

QCD@LHC 22/8/11

W/Z + jet production at CMS

Mike Cutajar (mcutajar@cern.ch)

On behalf of the CMS Collaboration

- Object reconstruction in CMS.
- 3 CMS analyses using 2010 dataset ~ 36 pb^{-1} at 7 TeV.
 - Analysis methods and results.

Rates of jets produced in association with W and Z bosons - CMS-PAS-EWK-10-012

Observation of Z+b, Z \rightarrow ee, $\mu\mu$

- CMS-PAS-EWK-10-015

Measurement of associated charm production in W final states - CMS-PAS-FWK-11-013

Introduction

- W/Z+jets production provides an important and stringent test of perturbative QCD.
 - Copious production at the LHC with clean experimental signatures.
 - Can be used to constrain PDFs.
 - Flavour specific final states allow probing of different PDFs.
- Selection criteria similar to well established inclusive W/Z→leptons cross section measurements.
- Measure ratios of cross sections to minimise systematic uncertainty.
- Quote results within acceptance of analyses cuts for easier comparison with theory.
- Compare results to theoretical predictions using ME generator interfaced to Pythia parton shower.
 - MadGraph samples normalised to NNLO (inclusive W/Z+jets) or NLO (flavour specific anlayses) cross sections.
- Data driven techniques used where possible.

Imperial College London **Object Reconstruction in CMS**

- The analyses require use of all the CMS subdetectors.
 - Silicon tracker and pixel detector.
 - PbWO₄ crystal EM calorimeter.
 - Brass + scintilator hadron calorimeter.
 - Gas-ionisation muon chambers in return voke of the magnet.
- Isolated leptons (e, μ) with kinematic cuts varying between analyses.
- Jets clustered by the **anti-k** algorithm (size parameter = 0.5).
 - Particle Flow technique used to reconstruct the jet constituents from optimum combination of all subdetector measurements.
 - Jet energies corrected for detector response and pile up effects.
 - Loose ID applied to reject signals due to calorimeter noise.
- b- and c-jets tagged with two algorithms:
 - Track Counting (TC)
 - Uses the impact parameter significance of tracks in the jet. Simple Secondary Vertex (SSV)
 - Reconstructs the decay vertex and uses its decay length significance.
- Particle Flow also used to reconstruct ME_T.

W/Z+jets production

- W + 4 jets and Z + 3 jets calculations performed to NLO in QCD.
 - Phys. Rev. Lett. 106 (Mar, 2011) 092001 (W + 4 jet)
 - Phys. Rev. D 82 (Oct, 2010) 074002 (Z + 3 jet)
 - Precision varies from 10% to 30% due to uncertainties in PDFs and choice of renormalisation and factorisation scales.
 - Constrain with measurements.
- Measure the cross section ratios (jet multiplicities n are inclusive):

 $\sigma(V + n \text{ jets}) / \sigma(V)$ $\sigma(V + n \text{ jets}) / \sigma(V + (n-1) \text{ jets})$ $\sigma(W + \text{ jets}) / \sigma(Z + \text{ jets})$

Measure also the W charge asymmetry as a function of jet multiplicity.
 A_W = [σ(W⁺) - σ(W⁻)] / [σ(W⁺) + σ(W⁻)]

W/Z+jets selections

- Select events with one or more good lepton (e, μ) candidates.
 - Leading lepton (e, μ) p_T > 20 GeV/c, η < 2.5 (e), η < 2.1 (μ), excluding electrons in ECAL barrel-endcap crack
 - Second lepton p_T > 10 GeV/c, η < 2.5, looser ID.
 - Events with $60 < m(II) < 120 \text{ GeV/c}^2$ comprise the Z+jets sample, events failing this requirement comprise the W+jets sample such that there is no overlap between the two samples.
 - Require $m_T > 50 \text{ GeV/c}^2$ in the W+jets sample.
- Count jets with $p_T > 30$ GeV/c, $\eta < 2.4$.

 Jet energies and multiplicities: good agreement between data and MC.

Imperial College

London

22/8/11 QCD@LHC

Mike Cutajar: W/Z + jet production at CMS

• Jet energies and multiplicities show good agreement with MC.

