

W & Z Production @ LHCb

Simone Bifani University College Dublin (Ireland) On behalf of the LHCb Collaboration

QCD @ LHC 2011 - St. Andrews (Scotland), 22nd - 26th August 2011

>LHCb Overview

>W & Z Production and PDF Sensitivity

>Preliminary Results
»Z->μμ
»Z->ττ
»W->μν

Summary and Outlook

- > Designed to look at CP violation in B decays @ LHC
- > Fully instrumented within $1.9 < \eta < 4.9$
- > Muon reconstruction capabilities: $P_t > 1 GeV/c$, $m_{uu} > 2.5 GeV/c^2$

USE LHCB - A Forward SpectrometerKHCB > Complementary η range to ATLAS & CMS Detector Acceptance

»Overlap for cross check $1.9 < \eta < 2.5$ »Unique to LHCb $2.5 < \eta < 4.9$

> $\int L_{2010} = (37.1 \pm 1.3) pb^{-1} (Z -> \mu \mu, Z -> \tau \tau and W -> \mu v analyses)$

> ∫L₂₀₁₁ ~210 pb⁻¹ (Z->ττ analysis)

W&Z Production and PDFs

- > LHCb's forward acceptance provides very interesting possibilities for PDF studies
- > Take large-x from one proton and a small-x from the other
 -> probe two distinct regions in (x, Q²) space
- > Can probe the low-x, high-Q² region inaccessible to other experiments (PDF predictions for this region are more sensitive to model changes than in central acceptance)
- > Explore with W, Z (x of 10^{-4} , 10^{-1}) and low-mass Drell-Yan (x -> 10^{-6})

$$Q^2 = M^2$$
, $x_{1,2} = \frac{M}{\sqrt{s}} \cdot e^{\pm y}$

Cross-section measurements @ LHCb can constrain PDFs

> Cancel or highlight PDF uncertainties with ratios

 $A_{+-} = (d\sigma_{W+} - d\sigma_{W-}) / (d\sigma_{W+} + d\sigma_{W-})$ tests u_V and d_V difference

 $R_{+-} = d\sigma_{W+} / d\sigma_{W-}$ tests d_V / u_V ratio

»R_{WZ} = dO_{W+}. I dO_Z almost insensitive to PDFs precise test of SM

Many systematic errors cancel

LHCb Preliminary LHCb-CONF-2011-039

> Single muon trigger: P_t > 10 GeV/c

> 2 reconstructed muons

» P_t > 20 GeV/c »2.0 < η < 4.5 »60 GeV/c² < m_{uu} < 120 GeV/c²

> Backgrounds »Z-> $\tau\tau$ = 0.61± 0.04 (MC) »Heavy flavour = 4.3 ± 1.7 (Data) » π/K mis-ID = 0 ± 1 (Data)

N_{Candidates} = 1966

 $> N_{Background} = 4.9 \pm 2.0$

> Both τs decay to μ

> One τ decays to μ , one to e

Single muon trigger: $P_t > 10 GeV/c$

- > 2 reconstructed isolated µs » $P_{t,1}$ > 20 GeV/c, $P_{t,2}$ > 5 GeV/c » 2.0 < η < 4.5 » $\Delta \phi$ > 2.7 » Cone P_t asymmetry (R=0.5) > 0.8
 - » Muon P_t asymmetry > 0.2 » Impact parameter significance > 4 » $m_{\mu\mu} < 80 \text{ GeV/}c^2$
- > 1 reconstructed & isolated μ & e » P_{t,µ} > 20 GeV/c, P_{t,e} > 5 GeV/c » 2.0 < η < 4.5 » $\Delta \phi$ > 2.7 » Cone P_t asymmetry (R=0.5) > 0.8

 $Z \rightarrow \tau \tau$

LHCb Preliminary LHCb-CONF-2011-041

- > Backgrounds
 > EW = 5.5 ± 1.8 (Data)
 > QCD = 1.6 ± 1.3 (Data)
- > N_{Candidates} = 33

> Backgrounds > EW = 3.0 ± 1.2 (MC) > QCD = 9.5 ± 3.0 (Data)

> Single muon trigger: P_t > 10 GeV/c

> 1 reconstructed & isolated muon $P_t > 20 \text{ GeV/c}$ $2.0 < \eta < 4.5$ $Cone P_t (R=0.5) < 2 \text{ GeV/c}$ (charged & neutral information)

> Backgrounds
 »γ*/Z->μμ (MC)
 »W->τν and Z->ττ (MC)
 »K/π punchtrough (Data)
 »K/π decay in flight (Data)
 »Heavy flavour (Data)

- > Specific cuts implemented to reduce each background component
- >γ*/Z->μμ
 - »No extra muons with $P_t > 5 GeV/c$
- > W->τν, Z->ττ and Heavy flavour
 >Impact parameter < 40 μm</p>
- > K/π punchtrough »E_{E+H} / P < 4%</p>

> K/π decay in flight

»Largest residual background besides Z-> $\mu\mu$ with one muon outside the acceptance

»Modelled with tracks which have not caused the event to fire any trigger, weighted by their probability to decay measured from data

