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See talk by Kunszt

See talk by Hoeche
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‣ SUSY Superpartners
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‣ GUTs

‣ TC

Superpartners

Z’, W’

‣ Ex-Dim KK-tower

comp. resonance
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Most models predict 
TEV scale resonances

Decay often to jets

‣ Not thought of

‣ SUSY

‣ GUTs

‣ TC

Superpartners

Z’, W’

‣ Ex-Dim KK-tower

comp. resonance

??
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Boosted signal in New Physics search

SM
BSM

SM
BSM

Jets Jets

high pT high pT

Proton

Proton

• overlapping radiation
• jet-parton matching breaks down
• need big jet cone

BSM
very heavy
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large pT, 
non-busy final state

eg. Z’->ttbar

The relevant kinematic pattern

low pT, 
non-busy final state

eg. pp->HW

large pT
busy final state

eg. SUSY cascades

low pT,
busy final state

eg. ttH

smaller pT

Bu
sin

es
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large pT, 
non-busy final state

eg. Z’->ttbar

The relevant kinematic pattern

low pT, 
non-busy final state

eg. pp->HW

large pT
busy final state

eg. SUSY cascades

low pT,
busy final state

eg. ttH

Bu
sin

es
s

• Elw. scale resonance 
highly boosted

• Decay prods highly 
collimated -> R < 1.0

• Less sensitive to UE/ISR

• Subjet approach necessary

• Original motivation and 
many techniques

smaller pT
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large pT, 
non-busy final state

eg. Z’->ttbar

The relevant kinematic pattern

low pT, 
non-busy final state

eg. pp->HV

large pT
busy final state

eg. SUSY cascades

low pT,
busy final state

eg. ttH

Bu
sin

es
s

• Usually small signal CS
• But can be superior to 

standard analysis:
➡ Event reconstruction impr.
➡ b-tagging improved
➡ combinatorial problem red.

• Big cone, sensitive to 
UE/ISR

• BDRS

smaller pT
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large pT, 
non-busy final state

eg. Z’->ttbar

The relevant kinematic pattern

low pT, 
non-busy final state

eg. pp->HW

large pT
busy final state

eg. SUSY cascades

low pT,
busy final state

eg. ttH

Bu
sin

es
s • Hard radiation uncorrel. 

to hard interaction

• Increased comb. problem

• Additional criteria to 
select decay products

smaller pT
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large pT, 
non-busy final state

eg. Z’->ttbar

The relevant kinematic pattern

low pT, 
non-busy final state

eg. pp->HW

large pT
busy final state

eg. SUSY cascades

low pT,
busy final state

eg. ttH

Bu
sin

es
s

• Most complicated

• Large cone, R > 1.2

• Sensitive to UE/ISR, hard 
uncorrelated radiation

• Only few approaches:
  HEPTopTagger, 
  Shower deconstruction

smaller pT



Sequential recombination algorithms

Recombination history

Jet substructure
=

microscope for boosted 
resonance‘s properties

Jet definition not unambiguous: Which particles? How combined?
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See talk by 
Dasgupta
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How much does UE/ISR affect fat-jet massM. Karagoz, G. P. Salam, M. Spannowsky, M. Vos (editors): Boosted objects: a probe of BSM physics 11
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(a) dijets, 500–600 GeV
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(b) tt̄, 500–600 GeV
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(c) dijets, 300–400 GeV
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Fig. 1. Jet invariant mass mj for tt̄ (a,c) and dijet (b,d) events, for three grooming methods. Each groomed analysis begins
with anti-kT jets with R = 1.0. The red curve represents these jets without grooming. The distributions correspond to tt̄ or
di-jet quarks or dijet samples with parton-level pT of 500–600 GeV (a,b) and 300–400 GeV (c,d).

tunes described in section 5. In particular, we establish
the sensitivity of jet mass and related observables to the
parton shower model and to the UE. We also perform a
simulation that mimics a number of important detector
effects. Data collected at the LHC in 2010-2011 should
enable a more thorough understanding than we can hope
to achieve at this stage.

We reconstruct the jet invariant mass distribution for
anti-kT jets with R = 1. The grooming techniques de-
scribed in section 6 select relatively hard events and are
therefore expected to reduce the sensitivity to soft and
diffuse energy deposits. We apply the three grooming pro-
cedures and determine the invariant mass of the result-
ing groomed jet. We present the result of trimming, but
the conclusions hold for all three techniques. We moreover

recluster the jet constituents with the kT algorithm and
unwind the sequence to retrieve the i → j splitting scales
dij . We note that the splitting scales are determined on
the ungroomed cluster sequence.

To establish the impact of different parton shower mod-
els we compare the response to two of the most popu-
lar Monte Carlo tools for jet formation, HERWIG and
PYTHIA. We moreover vary the order of the emissions in
PYTHIA, using two schemes known as pT -ordering (used
in the Perugia0 tune) and Q2 ordering (used in DW and
DWT). In Fig. 2, we compare the jet mass distribution for
these three setups, along with the kT scales correspond-
ing to the 1 → 2 and 2 → 3 splits. For the sake of a clean
comparison we disabled UE activity for these samples.
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Fig. 1. Jet invariant mass mj for tt̄ (a,c) and dijet (b,d) events, for three grooming methods. Each groomed analysis begins
with anti-kT jets with R = 1.0. The red curve represents these jets without grooming. The distributions correspond to tt̄ or
di-jet quarks or dijet samples with parton-level pT of 500–600 GeV (a,b) and 300–400 GeV (c,d).

tunes described in section 5. In particular, we establish
the sensitivity of jet mass and related observables to the
parton shower model and to the UE. We also perform a
simulation that mimics a number of important detector
effects. Data collected at the LHC in 2010-2011 should
enable a more thorough understanding than we can hope
to achieve at this stage.

We reconstruct the jet invariant mass distribution for
anti-kT jets with R = 1. The grooming techniques de-
scribed in section 6 select relatively hard events and are
therefore expected to reduce the sensitivity to soft and
diffuse energy deposits. We apply the three grooming pro-
cedures and determine the invariant mass of the result-
ing groomed jet. We present the result of trimming, but
the conclusions hold for all three techniques. We moreover

recluster the jet constituents with the kT algorithm and
unwind the sequence to retrieve the i → j splitting scales
dij . We note that the splitting scales are determined on
the ungroomed cluster sequence.

To establish the impact of different parton shower mod-
els we compare the response to two of the most popu-
lar Monte Carlo tools for jet formation, HERWIG and
PYTHIA. We moreover vary the order of the emissions in
PYTHIA, using two schemes known as pT -ordering (used
in the Perugia0 tune) and Q2 ordering (used in DW and
DWT). In Fig. 2, we compare the jet mass distribution for
these three setups, along with the kT scales correspond-
ing to the 1 → 2 and 2 → 3 splits. For the sake of a clean
comparison we disabled UE activity for these samples.

see Boost 2010 proceedings [Karagoz, Salam, MS, Vos EPJ C71 (2011)]
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Do I look like a Higgs jet or 
do I look like a gluon jet?

Don’t answer:
To me you just look like a 

fat jet

’’Mirror, mirror on the wall ...’’

Trailblazing analysis: [Butterworth, Davison, Rubin, Salam  PRL 100 (2008)]
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Boosted Higgs search as an example

Idea: [M. H. Seymour, Z. Phys. C 62 (1994)]



HV - Higgs discovery channel

p p

b
e.g.   pp -> ZH bbar

Z -> l+l-

    H -> b,bbar

Collect FSR

Reject ISR and UE
R=1.2

[Butterworth, Davison, Rubin, Salam PRL 100 (2008)]
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HV - Higgs discovery channel

mass drop:
1)  check for mass drop

mj1 < 0.66 mj

p p

b
bbar

Z -> l+l-

    H -> b,bbar

[Butterworth, Davison, Rubin, Salam PRL 100 (2008)]

2)  check “asymmetry”

physics scenario as well as the detector performance. Im-

portant details of the new physics model include the total

cross section of new physics, the fraction of new physics

produced that can be cleanly separated from standard

model backgrounds, the fraction of this sample that has

Higgs bosons resulting from new heavy particle decays,

and the fraction of these Higgs bosons that are boosted.