Imperial College

W/Z+jets signal extraction

• Fit for W/Z yield in exclusive jet multiplicty bins for $N_{jet} \le 3$ and inclusive bins for $N_{jet} \ge 4$.

W+jets: 2D fit to m_T and N_{b-tag}

- N_{b-tag} provides a data driven control of the tt yield (TC b-tagging algorithm).

- **Z+jets:** Fit to m(II)
- Negligible backgrounds.

- Unfolding procedure applied to correct for migration between N_{jet} bins due to imperfect jet energy resolution and reconstruction efficiency.
 - Singular value decomposition with migration matrix derived from MadGraph W/Z+jets

Imperial College

W+jets results

• Measured ratios $\sigma(W + n \text{ jets}) / \sigma(W)$ and $\sigma(W + n \text{ jets}) / \sigma(W + (n-1) \text{ jets})$:

- Good agreement with MadGraph, poor agreement with Pythia at high jet multiplicity as expected.
- Dominant systematic uncertainties:
 - JES
 - Difference in flavour content between W+jets and the sample used to extract the JEC is accounted for.

Unfolding

- Studied effect of different simulations (MadGraph and Pythia) and tunes (Z2 and D6T) on the migration matrix.

Imperial College

Z+jets results

Imperial College London

• Measured ratios $\sigma(Z + n \text{ jets}) / \sigma(Z)$ and $\sigma(Z + n \text{ jets}) / \sigma(Z + (n-1) \text{ jets})$:

- Good agreement with MadGraph.
- Larger statistical uncertainty at high jet multiplicity than in W+jets.

W+jets/Z+jets ratios

• Reasonable agreement with MadGraph.

Imperial College

W charge asymmetry

- W charge asymmetry as a function of a jet multiplicity in good agreement with MadGraph.
- Asymmetry is smaller in W+jets events as expected.
- Charge misidentification uncertainity and positive vs. negative lepton efficiency uncertainties are small and accounted for.

Imperial College

Z+b production

- Benchmark for searches for Higgs boson production in association with b quarks.
 - Large uncertainties in H+b cross section at NLO.
 - 30% difference between fixed and variable flavour schemes at large m_H.
 - Study of Z+b production should help to clarify which scheme is favoured by data.
- Fixed flavour scheme: u, d, s, c quarks only in the hard scattering process.
 - b quarks produced explicitly in gluon splitting.
 - Recent NLO calculation with massive b quarks: arXiv:1106.6019.

• Variable flavour scheme: b quarks participate directly in hard scattering (gluon splitting integrated into PDF).

- NLO calculations with massless b quarks: Phys. Rev. **D69** (2004) 074021, Phys. Rev. **D72** (2005) 074024, Phys. Rev. **D73** (2006) 054007.

Z+b analysis

- Measure σ(Z + b) / σ(Z + j) and compare to fixed and variable flavour schemes implemented in MadGraph.
 - Variable flavour inclusive Z+jets sample normalised to NNLO cross section.

- Fixed flavour Z+b, Z+c samples normalised to NLO cross section (MCFM calculation in variable flavour scheme).

- Dominant backgrounds: Z+c, Z+l (I = light jet), tt production
- Dominant uncertainties: b-tagging efficiency, b-jet purity.
- Study electron and muon channels.
 e p_T > 25 GeV/c, η < 2.5, excluding electrons in ECAL barrel-endcap crack
 - $\mu p_T > 20 \text{ GeV/c}, \eta < 2.1$
 - Jet p_T > 25 GeV/c, η < 2.1
 - b-jets tagged with SSV algorithm with High Efficiency (HE) and High Purity (HP) versions, working points corresponding to 1% and 0.1% mistag rates.
 - Select events with 60 < m(II) < 120 GeV/c² and ME_T < 40 GeV (ME_T cut to suppress tt).

Z+b results

Imperial College London

- Need estimates of b-jet purity, tt background and b-tagging efficiency to measure $R = \sigma(Z + b) / \sigma(Z + j)$
 - Fit to secondary vertex mass with MC templates to extract b-jet purity = $88 \pm 11\%$.
 - N_{tt} from MC.
 - b-tagging efficiency estimated in data containing jets associated with muons (20% uncertainty).

• Results in good agreement with fixed flavour MadGraph samples.