W-> µv,

LHCb Preliminary LHCb-CONF-2011-039

> Fit positive and negative muon ${\rm P_t}$ spectra in data to expected shapes for signal and backgrounds in 5 η bins

LHCb Preliminary LHCb-CONF-2011-039

> Fit positive and negative muon ${\rm P_t}$ spectra in data to expected shapes for signal and backgrounds in 5 η bins

> The cross-section for boson production can be expressed as

$$\sigma = \frac{N_{Candidates} - N_{Background}}{A \cdot \varepsilon_{Trigger} \cdot \varepsilon_{Tracking} \cdot \varepsilon_{ID} \cdot \varepsilon_{Selection} \cdot \int L}$$

- > Measurements performed in the forward region (2.0<η<4.5) for leptons with P_t>20 GeV/c -> A = 1 (except for Z->ττ, obtained from MC)
- > Efficiencies determined from data and cross checked with simulation

> Selection efficiency

»Z->μμ selection criteria define the measurement kinematic region »Z->ττ: determined from MC »W->μν: measured from Z->μμ data with 1 muon masked

> Efficiencies determined with a Tag&Probe method in Z->II samples

> Trigger

- »Tag: triggered muon »Probe: offline identified muon
- Tracking (electron from MC)
 »Tag: identified muon track
 »Probe: trajectory from muon stub and minimal tracking information

> Particle ID

- »Tag: identified lepton »Probe: reconstructed track
- > Efficiencies flat in φ, P_t, and #PV
 > No evidence for charge bias
 > Correction vs η

Tracking Reconstructed Long Track

Simone Bifani

> Background error large for W because of uncertainty on shapes
 > Efficiency uncertainties dominated by limited statistics

Source	Ζ-> μμ	Ζ->ττ(μμ)	Ζ->ττ(μ <i>e</i>)	W+-> $\mu^+\nu_{\mu}$	₩⁻-> μ⁻⊽ _μ
Background	0.4	7	5	1.6	1.6
Shape (Fit)				1.9	1.7
Efficiency	5.1	9	8	2.5	2.3
Acceptance		2	5		
FSR	0.3	0.2	0.2	0.2	0.2

Systematic	5.1	11	10	3.5	3.2
Luminosity	3.5	5.1		3.5	
Statistical	2.1	17	12	0.9	1.1

relative error

Z Cross-Section

LHCb Preliminary LHCb-CONF-2011-039(041)

> Kinematic range: 2.0 < η_l < 4.5, $P_{t,l}$ > 20 GeV/c and 60 < m_{ll} < 120 GeV/c²

Simone Bifani

W Cross-Section

LHCb Preliminary LHCb-CONF-2011-039

> Kinematic range: 2.0 < $\eta_{\rm l}$ < 4.5 and P $_{\rm t,l}$ > 20 GeV/c

Simone Bifani

Comparisons

LHCb Preliminary LHCb-CONF-2011-039(041)

> All W and Z observations are consistent with NNLO predictions

Simone Bifani

Improvements on PDFs

> Central and forward measurements of the W charge asymmetry will reduce the PDF uncertainty in both the large and small x regions

- > Cross-sections and ratios of W and Z measured @ 7TeV in the kinematic range 2.0 < η < 4.5 and P_t > 20 GeV/c
- >All observations consistent with the current NNLO predictions

Expect to collect ~1 fb⁻¹ in 2011

 improved efficiency and background knowledge
 Probe PDFs in previously unexplored regions
 Distinguish different PDF models

24

$$A(y) = \frac{d\sigma/dy(W^{+}) - d\sigma/dy(W^{-})}{d\sigma/dy(W^{+}) + d\sigma/dy(W^{-})} \approx \frac{u(x_{1})\overline{d}(x_{2}) - d(x_{1})\overline{u}(x_{2})}{u(x_{1})\overline{d}(x_{2}) + d(x_{1})\overline{u}(x_{2})} \approx \frac{u(x_{1}) - d(x_{1})}{u(x_{1}) + d(x_{1})}$$

> Backgrounds defined by anti cuts
 » K/π punchtrough: E_{E+H} / P > 10%
 » K/π decay in flight: Prob(K/π->μν, P)
 » Heavy flavor: Impact parameter > 80 μm

Impact parameter significance

Invariant mass of rest of event [GeV/c2]

- > Pseudo-W (Z events with 1 muon masked)
 > Pseudo-W and W simulated distributions look similar
 - » Pseudo-W data described by simulation

» Signal can be modeled with Pseudo-W data

Source	Ζ-> μμ	Ζ->ττ(μμ)	Ζ->ττ(μe)	W-> μν _μ
Trigger	90	86	78	78
Tracking	82	84	8480	79
ID	98	99.1	99.1 96.2	99
Selection		17.2	46	45-80
Acceptance	1	38.6	24.9	1

Improvements on PDFs

> LHCb measurement of the W charge asymmetry slightly reduce the uncertainty in the large-x region while small-x is unchanged

PDF correlation between asymmetry and $u_{v}-d_{v}$ versus x

Improvements on PDFs