Important detector performance details include the b-tag

e⇧ciency, which includes tagging a jet as well as subjets,

the jet energy resolution, fake rates, and so on.

II. BOOSTED HIGGS

A boosted Higgs boson has high transverse momenta

pt ⇤ mh. When the Higgs decays to bb̄, this high

transverse momenta causes the b-jets to be highly col-

limated. Conventional search strategies to identify the

Higgs through the reconstruction of two separate singly

b-tagged jets generally fails since it is much more likely

for the b-jets to be merged into a single jet. Going to

smaller cone size would seem prudent, except that this

has been shown to give poor mass resolution [4].

Instead, we exploit the recently developed technique

to identify subjets within a “fat jet” consistent with the

decay of a Higgs to bb̄ [1]. Identifying subjets inside a

fat jet that resulted from the decay of a massive particle

is not straightforward. Jet mass, determined by some

algorithmic prescription applied to the subjets, is one

indicator. However, the distribution that results from

ordinary QCD production still has a long tail into high

jet masses. For a jet with transverse momentum pt, jet

mass mj , and cone size R2
= �⇥2

+ �⌃2
, the leading

order di⇥erential QCD jet mass distribution goes as [5, 6]

d⇧ (R)

dptdmj
⇥ �sCi

⌅m2
j

 
ln

R2p2
t

m2
j

+O (1)

!
. (1)

The challenge is thus to reduce the QCD jet background

without losing significantly in mass resolution. Further,

when a jet with substructure is identified, we also need to

determine the “heavy particle neighborhood” – the region

to which QCD radiation from the Higgs decay products

is expected to be confined.

Analysis of jet substructure has received considerable

attention. Distinct algorithms have been proposed to

identify Higgs decaying to bb̄ [1, 7], fully hadronic decays

of top [7, 8, 9, 10], and even neutralinos decaying to three

quarks [11, 12]. Refs. [13, 14, 15] have also recently in-

troduced a more general “pruning” procedure based on

jet substructure to more easily discover heavy particles.

Our work employs a modified version of the iterative de-

composition algorithm introduced by Ref. [1], which uses

an inclusive, longitudinally invariant Cambridge/Aachen

(C/A) algorithm [16, 17, 18].

III. JET SUBSTRUCTURE ALGORITHM

The starting point to test our algorithm, both for new

physics and SM background processes, is a set of final

(post-showering and hadronization) particles. We gener-

ate signal events using Pythia v6.4 [19], while the back-

ground events are first generated at parton-level using

ALPGENv13 [20]. We use PYTHIA v6.4 for showering

and hadronization of all events. We also use the ATLAS

tune [21] in Pythia to model the underlying event. We do

not perform any detector simulation or smearing of jets.

A realistic ATLAS/CMS specific search in the spirit of

Ref. [2] is beyond the scope of this work. However, since

high pt jets result in a large amount of energy deposited

in the calorimeter cells where energy resolution is excel-

lent, we do not expect smearing to significantly modify

our results.

We group the hadronic output of Pythia into “cells” of

size �⇥��⌃ = 0.1�0.1. We sum the four momentum of

all particles in each cell and rescale the resulting three-

momentum such as to make the cells massless [8]. If the

cell energy is bigger than 1 GeV, the cells become the

inputs to the jet algorithm. We use the inclusive C/A

algorithm as implemented in FastJet [22] to cluster the

input cells in jets with R = 1.2. As we are trying to

identify the Higgs through its decay to bottom quarks,

the b-tag e⇧ciency is paramount. For simplicity we work

with a flat 60% acceptance, with a corresponding fake

rate of 2%. Our algorithm is as follows:

1. The decomposition procedure starts with a b-
tagged jet j. After undoing its last stage of clus-

tering, the two subjets j1 and j2 are labeled such

that mj1 > mj2 .

2. Following Ref. [1], subjets are checked for the ex-

istence of a significant mass drop (mj1 < µmj) as

well as non-existence of an asymmetry defined by

y =
min

“
p2

tj1
,p2

tj2

”

m2
j

�R2
j1,j2 > ycut. We use µ = 0.68

and ycut = (0.3)
2

identical to Ref. [1]. Both subjets

are required to be b-tagged and the pt of the daugh-

ter jet j greater than 30 GeV. If these conditions

are satisfied, this stage of clustering (say, i-th) is

recorded and then the following is calculated:

Si =

min

⇣
p2

tj1
, p2

tj2

⌘

�
ptj1

+ ptj2

�2 �Rj1j2 . (2)

The quantity Si is an indicator of the similarity of

the two subjets and is weighted by their separation

�Rj1j2 .

3. Replace j by j1 and repeat from step 1 as long as

j has further subjets.

4. Select the stage of clustering for which Si is the

largest. We anticipate that the two b-tagged sub-

jets, at this stage, are most likely to have originated

2
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p p

b
bbar

Z -> l+l-

    H -> b,bbar

g

HV - Higgs discovery channel

Apply filtering and take 
3 hardest subjets

Use b-tagging on 2 
hardest subjets

[Butterworth, Davison, Rubin, Salam PRL 100 (2008)]
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3

on mass resolution and background rejection.

The above results were obtained with HER-
WIG 6.510[17, 18] with Jimmy 4.31 [19] for the under-
yling event, which has been used throughout the sub-
sequent analysis. The signal reconstruction was also
cross-checked using Pythia 6.403[20]. In both cases
the underlying event model was chosen in line with the
tunes currently used by ATLAS and CMS (see for ex-
ample [21] 2). The leading-logarithmic parton shower
approximation used in these programs have been shown
to model jet substructure well in a wide variety of pro-
cesses [23, 24, 25, 26, 27, 28]. For this analysis, sig-
nal samples of WH, ZH were generated, as well as
WW, ZW, ZZ, Z + jet, W + jet, tt̄, single top and dijets
to study backgrounds. All samples correspond to a lu-
minosity ≥ 30 fb−1, except for the lowest p̂min

T dijet sam-
ple, where the cross section makes this impractical. In
this case an assumption was made that the selection ef-
ficiency of a leptonically-decaying boson factorises from
the hadronic Higgs selection. This assumption was tested
and is a good approximation in the signal region of the
mass plot, though correlations are significant at lower
masses.

The leading order (LO) estimates of the cross-section
were checked by comparing to next-to-leading order
(NLO) results. High-pT V H and V bb̄ cross sections were
obtained with MCFM [29, 30] and found to be about 1.5
times the LO values for the two signal and the Z0bb̄ chan-
nels (confirmed with MC@NLO v3.3 for the signal [31]),
while the W±bb̄ channel has a K-factor closer to 2.5 (as
observed also at low-pT in [30]).3 The main other back-
ground, tt̄ production, has a K-factor of about 2 (found
comparing the HERWIG total cross section to [32]). This
suggests that our final LO-based signal/

√
background es-

timates ought not to be too strongly affected by higher
order corrections, though further detailed NLO studies
would be of value.

Let us now turn to the details of the event selection.
The candidate Higgs jet should have a pT greater than
some p̂min

T . The jet R-parameter values commonly used
by the experiments are typically in the range 0.4 - 0.7.
Increasing the R-parameter increases the fraction of con-
tained Higgs decays. Scanning the region 0.6 < R < 1.6
for various values of p̂min

T indicates an optimum value
around R = 1.2 with p̂min

T = 200 GeV.

Three subselections are used for vector bosons: (a) An
e+e− or µ+µ− pair with an invariant mass 80 GeV <
m < 100 GeV and pT > p̂min

T . (b) Missing transverse
momentum > p̂min

T . (c) Missing transverse momentum

2 The non-default parameter setting are: PRSOF=0,
JMRAD(73)=1.8, PTJIM=4.9 GeV, JMUEO=1, with
CTEQ6L [22] PDFs.

3 For the V bb̄ backgrounds these results hold as long as both the
vector boson and bb̄ jet have a high pT ; relaxing the requirement
on pTV leads to enhanced K-factors from electroweak double-
logarithms.
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FIG. 2: Signal and background for a 115 GeV SM Higgs
simulated using HERWIG, C/A MD-F with R = 1.2 and
pT > 200 GeV, for 30 fb−1. The b tag efficiency is assumed
to be 60% and a mistag probability of 2% is used. The qq̄
sample includes dijets and tt̄. The vector boson selections
for (a), (b) and (c) are described in the text, and (d) shows
the sum of all three channels. The errors reflect the statisti-
cal uncertainty on the simulated samples, and correspond to
integrated luminosities > 30 fb−1.

