W/Z+Jets Results Atlas Detector -LHC

Erik Devetak (Stony Brook University) on behalf of the ATLAS Collaboration QCD @ LHC 2011 St. Andrews, UK

Performed measurements

- $\sigma(W/Z+\geq N_{jets})$ test of higher order calculations and pQCD
- σ(W/Z+≥N_{jets})/σ(W/Z+≥N_{jets}-1) − test of pQCD, a_s constraint, ratio significantly reduces systematic uncertainties
- $d\sigma/dp^{N}_{T-jet}$ test of higher order calculations and pQCD
- $d\sigma/dH^{N}_{T} = P_{T-I} + MET + \Sigma P_{T-jets}$ scale used in MCFM and BLACKHAT-SHERPA

$$\frac{d\sigma}{d\alpha} = \frac{N_{\text{DATA}} - N_{\text{BKG}}}{\int \mathcal{L} dt} * U(\alpha)$$

• Expanded set of distributions in the near future!

• All cross section calculated within the fiducial region!

22/08/2011

Performed measurements II

- σ(W+1 jet)/σ(Z+1 jet) reduced PDFs uncertainties, test for PDFs and pQCD
- σ(W+b jet) test for PDFs
- Detector level results for Z+ b jets test for PDFs

• Expanded set of distributions in the near future!

• All analyses performed on 33-35 pb⁻¹ of 2010 data.

• Final state radiation photons within $\Delta R < 0.1$ around the lepton added to lepton 4-momentum.

• Note different definition of jets for W and Z analyses!

Fiducial region

• Final state radiation photons within $\Delta R < 0.1$ around the lepton added to lepton 4-momentum.

• Note different definition of jets for W and Z analyses!

MC Datasets

Generator	v.	Interfaces	Comments
ALPGEN	2.13	HERWIG, JIMMY, PHOTOS, CTEQ6L1, ATLAS MC09 tune	MLM matching pQCD normalized
SHERPA	1.13	CTEQ6L1, Default UE tune	CKKW matching pQCD normalized
PYTHIA	6.4.21	PHOTOS, MRST 2007 LO	LO Matrix Element + ISR, PS corrections pQCD normalized
MCFM	5.8	CTEQ6.6/CTEQ6L1	PYTHIA UE, fragmentation
SHERPA + BLACKHAT		CTEQ6.6M	PYTHIA UE, fragmentation

pQCD normalized using FEWZ NNLO (MRST2007LO* PDF)

QCD estimation

- W -ee: Fit data to MET distribution, QCD template by Electron ID reversal or electron selection replaced with photon
- W -μμ: Fit MET distribution, QCD template from MC
- Z -ee: Loosen electron ID, normalize with dilepton mass
- Z -µµ : directly from MC.

b tagging

- Secondary vertex based b-tagging algorithm (SV0) used.
- Require a displaced vertex within a jet with a decay length significance > 5.85
- B tagging efficiency and systematic uncertainties estimated from semi-leptonic B decays in QCD and top events.

Extraction of b-jet fraction

- Maximum likelihood fit to the SV0 mass distribution used to extract the flavour fraction.
- SV0 mass templates from MC
- Template systematic uncertainty: from data vs. MC

Detector Level Checks

Data compared to MC for signal (ALPGEN) +SM background

• Overall good agreement!

22/08/2011

• Background of the order of \approx 1-10% for both channels

• Overall good agreement!

22/08/2011

Jet Multiplicity (Z+jets)

- Background increases with jet multiplicities.
- In particular dominated by top pairs at high multiplicities

- Again background increases with jet multiplicities.
- Also in this case top pair production major background
- At low multiplicities QCD significant (electron channel)

Results in good agreement with MCFM prediction

22/08/2011

Unfolding

- Bin by Bin (method used):
 - Simple correction factor mechanism
 - Systematic uncertainty : difference ALPGEN and SHERPA derived corrections
- Bayesian (cross check + future use W+jets):
 - Lower MC dependence, better statistical treatment
 - More complex, need to pay attention to regularization
- Confident in Bin by bin results as:
 - Good agreement data-MC at Detector level
 - W/Z + jets measurements are systematically limited

Hence the two methods give very similar results! Erik Devetak

- Measurement dominated by JES! ≈10% already in 1jet bin!
- Luminosity systematic 3.4%, pile-up jets ≈5%

Systematics Detail W+jets one jet bin

μ channel				
		Cross Section		
Effect	Range	Uncertainty (%)		
Jet energy scale and $E_{\rm T}^{\rm miss}$	$\approx 7\%$ (dependent on jet η and $p_{\rm T}$)	+10.3,-7.6		
Jet energy resolution	10% on each jet	± 5.7		
Muon trigger	±0.7% (±0.6%) in barrel (endcap)	± 0.5		
Muon reconstruction	±1.1%	+1.1,-1.2		
Muon momentum scale	±0.4%	± 0.7		
Muon momentum resolution	$\pm 6\%$	± 0.1		
Pile-up removal cut	$4 - 7\%$ in lowest jet $p_{\rm T}$ bin	+6.6		
Residual pile-up effects	from simulation	+2.6		
Unfolding	ALPGEN vs. SHERPA	±1.8		
Luminosity	±3.4%	+3.5,-3.8		

- Both measurements dominated by systematic uncertainties!
- In particular jet energy scale/resolution and pileup

(W+1jet)/(Z+1jet) - Systematics

- Systematic uncertainties substantially smaller than in the W and Z cases
- In particular reduction on the jet systematic uncertainties
- Systematic uncertainties of the order of less than 5%

• Precision still statistically limited.

