Comments on Truncated showers and CKKW-L

Stefan Prestel

(Lund University)

QCD@LHC 2011, St. Andrews, August 25, 2011

What we want in CKKW-L

Our aim is to describe the $n \le N$ hardest jets in the evolution variable, by the tree-level matrix element, if all n jets are above some arbitrary cut-off (called merging scale).

CKKW-L ME PS merging

- Get the state S_{+n} from a matrix element generator
- Find all possible shower histories (S₊₀, ρ₀),..., (S_{+n}, ρ_n) and pick one according to the probability with which the shower would have produced it.
- Generate the Sudakov factor by trial showering. Reweight with $\alpha_{\rm s}$ factors and PDF factors.
- Combine histograms for all ME multiplicities to get distributions for ME+PS merging.

An example how CKKW-L fills the phase space

- (a) Taken from the ME +2 jet sample, no information on merging scale needed
- (b) Taken from the ME +0 jet sample, with a shower veto on the first emission. In truncated showers taken from ME +1 sample
- (c) Taken from the ME +1 jet sample, with a shower veto on the first emission
- (d) Taken from the ME \pm 0 jet sample, with a shower veto on the first emission

k_{\perp} as merging scale

Figure: Left Panel: Transverse momentum of the first jet in W + jets in pp collisions at $E_{CM} = 7000$ GeV, for different merging scale values. Right Panel: Transverse momentum of the first jet in W + jets in pp collisions at $E_{CM} = 1960$ GeV, for different number of jets. Jet defined with k_{\perp} algorithm as implemented in fastjet with D = 0.4. Plot produced with CKKW-L implementation in PYTHIA8.

Rapidity as merging scale

Figure: Transverse momentum and rapidity of the first jet in W + jets in pp̄ collisions at $E_{CM} = 1960$ GeV. Rapidity used as merging scale with $y_{MS} = 1.0$. Minimal cut $p_{\perp 1,min} > 2$ GeV applied. Jet defined with k_{\perp} algorithm as implemented in fastjet with D = 0.4. Plot produced with CKKW-L implementation in PYTHIA8.