> 30 GeV plus a lepton (e or µ) with pT > 30 GeV,
consistent with a W of nominal mass with pT > p̂min

T . It
may also be possible, by using similar techniques to re-
construct hadronically decaying bosons, to recover signal
from these events. This is a topic left for future study.

To reject backgrounds we require that there be no lep-
tons with |η| < 2.5, pT > 30 GeV apart from those used
to reconstruct the leptonic vector boson, and no b-tagged
jets in the range |η| < 2.5, pT > 50 GeV apart from the
Higgs candidate. For channel (c), where the tt̄ back-
ground is particularly severe, we require that there are
no additional jets with |η| < 3, pT > 30 GeV. The re-
jection might be improved if this cut were replaced by a
specific top veto [5]. However, without applying the sub-
jet mass reconstruction to all jets, the mass resolution
for R = 1.2 is inadequate.

The results for R = 1.2, p̂min
T = 200 GeV are shown

in Fig. 2, for mH = 115 GeV. The Z peak from ZZ and
WZ events is clearly visible in the background, providing
a critical calibration tool. Relaxing the b-tagging selec-
tion would provide greater statistics for this calibration,
and would also make the W peak visible. The major
backgrounds are from W or Z+jets, and (except for the
HZ(Z → l+l−) case), tt̄.

Combining the three sub-channels in Fig. 2d, and sum-
ming signal and background over the two bins in the
range 112-128 GeV, the Higgs is seen with a significance

BDRS Result

• LHC 14 TeV; 30 fb-1

• HERWIG/JIMMY/Fastjet
  cross-checked with PYTHIA
  with “ATLAS tune”

• 60% b-tag; 2% mistag

• Combination of HZ and HW
  channels
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ATLAS study
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Figure 3: Rejection against light-quark jets (left) and against charm-quark jets (right) as a
function of the b-tagging efficiency on the single subjet, for both the COMB and JetFitter b-
tagging algorithms. The performance for the JetFitter algorithm is also shown after dedicated
optimization to reject c-jets.

is expected to be achievable, corresponding to 1% light-jet misidentification efficiency. This is
exactly the value considered in the generator level study [3] in the most optimistic scenario.
Such an efficient rejection of the background is however only valid in the hypothesis that the
background is dominated by light-jets, so that charm-jets do not play an important role.

Since charm-quarks fragment into c-hadrons which possess a significant lifetime and have
similar decay multiplicities to b-hadrons, separating b-jets from c-jets is much harder than sep-
arating b-jets from light jets, as shown in the right plot in Fig. 3. To improve the rejection
against charm-jets, a dedicated b-tagging algorithm is used, JetFitter [26], which provides extra
information, trying for example to identify the PV → b → c decay chain topology, which is
not present in a c-jet. Two discriminating variables are used, one trained against light jets,
the second against c-jets: they are combined by reweighting them respectively according to the
prior light (c(light)) and c-jet (1 − c(light)) relative flavour composition of the background, at
the cost of a reduced light-jet rejection. The value for c(light) has been optimized by scanning
the 0-1 range using 0.2 intervals1).

While b-tagging can easily reduce the number of b-light subjet combinations to an accept-
able level, it is much harder to reduce the b-c component, which most often occurs in the tt̄
backgrounds. In W+jets the dominant contribution comes from the light-light and light-c sub-
jet combinations, as expected from pure QCD production. The most dangerous contribution
comes however from bb̄ pairs (e.g. from gluon splitting), which cannot be reduced by applying
b-tagging.

To determine the optimal b-tagging strategy for the present analysis, the significance, defined
as S√

B
has been analyzed as a function of the signal efficiency given for a certain b-tagging

requirement, for the lνbb̄ channel. This is shown in Fig. 4.

1)Since the b-tagging algorithm was not specifically optimized and trained in the kinematic and topological
region of the present analysis, the prior light jet composition factor c(light) does not necessarily reflect the real
flavour composition of the background.
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√

B

llbb̄ 5.34 0.98 0.0 11.2 1.5
lνbb̄ 13.5 7.02 12.5 0.78 3.0
ννbb̄ 16.3 45.2 27.4 31.6 1.6

Combined 3.7

Table 2: Expected number of events after 30 fb−1 of integrated luminosity for each channel,
subdivided into the signal or background classes defined for the combination in the text.
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Figure 6: q(0) and significance for a range of possible signal experiments.

respectively. These numbers scale linearly with sample uncertainty. Given that after 30 fb−1 of
data ATLAS should also have strong understanding of the background from other sources we
estimate that an uncertainty of 10% or better is realistic.

The significance of 3.7σ in the perfect case is found to be reduced to 3.2σ in the case of a 10%
uncertainty and 3.0σ in the case of a 15% uncertainty on the expected level of each background
sample. It is useful to note that the combination of the three separate channels with differing
background compositions helps reduce the effects of this systematic uncertainty.

6 Summary and Outlook

We have presented a first study of the ATLAS sensitivity to the HZ and HW associated produc-
tion channels at high-pT for a low-mass Standard Model Higgs boson using a realistic detector
simulation, based on a full Geant4 simulation of the detector response in the inner detector and
muon system and on a fast simulation of the calorimeter response in its full granularity. The
analysis closely follows that of Ref. [3], but uses a realistic simulation of the ATLAS detector
and trigger, and the full ATLAS reconstruction software. The trigger efficiencies are found to be
very high for all channels considered. The signal selection efficiency in the lνbb̄ channel agrees
with a full Geant4 simulation of the whole ATLAS detector within ≈ 7 %, while such a direct
comparison was not evaluated for the background samples. All the expected significant back-
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(c)

Figure 5: Distribution of the invariant mass of the Higgs candidate after all selection cuts. (a)
lνbb̄ channel (b) llbb̄ channel and (c) Emiss

T bb̄ channel. The signals (for mH = 120 GeV) are
shown on top of the backgrounds. All distributions are normalized to an integrated luminosity
of 30 fb−1.

compared to the particle-level result for this channel in Ref. [3] of 3.1. Note that in the particle-
level study, high Emiss

T events were in fact counted in the Emiss
T bb̄ channel regardless of whether

a lepton was identified, thus reducing the relative contribution to the significance from the lνbb̄
channel compared to our result.

The trigger efficiency has not been applied.

4.3 llbb̄ channel

The requirement of leptonic Z decay leads to small branching ratios. However this is coun-
teracted by the fact that it is hard for backgrounds such as tt̄ to emulate this signature. The
selection consists of two parts, firstly a candidate for the hadronic H → bb system is identified

10

HW

great b-
tagging 

efficiency 
(0.7/0.01)
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How about Data?

Recent measurements of dij and jet mass with 35 ipb

10 

Raw Mass Spectra 

•  Description of mass shape is reasonable in MC samples 

Stat. Unc. Only 

Stat. Unc. Only 

Jet mass:
[ATLAS-CONF-2011-073, Talk A. Davison Boost 2011]

See talk by
Spreitzer and Loch
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Variables 
d12 (a.k.a. kT splitting scales, y-scale, y2) 

Add-on variable usable to enhance analyses using jet mass 
Measure of hardness of final kT splitting in a jet 

Splitting and Filtering (a.k.a. BDRS filtering, C-A filtering) 

Take jets and search for symmetric splittings with large mass 
drop, recluster filtering out large angle radiation. Yields new 
jets which can be treated as heavy particle candidates. 
Include additional cut Rqq > 0.3 here.  
J. M. Butterworth, AD, M. Rubin and G. P. Salam Phys. Rev. Lett. 100, 242001 (2008)  

J.M. Butterworth, B.E. Cox, J.R. Forshaw Phys. Rev. D 65 (2002) 
M. H. Seymour Z Phys C62 (1994) 172 

Measurement of kT-splitting scale

11 

√d12 Spectrum 

•  Again reasonable 
agreement with LO 
parton shower 
Monte Carlo 

Stat. Unc. Only Good agreement with 
LO parton shower 

Monte Carlos
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Filtered Mass Spectrum