Sample	$\mathcal{R}(Z ightarrow ee)$ (%), $\mathrm{p}_T^e > 25~\mathrm{GeV}$, $ \eta^e < 2.5$	$\mathcal{R}(Z ightarrow \mu \mu)$ (%), $\mathrm{p}_T^\mu > 20$ GeV, $ \eta^\mu < 2.1$
Data HE	$4.3 \pm 0.6(stat) \pm 1.1(syst)$	$5.1 \pm 0.6(stat) \pm 1.3(syst)$
Data HP	$5.4 \pm 1.0(stat) \pm 1.2(syst)$	$4.6 \pm 0.8(stat) \pm 1.1(syst)$
MadGraph	$5.1 \pm 0.2(stat) \pm 0.2(syst) \pm 0.6(theory)$	$5.3 \pm 0.1(stat) \pm 0.2(syst) \pm 0.6(theory)$
MCFM	4.3 ± 0.5 (theory)	4.7 ± 0.5 (theory)

Z+b: fixed vs. variable flavour

• Yields from variable flavour inclusive Z+jets sample also in agreement with data.

Selection	Data	$\sum MC$	tī	Z+j
HE eeb	54 ± 7	64.2 ± 1.1	2.0 ± 0.1	62.2 ± 1.1
HP eeb	29 ± 5	30.1 ± 0.8	1.60 ± 0.09	28.5 ± 0.8
HP eebb	1 ± 1	1.1 ± 0.1	0.39 ± 0.04	0.7 ± 0.1
HE μμb	91 ± 10	92.5 ± 1.4	3.0 ± 0.1	89.5 ± 1.4
HP μμb	36 ± 6	44.4 ± 0.9	2.4 ± 0.1	42.0 ± 0.9
ΗΡ μμbb	1 ± 1	1.6 ± 0.2	0.52 ± 0.05	1.1 ± 0.1

- Shapes of p_T(b) and Δφ(Z, b) in agreement with data in both fixed and variable flavour MadGraph samples.
- Scheme dependence cannot be resolved with current statistics.

Imperial College London

W+c production

- Rate of W+c production sensitive to s quark content of the proton.
 - Production dominated by $\bar{s}g \rightarrow W^+ \bar{c}$, $sg \rightarrow W^- c$
- W+b production is highly suppressed: use b-tagging techniques to identify the c-jet.
- Measure ratios
 R_c[±] = σ(W⁺c) / σ(W⁻c)
 R_c = σ(W + c) / σ(W + j)
- Dominant backgrounds from top and W+I production.
- Analysis uses POWHEG NLO generator with CT10 PDF set for electroweak processes.
 - With cut on hard jet multiplicity.
 - Allows detailed comparison with NLO PDFs.
 - MadGraph used to cross check.
- Select events with muon p_T > 25 GeV/c, η < 2.1 and at least one jet p_T > 20 GeV/c, η < 2.1.
 - Require at least one jet tagged with SSVHE algorithm.
 - Veto events with dimuon or \geq 3 hard jets (p_T > 40 GeV/c) to supress Drell-Yan and tt backgrounds.
 - Require $m_T > 50 \text{ GeV/c}^2$.

W+c results

Imperial College London

- Extract W+c yield by fitting to the SSVHE discriminator with MC templates.
 - Fit extends to negative tags (where SV is in "wrong direction"); helps to constrain the W+I component.
 - tt component checked in control region in data with inverted jet multiplicity cut.

$$R_c^{\pm} = 0.92 \pm 0.19 \ (stat.) \pm 0.04 \ (syst.)$$

 Dominant uncertainties on R_c[±] in background templates.

$$R_c = 0.143 \pm 0.015 (stat.) \pm 0.024 (syst.)$$

- R_c uncertainity dominated by secondary vertex reconstruction efficiency.
- Results in agreement with MCFM predictions at NLO.

Ratio	MCFM (CT10)	MCFM (MSTW08)	MCFM (NNPDF21)
R_c^{\pm}	$0.915\substack{+0.006\\-0.006}$	$0.881\substack{+0.022\\-0.032}$	0.902 ± 0.008
R_c	$0.125\substack{+0.013\\-0.007}$	$0.118\substack{+0.002\\-0.002}$	0.103 ± 0.005

Summary

- Rates of jet production in association with W and Z bosons measured by CMS.
 - Rates and jet multiplicity scaling behaviour well described by ME+PS simulation.
- Observations of Z+b and W+c production in agreement with theory.
 - Measurements still largely statistics limited.
- Analyses are currently being updated with 2011 data ~ 1.5 fb⁻¹: will allow more detailed study of W/Z+jets production.
 - Differential cross sections.
 - Sensitivity to Z+b flavour scheme dependency.
 - Use measurements to constrain PDFs.

