Soft-QCD measurements at LHCb

Andrea Contu University of Oxford On behalf of the LHCb collaboration

23 August QCD@LHC 2011 St Andrews - UK

Contents

- The LHCb experiment
- K_s production cross section
- $\overline{\Lambda}/\Lambda \overline{\Lambda}/K_s$ production ratios
- p/p production ratio
- ${\ensuremath{\,\circ\,}}$ Inclusive Φ production cross section
- Charged track multiplicity
- Conclusions

The LHCb Experiment

Single arm spectrometer (2< η <5) for precision measurements of CP violation and rare B decays

bias triggers: 2009: Calo $(7\mu b^{-1})$ 2010: 1 or more reconstructed tracks (14nb⁻¹)

23 Aug 2011

Provides measurements in a region of phase space complementary to GP detectors

Tracking system

 $\delta p/p \sim 0.5\%$ - reconstruction efficiency ~95% Resolution for primary(secondary) vertices is σ₇~50(150) µm

RICH Detectors

2 Ring Imaging CHerenkov (RICH) detectors provide charged particle identification in a momentum range of 2 - 100 GeV

RICH Detectors & PID

3 Radiators needed RICH1 (2<p<60 GeV): • Aerogel, $n\sim1.03$ • C_4F_{10} , $n\sim1.0014$

23 Aug 2011

A $\Delta LL(x-y)^*$ is constructed to discriminate between p, K and π .

PID efficiencies and *mis*ID rates vs Δ LL cuts are calculated from data using dedicated

calibration samples

Protons: $\Lambda \rightarrow p\pi$ Kaons: $\Phi \rightarrow KK$, $D^* \rightarrow D(K\pi)\pi$

Pions: $K_s \rightarrow \pi \pi$

*Delta Log Likelihood between x and y particle hypotheses

K_c Production Cross Section

- First measurement for LHCb with 2009 pilot run data
- $K_s \rightarrow \pi\pi$ selection based on tracking and impact parameters
- Two selections with long and downstream tracks
- First test for detector calibration

Published in: Phys. Lett. B 693 (2010) 69-80

A Contu - QCD@LHC 2011

xford

hysics "

K_c Production Cross Section

Good consistency with PYTHIA expectations P₋ spectra slightly harder

K_s Production Cross Section

Comparison with other experiments

A Contu - QCD@LHC 2011

23 Aug 2011

9/26

Hadron Production Ratios

Motivation:

- Baryon number transport
- Hadronisation
- MC tuning

2 analyses:

V⁰ ratios (tracking & vertexing only)
p/p (+ RICH PID)

Use minimum bias data No need to know absolute L

P. Skands http://home.fnal.gov/~skands/

V⁰ Ratios

Analysis outline

- Long tracks
- Purely kinematic PID (Armenteros-Podolanski)
- $K_{s} \rightarrow \pi\pi$ and $\Lambda \rightarrow p\pi$ selection based

on impact parameters

Systematics partially cancel

V^{0} Ratios – $\overline{\Lambda}/\Lambda$ Results

Baryon transport higher than predicted by LHCb MC or Perugia0, especially at 0.9 TeV

Baryon/meson suppression significantly lower than predicted

V^o Ratios – Summary

Good consistency with previous measurement

p/p ratio

- Pure samples of protons, kaons and pions selected with RICH particle ID
- PID efficiencies and *mis*ID are extracted from data using calibration samples of Λ , Φ , K