12 

Filtered Mass Spectrum 

•  Basic description 
appears to be very 
good here 

Stat. Unc. Only Basic description 
appears to be very 

good
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19 

Pile-up (2) 

•  Filtering reduces effective jet area 

•  Should therefore reduce 
pile-up dependence 

•  Slope in fact consistent 
with zero after filtering 

18 

Pile-up 

•  Pile-up effects a big concern for future analyses 

•  Need to be sure we 
understand the effects 

•  Here find expected 
scaling of mean mass 
with number of primary 
vertices 

•  Also expected R3 
dependence of slope 

Pile-up

All measurements indicate large potential for jet 
substructure techniques and good agreement with MC
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y-splitter Top Tagger

Jet grooming procedures Filtering

Trimming
Pruning

Johns Hopkins Tagger

HEP Top Tagger

2-pronged resonances

3-pronged resonances

Mass-drop/Filtering

General methods

tree-less approach

N-subjettiness

Shower deconstruction

[Butterworth et al.  PRL 100 (2008)]

[Krohn et al.  JHEP 1002 (2010)]

[Ellis et al.  PRD 80 (2009)]

[Butterworth et al.  PRL 100 (2008)]

and variations
[Plehn et al. PRL 104 (2010), 
Kribs et al. PRD 81 (2010)] 

Template method

[Butterworth et al. PRD 55 (2002)]

[Kaplan et al. PRL 101 (2008)]

[Plehn et al. JHEP 1010]

[Jankowiak et al. JHEP 1106]

[Almeida et al. PRD 82 (2010)]

[Thaler et al. JHEP 1103]
[Kim PRD 83 (2011)]

[Soper et al. 1102.3480]

[Broijmans ATL-COM-PHYS-2008-001]

Multi-variate [Gallicchio et al. JHEP 1104]

See talk by Loch

See talk by Loch



Shower deconstruction
a maximum information approach

applicable for all kinematic patterns

P P

l l
+ -

signal

background

H

bb
-

g g

g

b b-

gpT>200 GeV
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Recombine fat jet’s constituents to microjets
(kT, R=0.15, pT > 1 GeV)

bb-

microjets are basic elements of event/fat jet
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Figure 5: A shower history for a background event in which a high pT “any” parton, treated as a
gluon, splits to a b + b̄ pair. The QCD shower splitting of a b-quark is to a b-quark plus a gluon.
The b and b̄ quarks radiate gluons and one of the gluons splits into two “any” partons, treated as
gluons.

that this is a g � g + g splitting. Let the label of the daughter that carries the 3 color of

the mother parton J be A. We draw this daughter parton on the left in our diagrams. Let

the label of the daughter parton that carries the 3 color of parton J be B. We draw this

daughter parton on the right in our diagrams. We track the angle variables of two color

connected partner partons to parton J . Parton k(J)L carries the 3 color that is connected

to the 3 color line of parton J . Parton k(J)R carries the 3 color that is connected to the

3 color line of parton J . The labels k(J)L and k(J)R specify lines in the shower history

diagram, not necessarily final microjets. Given the labels of the color connected partners

to the mother parton J , we assign the color connected partons of the daughter partons.

The two daughter partons are color connected partners of each other and each inherits one

of the color connected partners of the mother. That is

k(A)L = k(J)L, k(A)R = B , (3.1)

and

k(B)L = A, k(B)R = k(J)R . (3.2)

If parton J is a b-quark, then it has a color connected partner k(J)R that carries the

3 color connected to the quark’s 3 color. There is no k(J)L partner. The b-quark can split

into daughter b-quark A and a daughter gluon B, which we draw on the right because it

carries the 3 color of the mother b-quark. The color connected partners of the daughter

partons are then

k(A)R = B , (3.3)

and

k(B)L = A, k(B)R = k(J)R . (3.4)

Similarly, if parton J is a b̄-quark, then it has a color connected partner k(J)L that carries

the 3 color connected to the b̄-quark’s 3 color. There is no k(J)R partner. The b̄-quark can

– 12 –

Fat jet: R=1.2, anti-kT

microjets 
R=0.15, kT

Build all possible shower histories

signal vs background hypothesis 
based on:

‣ Emission probabilities
‣ Color connection
‣ Kinematic requirements
‣ b-tag information

bb-

ISR/UE hard interaction
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we will have the best statistical significance for a measurement if we make �C(B) as small as
possible. Thus we seek to choose the cut so as to minimize �C(B) with �C(S) held constant.
The solution to this problem is to choose C({p, t}N) such the surface C({p, t}N) = 0 is
a surface of constant ⇥MC({p, t}N). That is, we should use signal and background cross
sections in which the function that defines the cut is taken to be

C({p, t}N) = ⇥MC({p, t}N)� ⇥0 (8)

for some ⇥0. If we make any small adjustment to this by removing an infinitesimal region
with ⇥MC({p, t}N) > ⇥0 from the cut and adding a region having the same signal cross
section but with ⇥MC({p, t}N) < ⇥0, we raise the total background cross section within the
cut while keeping the signal cross section the same. Thus using contours of ⇥MC({p, t}N) to
define our cut is the best that we can do.

What value of ⇥0 should one choose? For a simple optimized cut based analysis with a
given amount of integrated luminosity, one would choose ⇥0 so as to maximize the ratio of the
expected number of signal events to the square root of the expected number of background
events. We discuss this further in Sec. XI.

Instead of using an optimized cut on ⇥MC to separate signal from background, one could
imagine using a log likelihood ratio constructed from ⇥MC. We do not discuss that method
in this paper.

Now we must face the fact that to construct ⇥MC({p, t}N), we would need two things:
the di�erential cross section to find microjets {p, t}N in background events and then the
di�erential cross section to find microjets {p, t}N in signal events. In each case, we would
consider this di�erential cross section in a parton shower approximation to the full theory.
Unfortunately for us, a parton shower produces d�MC(S)/d{p, t}N and d�MC(B)/d{p, t}N by
producing Monte Carlo events at random according to these distributions. If we have 10
microjets described by 4 momentum variables each and we divide each of these 40 variables
into 12 bins, then we have approximately 1240/10! ⇥ 1036 total bins (accounting for the
interchange symmetry among the 10 microjets). The parton shower Monte Carlo event
generator will fill these bins with events, but it will be a long time before we have of order
100 counts per bin in order to estimate d�MC(S)/d{p, t}N and d�MC(B)/d{p, t}N at each bin
center. Thus it is not practical to calculate ⇥MC({p, t}N) numerically by generating Monte
Carlo events. It is also not practical to calculate ⇥MC({p, t}N) analytically using the shower
algorithms in Pythia or Herwig. These programs are very complicated, so that we have
no hope of finding PMC({p, t}N |S) and PMC({p, t}N |B) for either of them.

D. Probabilities according to simplified shower

What we need is an observable ⇥({p, t}N) that is an approximation to ⇥MC({p, t}N) such
that we can calculate ⇥({p, t}N) analytically for any given {p, t}N . For this purpose, we
define a simple, approximate shower algorithm, which we will call the simplified shower
algorithm. We let P ({p, t}N |S) and P ({p, t}N |B) be the probabilities to produce the mi-
crojet configuration {p, t}N in, respectively, signal and background events according to the
simplified shower algorithm. Define

⇥({p, t}N) =
P ({p, t}N |S)
P ({p, t}N |B)

. (9)
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We then define �kT,I to be the transverse momentum of all microjets that are part of the fat

jet but are not in the decay products of the initial hard parton. That is, �kT,I is the transverse
momentum of all microjets associated with initial state and underlying event radiation. We
demand that

k2
T,I < Q2/4 . (22)

For the probability density associated with the creation of the initial hard parton, we use
a factor

Ha = Npdf

�
p2T,min

k2
0

⇥Npdf 1

k2
0

�(k2
T,I < Q2/4) . (23)

Here k0 is the transverse momentum of the initial hard parton. The factor 1/k2
0 is an approx-

imation to the k2
0 dependence of the square of the hard matrix element. The hard scattering

cross section is also proportional to a product of parton distribution functions. We approx-
imate the dependence on the parton distribution functions by including a factor 1/(k2

0)
Npdf ,

where our default value for the exponent is Npdf = 2. (This value yields an approximation
to the one jet inclusive cross section at the Large Hadron Collider, as illustrated in Fig. 11
of ref. [43].) The parameter pT,min is the smallest allowed transverse momentum of Z-boson
against which the initial hard parton recoils, pT,min = 200 GeV, Eq. (2). The normalization
factor Npdf(p2T,min)

Npdf is chosen so that the integral of H from p2T,min to infinity is 1.