Control plots

Imperial College London

m_T, N_{b-tag}, m(II) fits

22/8/11 QCD@LHC

Mike Cutajar: W/Z + jet production at CMS

Imperial College

Uncertainties on jet rates

Uncertainties on jet rate in $W \rightarrow e\nu$ events [%]					
Jet multiplicity	0	1	2	3	≥ 4
Jet counting		±8	$^{+11}_{-10}$	$^{+14}_{-12}$	$^{+16}_{-15}$
Selection efficiency	± 0.5	±0.3	± 1.0	±1.7	± 4
Signal extraction		±0.1	± 0.4	±3	±9
Total systematics		±8	$+11 \\ -10$	$+14 \\ -12$	±17
Statistical uncertainty	±0.3	±1.0	±2.4	±10	± 28
Uncertainties on jet rate in W $\rightarrow \mu\nu$ events [%]					
Uncertainties on	jet rate :	$\mathfrak{m} \mathbb{W} \rightarrow$	· µv eve	ents [%]	
Jet multiplicity	et rate :	$ n W \rightarrow 1$	· μν eve 2	ents [%]	≥ 4
Jet multiplicity Jet counting	0 ∓ 5	$ \begin{array}{c} \text{in W} \rightarrow \\ 1 \\ \pm 8 \end{array} $	$\nu \mu \nu \text{ eve}$ +11 -10	3 + 14 - 12	≥ 4 +16 -15
Jet multiplicity Jet counting Selection efficiency	et rate : 0 ∓ 5 ± 3	$ \begin{array}{c} \text{in W} \rightarrow \\ 1 \\ \pm 8 \\ \pm 6 \end{array} $	$\begin{array}{c} \mu\nu \text{ eve}\\ 2\\ +11\\ -10\\ \pm4\end{array}$	$ \begin{array}{c} 3 \\ +14 \\ -12 \\ \pm 10 \end{array} $	≥ 4 +16 -15 ±17
Jet multiplicity Jet counting Selection efficiency Signal extraction	et rate : 0 ∓ 5 ± 3	$ \begin{array}{r} \text{in W} \rightarrow \\ 1 \\ \pm 8 \\ \pm 6 \\ \pm 0.1 \end{array} $	$\mu\nu \text{ eve}$ 2 +11 -10 ±4 ±0.4	$ \begin{array}{c} 3 \\ $	≥ 4 +16 -15 ±17 ±9
Jet multiplicity Jet counting Selection efficiency Signal extraction Total systematics	$\begin{array}{c} 0\\ \hline \mp 5\\ \pm 3\\ \hline \pm 6 \end{array}$	$ \begin{array}{c} \text{in W} \rightarrow \\ 1 \\ \pm 8 \\ \pm 6 \\ \pm 0.1 \\ \pm 10 \end{array} $	$\begin{array}{c} \mu\nu \text{ eve} \\ 2 \\ +11 \\ -10 \\ \pm 4 \\ \pm 0.4 \\ +13 \\ -12 \end{array}$	$ \begin{array}{c} 3 \\ +14 \\ -12 \\ \pm 10 \\ \pm 3 \\ +19 \\ -17 \end{array} $	≥ 4 +16 -15 ± 17 ± 9 ± 26