W/Z+Heavy Flavour-Systematics

Systematic uncertainties of the order of 25%(W)-23%(Z)

- Systematic uncertainties dominated by:
 - B tagging uncertainties $\approx 16\%$ (W)-10%(Z)
 - Modelling of the signal $\approx 10\%(W)-10\%(Z)$
 - Jet + b jet energy scale $\approx 7\%(W)-4\%(Z)$
- In the case of the W+b jet the QCD (7%) and the top background uncertainties (12%) are also significant

- Predictions from Blackhat-Sherpa are NLO for N jets ≤ 3, LO for N jets = 4. MCFM are NLO for N jets ≤ 3.
- As expected Pythia understimate rates of high multiplicites.

• All channels show very good agreement!

22/08/2011

- Ratios eliminate systematic uncertainties
- Hence better constraint on physics

22/08/2011

Jet Multiplicity Ratio (W+jets)

 Increased uncertainty on MCFM and Blackhat-Sherpa (in bin 3 and 4 respectively) due to LO prediction

Also 3/4 jet multiplicities are mainly systematics dominated.

• But statistics effect present and we had to limit pt range

(W+1jet)/(Z+1jet) - Results

- Combined electron-muon results
- Very good agreement with MCFM NLO prediction
- Good agreement also with Pythia and Alpgen

W/Z+b jets

- Combined electron-muon results also provided
- NLO prediction obtained in the 5 flavour number scheme [F. Caola et al. arXiv:1107.3714]
- NLO agrees within 1.5σ with the measurements

Experiment	$3.55^{+0.82}_{-0.74}(\text{stat})^{+0.73}_{-0.55}(\text{syst}) \pm 0.12(\text{lumi}) \text{ pb}$
MCFM	3.40 ± 0.44 pb
ALPGEN SHERPA	2.23 ± 0.01 (stat only)pb 3.33 ± 0.04 (stat only) pb

Conclusions

- Presented measurements of the production cross-section for W and Z bosons in association with jets, performed with data collected in 2010:
 - Inclusive cross-section as a function of jet multiplicity (up to 3 jets for Z, 5 jets for W)
 - Ratio of inclusive cross-sections
 - $\, \circ \,$ Differential cross-sections with respect to jet transverse momenta and ${\rm H_T}$
 - Cross-sections corrected for all detector effects and quoted in the kinematic region of the detector acceptance.
 - Precision is mainly limited by systematic uncertainties!
 - Data compared to predictions at LO and NLO in QCD.
 - Good agreement between data and predictions from Alpgen, Sherpa, MCFM and Blackhat-Sherpa. Pythia disagrees with data when N_{iet}>1 (expected)

Conclusions II

- Presented preliminary measurements of the production cross-section for W and Z bosons in association with heavy flavour jets.
- Presented preliminary measurements of the production cross-section for W+1jet/Z+1jet
 - Differential cross-sections with respect to jet transverse momentum
 - Cross-sections corrected for all detector effects and quoted in the kinematic region of the detector acceptance
 - Measurement still statistically limited
- All measurements in good agreement with NLO predictions. Event kinematics well modelled by matched LO generators

References

ALL 2010 Data (33pb⁻¹):

- Measurement of the production cross section for W-bosons in association with jets in pp collisions using 33 pb-1 at sqrt(s) = 7 TeV with the ATLAS detector, ATLAS-CONF-2011-060
- Measurement of the production cross section for $Z/\gamma *$ in association with jets in pp collisions at $\sqrt{s} = 7$ TeV with the ATLAS Detector, ATLAS-CONF-2011-042

First Results (1.3pb⁻¹):

- Measurement of the production cross section for W bosons in association with jets in pp collisions at √s = 7 TeV with the ATLAS Detector, ATLAS Collaboration, Phys. Lett. B 698:325-345, 2001, DOI:10.1016/j.physletb.2011.03.012.
- Measurement of the production cross section for $Z/\gamma *$ in association with jets in pp collisions at $\sqrt{s} = 7$ TeV with the ATLAS Detector, ATLAS Collaboration, ATLASCONF-2011-001

Soon updates on all channels (in particular heavy flavour ones and W+jets), more info: https://twiki.cern.ch/twiki/bin/view/AtlasPublic