B. Signal

We also need a factor to represent the hard scattering process that creates the Higgs
boson. For this purpose, we use a factor

HH = Npdf

�
p2T,min +m2

H

k2
H +m2

H

⇥Npdf 1

k2
H +m2

H

�(k2
T,I < Q2/4) , (24)

as in Eq. (23). Here kH is the transverse momentum of the Higgs boson, mH is the Higgs
boson mass, kT,I is the total transverse momentum of all partons emitted in the initial state,
and Q2 is defined in Eq. (21). The remaining factors provide an approximation to the
dependence on the parton distribution functions, as in Eq. (23). The default values of the
parameters are Npdf = 2 and pT,min = 200 GeV.

V. INITIAL STATE AND UNDERLYING EVENT RADIATION

We have seen how to model the hard interaction that creates either a high pT QCD parton
or a Higgs boson. Now we need to model initial state and underlying event radiation, defining
an emission probability HIS as illustrated in Fig. 7. Consider the probability for the emission
of a gluon with positive rapidity from an initial state parton that participates in the hard
interaction. Since the gluon has positive rapidity, this emission is predominantly from the
active parton a from hadron A. We use b as the label for the other active incoming quark,
from hadron B. We take pa to be in the + direction and pb to be in the � direction.5 We

5 We use momentum components p± = (p0 ± p3)/
⇥
2
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where x is the momentum fraction of the parton after emitting the gluon, zx/(1 � z) is
the momentum fraction of the emitted gluon, x/(1 � z) is the momentum fraction of the
parton before emitting the gluon and the functions f are parton distribution functions.
(See Eq. (8.26) of Ref. [39]). When k2

J ⇤ Q2 we have z ⇤ 1 and R ⇥ 1. However, the
approximation R ⇥ 1 breaks down for values of k2

J/Q
2 at which initial state radiation is still

significant. We do not want our simplified shower model to depend on parton distribution
functions, so we make a rather crude approximation,

R =
1

(1 + cR kJ/Q)nR
, (31)

where our default values for the parameters are cR = 2 and nR = 4. The power nR = 4 gives
us an asymptotic power k�6

J , as in Eq. (23). We chose cR = 2 in order to match roughly
with results from running Pythia.

With this factor R included, we should have a fairly good approximation for the emission
probability as long as k2

J is large enough for the emission to be purely perturbative. To
give ourselves some flexibility at small k2

J , we replace k2
J by k2

J + ⇥2
p in the argument of �s

and the factor 1/k2
J . Our default value for the parameter here is ⇥2

p = 1 GeV2. Then the
perturbative H is frozen when kJ gets to be much smaller than ⇥p. We then add back a
simple non-perturbative function that gives us a chance to adjust the amount of radiation
for smaller values of kJ .

This gives the complete initial state emission probability

HIS =
CA

2

�s(k2
J + ⇥2

p)

k2
J + ⇥2

p

1

(1 + cR kJ/Q)nR
+

cnp(⇥2
np)

nnp�1

[k2
J + ⇥2

np]
nnp

. (32)

Our default values for the non-perturbative parameters are cnp = 0.5, ⇥2
np = 0.5 GeV2, and

nnp = 2. It is intended that, with adjustment of parameters, we can include perturbative
radiation from the active initial state partons together with radiation at central rapidities
and small transverse momenta that is associated with the underlying event and with event
pileup. Our choice for the parameters is based on comparisons with results from Pythia,
including the representation in Pythia of the e�ects of the underlying event.

VI. FINAL STATE QCD SHOWER SPLITTINGS

In this section, we define the main part of the simplified shower, QCD shower splittings.

A. Splitting probability for g ⌅ g + g

The splitting vertex for a QCD splitting that we model as g ⌅ g + g is represented
by a function Haaa or Hgaa as illustrated in Fig. 8. We call these the conditional splitting
probabilities. Here the condition is that the mother parton has not split already at a higher
virtuality. The plain parton lines represent partons with flavor “any.” We treat these partons
as being almost always gluons, so that Haaa and Hgaa are the same and approximate the
probability for a g ⌅ g + g splitting.

Let us examine what we should choose for H for a g ⌅ g + g splitting, that is for Haaa

or Hgaa. We take the mother parton to carry the label J and we suppose that the daughter
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FIG. 11: Splitting functions for final state QCD splittings of a quark or antiquark, including a b

or b̄ quark.

This gives a splitting probability H:

Hggg = 8⇡CA
↵
s

(µ2

J)

µ2

J
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J

kskh


1� kskh

k2

J

�
2

✓2hk
✓2sh + ✓2sk

⇥

✓
2
µ2

J

kJ
<

µ2

K

kK

◆
. (52)

Here we evaluate ↵
s

at the virtuality scale of the splitting. When there is no color connected
parton visible, we are forced to simplify this to

H
no-k = 8⇡CA

↵
s

(µ2

J)

µ2

J

k2

J

kskh


1� kskh

k2

J

�
2

⇥

✓
2
µ2

J
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<

µ2

K

kK

◆
. (53)

Here there is no restriction on the angles ys,�s of the emitted soft parton. This is potentially
a very bad approximation, but in our case the approximation is tolerable because the emitted
soft parton is necessarily within the fat jet. When, in addition, there is no mother parton
K, this becomes

H
no-K = 8⇡CA

↵
s

(µ2

J)

µ2

J

k2

J

kskh


1� kskh

k2

J

�
2

⇥
�
µ2

J < k2

J

�
. (54)

B. Splitting probability for q ! q + g and q̄ ! q̄ + g

Quarks and antiquarks can radiate gluons. These splittings are represented by the split-
ting probabilities Hqqg and Hq̄gq̄ that are illustrated in Fig. 11. We treat the splitting of
a bottom quark as identical to the splitting of a light quark, neglecting the bottom quark
mass. We take the splitting probability to be

Hqqg = Hq̄gq̄ = 8⇡C
F

↵
s

(µ2

J)

µ2

J

kJ
kg

"
1 +

✓
kq
kJ

◆
2

#
✓2qk

✓2gq + ✓2gk
⇥

✓
2
µ2

J

kJ
<

µ2

K

kK

◆
. (55)

The derivation follows the derivation that led to Eq. (52). Here kg is the transverse momen-
tum of the gluon, kq is the transverse momentum of the quark or antiquark, and kJ is the
transverse momentum of the mother quark. Then using kq/kJ ⇡ z and kg/kJ ⇡ (1� z), the
factor containing these ratios gives the collinear splitting function

Pqq = CF
1 + z2

1� z
(56)
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FIG. 6: Probability to create the initial parton in the hard interaction. The left hand vertex is for
the background process, the right hand vertex is for the signal process.

among the corresponding momenta:

pJ = pA + pB . (19)

This means that p2J > 0 even if p2A = 0 and p2B = 0. In shower generation (as distinguished
from shower deconstruction) one does not do this. One wants p2 = 0 for all intermediate
partons since one does not know the virtualities of daughter partons at the time that the
splitting is generated. When all partons have p2 = 0, one has to take some momentum from
somewhere in order to balance momentum. If we did that for shower deconstruction, the
required treatment would be di�cult. For shower deconstruction, we simply use Eq. (19)
and allow all partons to have p2 > 0. Then each parton (or jet) is characterized by four
variables, one of which is p2.

With this choice, each parton is described by four variables: its virtuality µ2, its rapidity y,
its azimuthal angle �, and the absolute value k of its transverse momentum. The (+,�, 1, 2)
components of the momentum of the parton are then

p =

�
1⇥
2

⌃
k2 + µ2 ey,

1⇥
2

⌃
k2 + µ2 e�y, k cos�, k sin�

⇥
. (20)

We are now ready to turn to the vertices of our shower history diagrams.

IV. THE HARD INTERACTION VERTEX

We first need a factor to represent the hard scattering process that creates the starting
high pT parton that forms the fat jet, or, more exactly, forms the part of the fat jet that is
not from initial state emissions. This factor is represented by the “star” vertex, as in Fig. 6.
We consider first the hard vertex for background events.