Uncertainties on jet rate in $Z \rightarrow e^+e^-$ events [%]							
Jet multiplicity	0	1	2	3	≥ 4		
Jet counting	∓ 5	± 8	$^{+11}_{-10}$	$^{+14}_{-12}$	$^{+16}_{-15}$		
Selection efficiency	±1.1	± 1.0	±2.2	±2.6	± 6		
Total systematics		± 8	$^{+11}_{-10}$	$^{+14}_{-12}$	$^{+17}_{-16}$		
Statistical uncertainty	±1.1	±3.1	±7	±17	± 43		
Uncertainties on je	t rate ir	$n Z \rightarrow \mu$	$u^+\mu^- ev$	ents [%	5]		
Jet multiplicity	0	1	2	3	≥ 4		
Jet counting	∓ 5	± 8	$^{+11}_{-10}$	$^{+14}_{-12}$	$^{+16}_{-15}$		
Selection efficiency	±3	$^{+6}_{-5}$	$^{+7}_{-6}$	± 10	$^{+24}_{-12}$		
Total systematics	±6	± 10	$^{+13}_{-12}$	$^{+18}_{-16}$	$^{+30}_{-21}$		
Statistical uncertainty	±0.9	±2.6	±5.2	± 18	± 41		

Imperial College London

W/Z+jets cross section ratios

Table 4: $\sigma(W + \ge n \text{ jets}) / \sigma(W)$, the jet multiplicities normalized to the inclusive cross section.

<i>n</i> jets	σ ratio	stat	stat + fit and	jet	unfolding
			efficiency	counting	
		electr	on channel		
$\geq 1 / \geq 0$ jets	0.133	0.001	0.002	+0.019 -0.017	$+0.000 \\ -0.001$
\geq 2 / \geq 0 jets	0.026	0.000	0.001	$+0.004 \\ -0.004$	+0.001 -0.000
\geq 3 / \geq 0 jets	0.0032	0.0002	0.0004	$+0.0006 \\ -0.0005$	+0.0001 -0.0001
\geq 4 / \geq 0 jets	0.0006	0.0000	0.0002	+0.0001 -0.0001	$+0.0001 \\ -0.0000$
		muo	n channel		
$\geq 1 / \geq 0$ jets	0.136	0.001	0.007	+0.019 -0.017	$^{+0.001}_{-0.000}$
\geq 2 / \geq 0 jets	0.026	0.000	0.002	+0.004 -0.004	+0.002 -0.000
$\geq 3 / \geq 0$ jets	0.0041	0.0001	0.0005	+0.0008 -0.0006	+0.0003 -0.0000
$\geq 4 / \geq 0$ jets	0.0006	0.0000	0.0002	$+0.0001 \\ -0.0001$	$+0.0000 \\ -0.0001$

Table 6: $\sigma(W + \ge n \text{ jets}) / \sigma(W + \ge (n - 1) \text{ jets})$, the ratio of jet multiplicities.

<i>n</i> jets	σ ratio	stat	stat + fit and	jet	unfolding
			efficiency	counting	
		elect	ron channel		
$\geq 1 / \geq 0$ jets	0.133	0.002	0.002	+0.019 -0.017	$+0.000 \\ -0.001$
\geq 2 / \geq 1 jets	0.195	0.007	0.007	$+0.002 \\ -0.001$	+0.012 -0.000
\geq 3 / \geq 2 jets	0.125	0.014	0.015	$+0.004 \\ -0.004$	$+0.002 \\ -0.004$
\geq 4 / \geq 3 jets	0.173	0.046	0.049	$+0.003 \\ -0.004$	$^{+0.017}_{-0.003}$
		mu	on channel		
$\geq 1 / \geq 0$ jets	0.136	0.002	0.007	+0.019 -0.017	$+0.001 \\ -0.000$
\geq 2 / \geq 1 jets	0.190	0.005	0.014	+0.004 -0.003	+0.016 -0.000
\geq 3 / \geq 2 jets	0.160	0.011	0.018	+0.004 -0.003	+0.004 -0.002
\geq 4 / \geq 3 jets	0.144	0.025	0.037	$+0.002 \\ -0.003$	$+0.000 \\ -0.043$

Table 5: $\sigma(Z + \ge n \text{ jets}) / \sigma(Z)$, the jet multiplicities normalized to the inclusive cross section.