CERN-LHCb-CONF-2010-009

The analysis has been extended to provide further ratios such as K^{-}/K^{+} , π^{-}/π^{+} , p/π , K/π , p/K and results will be public soon

p/p ratio – Analysis strategy

Different interaction cross-sections in the material between p and p, particularly at low momentum Therefore limit analysis to tracks with P > 5 GeV and correct using MC

xford

hysics

p/p Ratio – Results 0.9 TeV

A Contu - QCD@LHC 2011

p/p Ratio – Results 7 TeV

LHCb LHCb MC ۵ 1 Preliminary Perugia 0 Data √s = 7 TeV Data Ratios become flatter as 0.8 predicted by models 0.6 0.4 Better agreement with MC 0.2⊢ 0.0 ≤ p_ < 0.8 GeV/c Δ LHCb LHCb LHCb MC LHCb MC ر ام 1.2¹ ا<mark>م</mark> 1.2 Preliminary - Perugia 0 Perugia 0 Preliminary 🗕 Data 🗕 Data √s = 7 TeV Data s = 7 TeV Data 0.8 0.8 0.6 0.6 0.4 0.4 0.2 0.2 $0.8 \le p_{-} \le 1.2 \text{ GeV/c}$ p_ ≥ 1.2 GeV/c 3 3 Δ Δ 5 η

23 Aug 2011

Inclusive Φ Cross Section

Unique way to study strangeness production
Discrepancies from MC seen by other major
LHC experiments

 Test QCD fragmentation models in pp interactions in LHCb's kinematic region

Inclusive **Φ** Cross Section

Inclusive **Φ** Cross Section

Φ production is underestimated in the measured kinematic range by both tunings

xford

hysics

Charged Track Multiplicity

- Sensitive to low-x QCD dynamics and MPI
- Counting reconstructed tracks in VELO detector, high efficiency in the η ranges [-2.5< η <-2] and [2< η <4.5]

- Magnetic field negligible, no momentum measurement, tracks are straight lines
- The multiplicity distribution is determined using an unfolding technique
- Systematics (efficiency, ghosts, non-prompt and pile-up) are in general ~few%.

Charged Track Multiplicity

Normalised to events with at least one charged particle in the forward acceptance

23 Aug 2011

xford

hysics "

Charged Track Multiplicity

A Contu - QCD@LHC 2011

Normalised to events with at least one track in the forward acceptance having $p_{T} > 1GeV$ to enhance hard interactions

24/26

Conclusions

LHCb has explored a unique kinematic region at low $p_{\!_{\rm T}}$ and high rapidity

- Several analyses investigated hadron production and provide valuable input for QCD models and the LHCb MC retuning
- Proton analysis has been extended and improved to provide further ratios (K⁻/K⁺, π^{-}/π^{+} , p/ π , K/ π , p/K), results will be ready soon
- Results compared to models indicate:
- Higher baryon transport
- Harder P_{T} spectra

- Underestimated strangeness production
- Underestimated charged particle multiplicity

Backup - LHCb MC

LHCb MC is based on Pythia v6.418

Non default Pythia parameters				Minimum Bias definition	
Non defa Parameter ckin(41) mstp(2) mstp(33) mstp(128) mstp(81) mstp(81) mstp(82) mstp(52) mstp(52) mstp(51) mstp(142) parp(67) parp(82) parp(89) Parp(90)	Ult Py Value 3.0 2 3 2 10042 2 1.0 4.28 14000 0.238	Parameter parp(86) parp(91) parp(149) parp(150) parj(11) parj(12) parj(12) parj(13) parj(14) parj(15) parj(15) parj(16) parj(17) mstj(26) pari(33)	Value 0.66 1.0 0.02 0.085 0.5 0.4 0.79 0.0 0.018 0.054 0.131 0 0.4	Minimum Processes i Process Number 11 12 13 28 53 68 91 92 93 94 95 412 420	Bias definition Included Description $f + f' \rightarrow f + f' (QCD)$ $f + fbar \rightarrow f' + fbar'$ $f + fbar \rightarrow g + g$ $f + g \rightarrow f + g$ $g + g \rightarrow f + fbar$ $g + g \rightarrow g + g$ Elastic scattering Single diffractive (AB \rightarrow XB) Single diffractive (AB \rightarrow AX) Double diffractive Low-pT scattering
parp(85)	0.33	pui)(55)	0.4	412-439 461-479	Prompt bottomonium