A. Background

First, we impose a requirement that the scattering process that creates the starting high
pT parton is indeed the dominant hard scattering process in the event. We define Q2 to be
the square of the transverse momentum of the fat jet plus the square of its mass,

Q2 =

⇤
⇧

i⇥fat jet

⇥pT,i

⌅2

+

⇤
⇧

i⇥fat jet

pi

⌅2

. (21)
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where x is the momentum fraction of the parton after emitting the gluon, zx/(1 � z) is
the momentum fraction of the emitted gluon, x/(1 � z) is the momentum fraction of the
parton before emitting the gluon and the functions f are parton distribution functions.
(See Eq. (8.26) of Ref. [39]). When k2

J ⇤ Q2 we have z ⇤ 1 and R ⇥ 1. However, the
approximation R ⇥ 1 breaks down for values of k2

J/Q
2 at which initial state radiation is still

significant. We do not want our simplified shower model to depend on parton distribution
functions, so we make a rather crude approximation,

R =
1

(1 + cR kJ/Q)nR
, (31)

where our default values for the parameters are cR = 2 and nR = 4. The power nR = 4 gives
us an asymptotic power k�6

J , as in Eq. (23). We chose cR = 2 in order to match roughly
with results from running Pythia.

With this factor R included, we should have a fairly good approximation for the emission
probability as long as k2

J is large enough for the emission to be purely perturbative. To
give ourselves some flexibility at small k2

J , we replace k2
J by k2

J + ⇥2
p in the argument of �s

and the factor 1/k2
J . Our default value for the parameter here is ⇥2

p = 1 GeV2. Then the
perturbative H is frozen when kJ gets to be much smaller than ⇥p. We then add back a
simple non-perturbative function that gives us a chance to adjust the amount of radiation
for smaller values of kJ .

This gives the complete initial state emission probability

HIS =
CA

2

�s(k2
J + ⇥2

p)

k2
J + ⇥2

p

1

(1 + cR kJ/Q)nR
+

cnp(⇥2
np)

nnp�1

[k2
J + ⇥2

np]
nnp

. (32)

Our default values for the non-perturbative parameters are cnp = 0.5, ⇥2
np = 0.5 GeV2, and

nnp = 2. It is intended that, with adjustment of parameters, we can include perturbative
radiation from the active initial state partons together with radiation at central rapidities
and small transverse momenta that is associated with the underlying event and with event
pileup. Our choice for the parameters is based on comparisons with results from Pythia,
including the representation in Pythia of the e�ects of the underlying event.

VI. FINAL STATE QCD SHOWER SPLITTINGS

In this section, we define the main part of the simplified shower, QCD shower splittings.

A. Splitting probability for g ⌅ g + g

The splitting vertex for a QCD splitting that we model as g ⌅ g + g is represented
by a function Haaa or Hgaa as illustrated in Fig. 8. We call these the conditional splitting
probabilities. Here the condition is that the mother parton has not split already at a higher
virtuality. The plain parton lines represent partons with flavor “any.” We treat these partons
as being almost always gluons, so that Haaa and Hgaa are the same and approximate the
probability for a g ⌅ g + g splitting.

Let us examine what we should choose for H for a g ⌅ g + g splitting, that is for Haaa

or Hgaa. We take the mother parton to carry the label J and we suppose that the daughter
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momentum of all microjets associated with initial state and underlying event radiation. We
demand that

k2

T,I < Q2/4 . (22)

For the probability density associated with the creation of the initial hard parton, we use
a factor

Hg = N g
pdf

✓
p2T,min

k2

0

◆Ng
pdf 1

k2

0

⇥(k2

T,I < Q2/4) . (23)

Here k
0

is the transverse momentum of the initial hard parton. The factor 1/k2

0

is an approx-
imation to the k2

0

dependence of the square of the hard matrix element. The hard scattering
cross section is also proportional to a product of parton distribution functions. We approx-
imate the dependence on the parton distribution functions by including a factor 1/(k2

0

)N
g
pdf ,

where our default value for the exponent is N g
pdf

= 2. This value yields an approximation to
the one jet inclusive cross section at the Large Hadron Collider, as illustrated in Fig. 11 of
ref. [45]. The parameter pT,min

is the smallest allowed transverse momentum of the Z-boson
against which the initial hard parton recoils, pT,min

= 200 GeV, Eq. (2). The normalization
factor N

pdf

(p2T,min

)Npdf is chosen so that the integral
R
dk2

0

H from p2T,min

to infinity is 1.
There is an additional normalization factor that we omit because it cancels between the
hard scattering cross sections for background and for signal.

B. Signal

We also need a factor to represent the hard scattering process that creates the Higgs
boson. For this purpose, we use a factor

HH = NH
pdf

✓
p2T,min

+m2

H

k2

H +m2

H

◆NH
pdf 1

k2

H +m2

H

⇥(k2

T,I < Q2/4) , (24)

as in Eq. (23). Here kH is the transverse momentum of the Higgs boson, mH is the Higgs
boson mass, kT,I is the total transverse momentum of all partons emitted in the initial state,
and Q2 is defined in Eq. (21). The remaining factors provide an approximation to the
dependence on the parton distribution functions. The default values of the parameters are
NH

pdf

= 2 and pT,min

= 200 GeV as in Eq. (23).

V. INITIAL STATE AND UNDERLYING EVENT RADIATION

We have seen how to model the hard interaction that creates either a high pT QCD parton
or a Higgs boson. Now we need to model initial state and underlying event radiation, defining
an emission probability H

IS

as illustrated in Fig. 7. Consider the probability for the emission
of a gluon with positive rapidity from an initial state parton that participates in the hard
interaction. Since the gluon has positive rapidity, this emission is predominantly from the
active parton “a” from hadron A. We use “b” as the label for the other active incoming
quark, from hadron B. We take p

a

to be in the + direction and p
b

to be in the � direction.
We suppose that the emitting parton “a” has a color connected partner with label k. For
the processes that we examine, the initial state partons are likely to be quarks, so there
is only one color connected partner. The emitted parton carries the label J . As a simple
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treat the Higgs boson decay as if the invariant mass of its decay products can be anything
within a ±�mH window around the physical Higgs mass, mH . Thus we artificially modify
the di↵erential decay probability to

He�S = 16⇡2

⇥(|mb¯b �mH | < �mH)

4mH �mH

. (104)

Our default value for �mH is 10 GeV.

IX. b-TAGS

We have described in Sec. II B how we assign b-tags T, F, or none to microjets produced
by Pythia or Herwig in a way that mimics imperfect b-tagging in an experiment. Tags
T or F are assigned only to microjets that are among the three highest pT microjets in the
event and, additionally, have pT > ptagT , where we take ptagT = 15 GeV.

In this section, we examine how to assign probabilities that a given b-tag value will
be generated in the simplified shower. We seek to simulate the probabilities with which
the algorithm specified above generates tj values T, F, or none when operating on events
generated by the full Pythia or Herwig.

We suppose that we are given a microjet state, with momenta pj for each microjet and
with a T or F b-tag for each microjet that has large enough transverse momentum. We
need to estimate the probability Pj(T) that microjet j receives a tag tj = T and and the
probability Pj(F) that microjet j receives a tag tj = F. Then if, in fact, tj = T, we include
in P ({p, t}N |S, h) (for a signal history h) or P ({p, t}N |B, h) (for a background history h) a
factor Pj(T). If tj = F, we include factor Pj(F).

How should we calculate Pj(T) and Pj(F)? We note that the situation is simpler than
for a real Pythia or Herwig shower because each microjet consists of precisely one parton
and each parton i has a definite flavor fi which can be b or b̄ or could be a flavor that is not
b or b̄, namely q or q̄ or g. We make the definition as follows, using the probabilities P (T|b)
and P (T|⇠b) defined in Sec. II B:

• If a microjet j is a b or b̄ quark, then we say that tj = T with a probability
Pj(T) = P (T|b) and tj = F with a probability Pj(F) = 1� P (T|b).
• If microjet j is not a b or b̄ quark, then we say that tj = T with a probability
Pj(T) = P (T|⇠b) and tj = F with a probability Pj(F) = 1� P (T|⇠b).