Imperial College London

<i>n</i> jets	σ ratio	stat	stat + fit and	jet	unfolding
			efficiency	counting	
		electr	on channel		
$\geq 1 / \geq 0$ jets	0.151	0.003	0.006	+0.021 -0.019	+0.005 -0.000
$\geq 2 / \geq 0$ jets	0.028	0.001	0.003	+0.004 -0.004	$+0.002 \\ -0.000$
$\geq 3 / \geq 0$ jets	0.0039	0.0004	0.0009	+0.0007 -0.0006	+0.0005 -0.0001
$\geq 4 / \geq 0$ jets	0.0007	0.0000	0.0004	$+0.0001 \\ -0.0001$	+0.0001 -0.0000
		muo	n channel		
$\geq 1 / \geq 0$ jets	0.149	0.003	0.011	$+0.022 \\ -0.020$	$+0.000 \\ -0.001$
\geq 2 / \geq 0 jets	0.027	0.001	0.004	+0.004 -0.004	+0.001 -0.000
\geq 3 / \geq 0 jets	0.0042	0.0005	0.0012	+0.0008 -0.0006	+0.0000 -0.0003
$\geq 4 / \geq 0$ jets	0.0009	0.0000	0.0006	$+0.0002 \\ -0.0001$	$+0.0001 \\ -0.0000$

Table 7: $\sigma(Z + \ge n \text{ jets}) / \sigma(Z + \ge (n - 1) \text{ jets})$, the ratio of jet multiplicities.

/						
	<i>n</i> jets	σ ratio	stat	stat + fit and	jet	unfolding
		/		efficiency	counting	
			electi	on channel		
	$\geq 1 / \geq 0$ jets	0.151	0.006	0.006	$^{+0.021}_{-0.019}$	+0.001 -0.000
	\geq 2 / \geq 1 jets	0.185	0.017	0.017	$+0.002 \\ -0.001$	+0.006 -0.000
	\geq 3 / \geq 2 jets	0.138	0.030	0.030	$+0.004 \\ -0.004$	$+0.008 \\ -0.003$
	\geq 4 / \geq 3 jets	0.181	0.085	0.085	$^{+0.003}_{-0.004}$	$^{+0.014}_{-0.021}$
			muc	on channel		
	$\geq 1 / \geq 0$ jets	0.149	0.005	0.011	$+0.022 \\ -0.020$	$+0.000 \\ -0.001$
	\geq 2 / \geq 1 jets	0.180	0.016	0.023	$+0.003 \\ -0.003$	+0.011 -0.000
	\geq 3 / \geq 2 jets	0.158	0.036	0.043	$+0.002 \\ -0.001$	+0.000 -0.017
	$\geq 4 / \geq 3$ jets	0.207	0.104	0.117	$+0.002 \\ -0.003$	+0.031 -0.000

Test of Berends-Giele scaling

- Test scaling behaviour
 C_n = σ(V + n jets) / σ(V + (n+1) jets)
- C_n = α + βn to allow for deviations from LO.

- Use measurements of cross section ratios to fit for α and $\beta.$

- 68% CL countours on the plots for statistical uncertainty only.
 Systematic uncertainties shown as arrows.
- MadGraph shows reasonable agreement with data.
- W and Z measurements agree.

Mike Cutajar: W/Z + jet production at CMS

Imperial College

Z+b: fixed vs. variable flavour

Figure 3: p_T of the highest p_T b-quark in the MADGRAPH Z+b fixed-flavour sample (blue squares) and in the MADGRAPH Z+j variable-flavour sample (red triangles).

Imperial College

W+c systematic uncertainties

Table 3: Relative systematic uncertainties (%) in the measurement of R_c^{\pm} .

Source	Relative uncertainty (%)
Charge asymmetry in efficiency	1.0
Muon resolution	< 0.1
Pile-up effects	1.8
Jet energy scale/resolution	1.1
Jet multiplicity	0.7
Vertex reconstruction	0.3
Top templates	1.7
Light-quark contribution	1.1
W+b background	0.2
Other Monte Carlo backgrounds	1.4
PDF uncertainties	2.2
Charm fragmentation function	< 0.1
Charm fragmentation BRs	0.1
TOTAL	4.1

Table 4: Relative systematic uncertainties (%) in the measurement of R_c .

Imperial College London

Source	Relative uncertainty (%)
Charge asymmetry in efficiency	-
Muon resolution	0.7
Pile-up effects	2.5
Jet energy scale/resolution	2.3
Jet multiplicity	2.5
Vertex reconstruction	14.1
Top templates	6.2
Light-quark contribution	3.3
W+b background	2.4
Other Monte Carlo backgrounds	0.2
PDF uncertainties	0.2
Charm fragmentation function	0.2
Charm fragmentation BRs	0.2
TOTAL	16.5