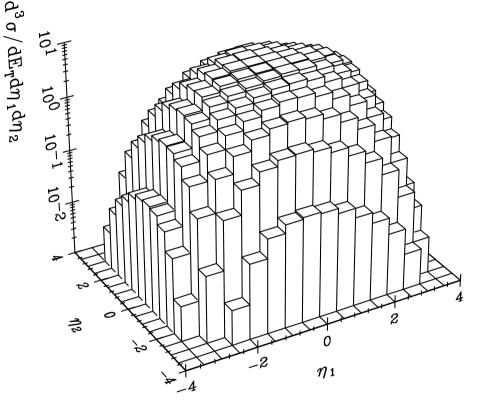
$$\eta^* = \frac{1}{2} \left(\eta_1 - \eta_2 \right)$$



Triple differential distribution

✓ Range of x_1 and x_2 fixed allowed LO phase space for jets $E_T \sim 200$ GeV at $\sqrt{s} = 7$ TeV





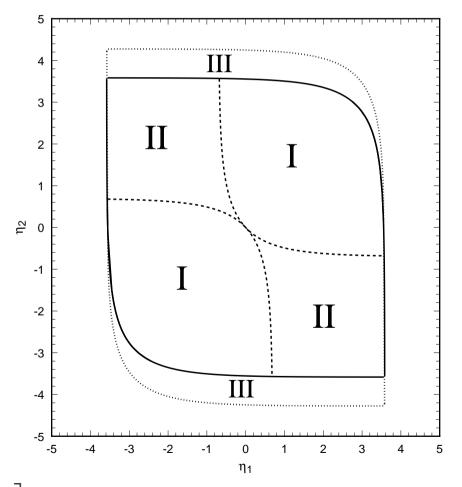
 Shape of distribution can be understood by looking at parton luminosities and matrix elements (in for example the single effective subprocess approximation)

Giele, NG, Kosower, hep-ph/9412338 -p. 14

Phase space considerations

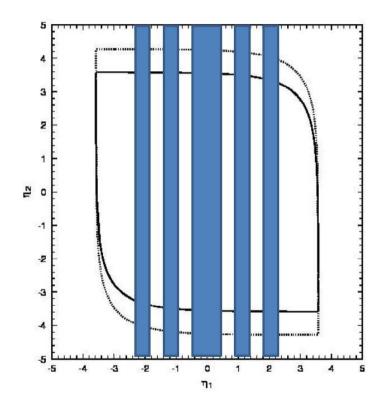
- ✓ Phase space boundary fixed when one or more parton fractions → 1.
 - I $\eta_1 > 0$ and $\eta_2 > 0$ OR $\eta_1 < 0$ and $\eta_2 < 0$
 - \Rightarrow one x_1 or x_2 is less than x_T small x
 - II $\eta_1 > 0$ and $\eta_2 < 0$ OR $\eta_1 < 0$ and $\eta_2 > 0$ \Rightarrow both x_1 and x_2 are bigger than x_T
 - large x
- III growth of phase space at NLO (if $E_{T1} > E_{T2}$)

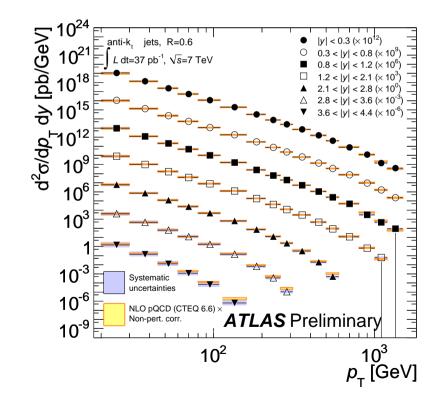
$$\left[x_T^2 < x_1 x_2 < 1 \quad \text{and} \quad x_T = 2E_T / \sqrt{s} \right]$$



Single Jet Inclusive Distribution

✓ Single Jet Inclusive Distribution is just a slice of the triple differential distribution, moving from $(x_1, x_2) = (1, x_T^2 \cosh^2(\eta^*))$ to $(x_T^2 \cosh^2(\eta^*), 1)$ where $\eta^* = \frac{1}{2}(\eta_1 - \eta_2)$





Measurements of strong coupling

We can extract α_s using input PDF's (with varying α_s) fixed by DIS, etc e.g.

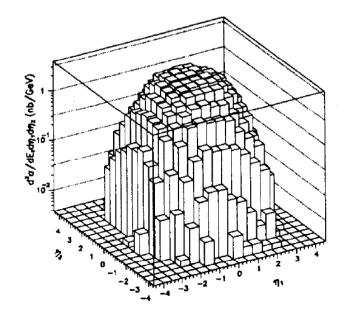


Measurements of strong coupling

- ✓ With incredible jet energy resolution, the LHC can do better
- ✓ and simultaneously fit the parton density functions and strong coupling
- ✓ If the systematic errors can be understood, the way to do this is via the triple differential cross section

Giele, NG, Yu, hep-ph/9506442

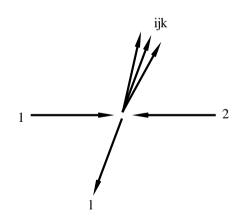
✓ and add NNLO W^{\pm} +jet, Z+jet, γ +jet calculations as they become available



D0 preliminary, 1994

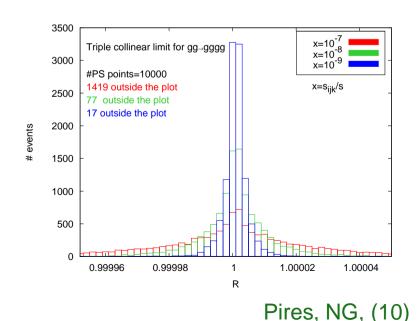
Applications to LHC processes - status

- ✓ All relevant matrix elements for $pp \rightarrow 2$ jet and $pp \rightarrow V + 1$ jet processes available for some time
- Aim to push "leading colour gluons-only" $pp \rightarrow 2$ jets all the way to the end to demonstrate proof of concept
- Double unresolved subtraction terms for leading colour six-gluon process tested



(a) Example configuration of a triple collinear event with $s_{ijk} \rightarrow 0$.

(b) Distribution of $d\hat{\sigma}^R_{NNLO}/d\hat{\sigma}^S_{NNLO}$ for 10000 triple collinear phase space points.



– p. 19

Applications to LHC processes - status

- Real Virtual subtraction terms for one-loop five-gluon process almost complete Gehrmann-De Ridder, Pires, NG
- Few remaining "initial-initial" integrals necessary to complete "leading colour gluons-only" $pp \rightarrow 2$ jet (same type of integrals as already encountered)
- ✓ Same integrals are needed for all other processes
- Aim to have "leading colour gluons-only" $pp \rightarrow 2$ jet in place in next few months
- In parallel, coding of sub-leading colour contributions, quark processes and $pp \rightarrow V + 1$ jet underway