X. CONSTRUCTING SHOWER HISTORIES

We have now described how to calculate a probability P ({p, t}N |S, h) for each signal
history h and a probability P ({p, t}N |B, h) for each background history h. We simply look
at the diagram that describes the shower history and associate a factor with each element of
the diagram. Now we need to generate shower histories. Because our method for combining
daughter jets to form a mother jet is so simple, we can construct a set of possible shower
histories in a fairly simple fashion.

We begin with a list of the starting microjets. We divide these into two sets in all
possible ways. One set consists of decay products of partons emitted as initial state or
underlying event radiation, the second consists of the decay products of the parton (a gluon
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emissions. We get a Sudakov factor for each one, times a factor for not having an emission
between the last one and k2
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The factor exp(�S
IS

) is independent of the splitting values k2

JA
, k2

JB
, . . . , k2

Jn
. It does depend

on the hard scattering scale Q2, which varies from event to event. However, note that Q2

is independent of the shower history and is the same for shower histories that represent
background and signal processes. Thus the factor exp(�S

tot

) will cancel exactly between
signal and background factors in our observable �, so we can simply replace

exp(�S
IS

) ! 1 . (101)

VIII. HIGGS DECAY PROBABILITY

A light Higgs boson decays most often into b+ b̄. Since we consider only the b+ b̄ decay
mode, it su�ces to treat the Higgs boson as if it always decayed to b + b̄. In the sections
on splittings in a parton shower, we have specified a conditional splitting probability H, the
probability for a splitting at a given virtuality µ2

J if the parton has not split at a higher µ2

J .
The total splitting probability is then He�S, where e�S is the probability that the parton
has not split at a higher µ2

J . In this section, for the Higgs decay, we specify the total decay
probability He�S, depicted in Fig. 16.

The light Higgs boson is a very narrow object. In the narrow width approximation, the
di↵erential decay probability is

He�S = 16⇡2 �(m2

b¯b �m2

H) . (102)

The normalization is arranged so that the total probability that the Higgs decays, using the
integration measure in in Eq. (70), is 1:

1

4(2⇡)3

Z
dm2

b¯b

Z
dz

Z
d' He�S = 1 . (103)

Although a low mass Higgs boson is a very narrow object, the precision of its mass recon-
struction is limited by detector resolution e↵ects and by the loss of momentum resolution
caused by grouping final state particles into microjets. To take these issues into account, we
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treat the Higgs boson decay as if the invariant mass of its decay products can be anything
within a ±�mH window around the physical Higgs mass, mH . Thus we artificially modify
the di↵erential decay probability to

He�S = 16⇡2

⇥(|mb¯b �mH | < �mH)

4mH �mH

. (104)

Our default value for �mH is 10 GeV.

IX. b-TAGS

We have described in Sec. II B how we assign b-tags T, F, or none to microjets produced
by Pythia or Herwig in a way that mimics imperfect b-tagging in an experiment. Tags
T or F are assigned only to microjets that are among the three highest pT microjets in the
event and, additionally, have pT > ptagT , where we take ptagT = 15 GeV.

In this section, we examine how to assign probabilities that a given b-tag value will
be generated in the simplified shower. We seek to simulate the probabilities with which
the algorithm specified above generates tj values T, F, or none when operating on events
generated by the full Pythia or Herwig.

We suppose that we are given a microjet state, with momenta pj for each microjet and
with a T or F b-tag for each microjet that has large enough transverse momentum. We
need to estimate the probability Pj(T) that microjet j receives a tag tj = T and and the
probability Pj(F) that microjet j receives a tag tj = F. Then if, in fact, tj = T, we include
in P ({p, t}N |S, h) (for a signal history h) or P ({p, t}N |B, h) (for a background history h) a
factor Pj(T). If tj = F, we include factor Pj(F).

How should we calculate Pj(T) and Pj(F)? We note that the situation is simpler than
for a real Pythia or Herwig shower because each microjet consists of precisely one parton
and each parton i has a definite flavor fi which can be b or b̄ or could be a flavor that is not
b or b̄, namely q or q̄ or g. We make the definition as follows, using the probabilities P (T|b)
and P (T|⇠b) defined in Sec. II B:

• If a microjet j is a b or b̄ quark, then we say that tj = T with a probability
Pj(T) = P (T|b) and tj = F with a probability Pj(F) = 1� P (T|b).
• If microjet j is not a b or b̄ quark, then we say that tj = T with a probability
Pj(T) = P (T|⇠b) and tj = F with a probability Pj(F) = 1� P (T|⇠b).

X. CONSTRUCTING SHOWER HISTORIES

We have now described how to calculate a probability P ({p, t}N |S, h) for each signal
history h and a probability P ({p, t}N |B, h) for each background history h. We simply look
at the diagram that describes the shower history and associate a factor with each element of
the diagram. Now we need to generate shower histories. Because our method for combining
daughter jets to form a mother jet is so simple, we can construct a set of possible shower
histories in a fairly simple fashion.

We begin with a list of the starting microjets. We divide these into two sets in all
possible ways. One set consists of decay products of partons emitted as initial state or
underlying event radiation, the second consists of the decay products of the parton (a gluon
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) is independent of the splitting values k2
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. It does depend

on the hard scattering scale Q2, which varies from event to event. However, note that Q2

is independent of the shower history and is the same for shower histories that represent
background and signal processes. Thus the factor exp(�S

tot

) will cancel exactly between
signal and background factors in our observable �, so we can simply replace

exp(�S
IS

) ! 1 . (101)

VIII. HIGGS DECAY PROBABILITY

A light Higgs boson decays most often into b+ b̄. Since we consider only the b+ b̄ decay
mode, it su�ces to treat the Higgs boson as if it always decayed to b + b̄. In the sections
on splittings in a parton shower, we have specified a conditional splitting probability H, the
probability for a splitting at a given virtuality µ2

J if the parton has not split at a higher µ2

J .
The total splitting probability is then He�S, where e�S is the probability that the parton
has not split at a higher µ2

J . In this section, for the Higgs decay, we specify the total decay
probability He�S, depicted in Fig. 16.

The light Higgs boson is a very narrow object. In the narrow width approximation, the
di↵erential decay probability is

He�S = 16⇡2 �(m2

b¯b �m2

H) . (102)

The normalization is arranged so that the total probability that the Higgs decays, using the
integration measure in in Eq. (70), is 1:

1

4(2⇡)3

Z
dm2

b¯b

Z
dz

Z
d' He�S = 1 . (103)

Although a low mass Higgs boson is a very narrow object, the precision of its mass recon-
struction is limited by detector resolution e↵ects and by the loss of momentum resolution
caused by grouping final state particles into microjets. To take these issues into account, we
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FIG. 12: Sudakov factor between final state splittings for QCD a or g partons.

C. Splitting probability

We will insert a splitting probability into each integration over the splitting variables, so
that the splitting probability di⇤erential in the splitting variables µ2

J ,��,�y is

dP = dµ2
J d�� d�y J He�S (69)

and the total splitting probability is
⇥

dP =

⇥
dµ2

J

⇥
d��

⇥
d�y

�

s

J He�S . (70)

Here H (from Sec. VI) is the conditional splitting probability for a mother parton to split if it
has not split at a higher virtuality than µ2

J and e�S is the probability, derived (approximately)
from H, that the mother parton has not split at a higher virtuality. In defining S, we will
approximate the jacobian J by the approximate version J0 in Eq. (68) and will further
approximate H to a function H0 that is simple when written in terms of the splitting
variables that we have chosen.

D. Sudakov exponent for gluon splitting

The Sudakov factor is the probability that the mother parton J did not split at a virtuality
above µ2

J . Thus the Sudakov factor is exp(�S), where S is the probability for the mother
parton to have split at a value of µJ that is greater than the value at which the splitting
did, in fact, occur. The corresponding Sudakov factors are associated with the propagators
in our shower history diagrams. For instance, for an a or g parton, the factors exp(�Sa)
and exp(�Sg) are indicated in Fig. 12. The splittings are treated as g ⇤ g + g splittings
and Sa = Sg.

Given the physical meaning of the Sudakov factor, one would like

S ⇥
⇥
dµ̄2

J ⇥(µ2
J < µ̄2

J)

⇥
d�ȳ

⇥
d��̄

�

s̄

J(p̄A, p̄B)H(p̄A, p̄B)⇥({p̄A, p̄B} ⌅ fat jet) . (71)

Here p̄A and p̄B denote the momenta of the daughter partons in a possible splitting and µ̄2
J ,

�ȳ, ��̄ and s̄ denote parameters of the possible splitting, while J is the jacobian for the
change of integration variables to µ̄2

J , �ȳ, ��̄ and s̄ at fixed mother parton variables kJ , yJ ,
and �J .

The theta function ⇥({p̄A, p̄B} ⌅ fat jet) is present for the following reason. Parton J
has, in each interval of virtuality dµ̄2

J , a probability to emit a soft, wide angle gluon that is
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Signal hypothesis

FIG. 14: Sudakov factor between final state emission of a gluon from a b- or b̄-quarks. The previous
splitting can be either a gluon emission, a g ⇤ b+ b̄ or a ⇤ b+ b̄ splitting or a Higgs boson decay
to b+ b̄.

E. Sudakov exponent for b-quark splitting

The Sudakov factor for a b or b̄ quark splitting is illustrated in Fig. 14. The corresponding
Sudakov exponent is
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(87)

This is nearly the same as the Sudakov exponent for gluon splitting, Eq. (86). The di⇥erence
is that there is only one color connected partner k so there is no sum over the index s that
specifies which color connected partner to choose.

Sometimes there is no color connected parton with label k in the fat jet. Then, as in
Eq. (75) for Sg, we make the replacement ⇥k ⇤ R0.

F. After the last splitting

If in the shower history h, parton J does not split, then we look at its virtuality µ2
J and

include a factor e�Sa , e�Sg , or e�Sb , as illustrated in Fig. 15, that represents the probability
for parton J not to have split at a virtuality above the final virtuality µ2

J .
In principle, we should also include a factor

↵
dH representing the probability that parton

J did finally split at virtuality µ2
J . We do not know the splitting angle ⇥ for this splitting.

We do know that ⇥ was less than Rmicrojet, the radius parameter for the kT -jet algorithm
that we used to define the microjets: if ⇥ were larger than Rmicrojet, the jet algorithm would
not have merged the daughter partons to form the microjet. Thus we would calculate

↵
dH

by integrating the di⇥erential splitting function over the region ⇥ < Rmicrojet.6 We do not, in

6 Here we ignore the fact that we sometimes increase Rmicrojet in order to keep the number of microjets to

no larger than ten.
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FIG. 10: Splitting functions for final state QCD splittings of a b or b̄ quark.

Here there is no restriction on the angles ys,⇤s of the emitted soft parton. This is potentially
a very bad approximation, but in our case the approximation is tolerable because the emitted
soft parton is necessarily within the fat jet. When, in addition, there is no mother parton
K, this becomes

Hno-K =
CA�s(µ2

J)

2

1

µ2
J

k2
J

kskh
�
�
µ2
J < k2

J

⇥
. (48)

B. Splitting probability for b � b+ g and b̄ � b̄+ g

Bottom quarks are created in the decay of a Higgs boson in signal events and by g � b+ b̄
splittings in background events. The bottom quarks can radiate gluons. These splittings
are represented by the splitting probabilities Hbbg and Hb̄gb̄ that are illustrated in Fig. 10.

A gluon emitted from the b quark is on the right of the daughter b quark in our history
diagram. If it is emitted from the b̄ quark, it is to the left of the b̄ quark in the diagram.
We take the splitting probability to be

Hbbg = Hb̄gb̄ =
CA�s(µ2

J)

2

1

µ2
J

k2
J

kbkg

⇥2bk
⇥2gb + ⇥2gk

�(kg < kb)�

⇤
2
µ2
J

kJ
<

µ2
K

kK

⌅
. (49)

This is similar to the splitting probability in Eq. (46). The matrix element squared in
the eikonal approximation is singular when the gluon momentum approaches zero, but not
when the daughter b or b̄ quark momentum approaches zero. Thus we impose the condition
kg < kb, where kb is the transverse momentum of the daughter b or b̄ quark and kg is the
transverse momentum of the daughter gluon. There is an angle factor in which b labels
daughter b or b̄ quark, g labels the emitted gluon, and k labels the color connected partner
of the b or b̄ quark.

C. Splitting probability for g � b+ b̄

We need one more QCD splitting probability, for f � b + b̄ for a high transverse mo-
mentum f = a or f = g parton. We model this as a g � b + b̄ splitting since we treat
f = a partons as being almost always gluons. Now, a g � b + b̄ splitting is rare compared
to g � g + g splittings, so we could simply approximate the probability for a g � b + b̄
splitting by zero. However, g � b + b̄ is the main background for the H � b + b̄ signal, so
we need to keep track of g � b+ b̄ splittings even if they have a small probability.
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FIG. 11: Splitting functions for final state QCD splittings of a quark or antiquark, including a b

or b̄ quark.

This gives a splitting probability H:

Hggg = 8⇡CA
↵
s
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◆
. (52)

Here we evaluate ↵
s

at the virtuality scale of the splitting. When there is no color connected
parton visible, we are forced to simplify this to

H
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Here there is no restriction on the angles ys,�s of the emitted soft parton. This is potentially
a very bad approximation, but in our case the approximation is tolerable because the emitted
soft parton is necessarily within the fat jet. When, in addition, there is no mother parton
K, this becomes

H
no-K = 8⇡CA

↵
s
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J
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1� kskh
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B. Splitting probability for q ! q + g and q̄ ! q̄ + g

Quarks and antiquarks can radiate gluons. These splittings are represented by the split-
ting probabilities Hqqg and Hq̄gq̄ that are illustrated in Fig. 11. We treat the splitting of
a bottom quark as identical to the splitting of a light quark, neglecting the bottom quark
mass. We take the splitting probability to be

Hqqg = Hq̄gq̄ = 8⇡C
F

↵
s

(µ2

J)
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J

kJ
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"
1 +

✓
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2

#
✓2qk

✓2gq + ✓2gk
⇥

✓
2
µ2

J

kJ
<

µ2

K

kK

◆
. (55)

The derivation follows the derivation that led to Eq. (52). Here kg is the transverse momen-
tum of the gluon, kq is the transverse momentum of the quark or antiquark, and kJ is the
transverse momentum of the mother quark. Then using kq/kJ ⇡ z and kg/kJ ⇡ (1� z), the
factor containing these ratios gives the collinear splitting function

Pqq = CF
1 + z2

1� z
(56)

21

[Marchesini, 
Webber, (1984)]

kq

See talk by 
Marzani

-

-



F
IG

.
6:

Splitting
functions

for
final

state
Q
C
D

splittings
that

are
m
odeled

as
g
⌅

g
+
g

V
I.

F
IN

A
L

S
T
A
T
E

Q
C
D

S
H
O
W

E
R

S
P
L
IT

T
IN

G
S

In
this

section,
w
e
define

the
m
ain

part
of

the
sim

plified
show

er,
Q
C
D

show
er

splittings.

A
.

S
p
littin

g
p
ro
b
ab

ility
fo
r
g
⌅

g
+
g

T
he

splitting
vertex

for
a
Q
C
D

splitting
g
⌅

g
+
g
is
represented

by
a
function

H
ggg

as

illustrated
in

F
ig. 6.

W
e
call these

the
conditional splitting

probabilities.
H
ere

the
condition

is
that

the
m
other

parton
has

not
split

already
at

a
higher

virtuality.

L
et

us
exam

ine
w
hat

w
e
should

choose
for

H
ggg

for
a
g
⌅

g
+
g
splitting.

W
e
take

the

m
other

parton
to

carry
the

lab
el
J
and

w
e
supp

ose
that

the
daughter

partons
are

lab
elled

A
and

B
,
w
here

A
caries

the
3̄
color

of
the

m
other

and
is
draw

n
on

the
left,

w
hile

B
caries

the
3
color

of
the

m
other

and
is
draw

n
on

the
right.

T
he

form
of

the
splitting

probability

dep
ends

on
w
hich

of
the

tw
o
daughter

partons
is
the

softer.
W
e
let

h
b
e
the

lab
el

of
the

harder
daughter

parton
and

s
b
e
the

lab
el
of

the
softer

daughter
parton:

k
s
<
k
h .

B
y
definition,

k
s
<

k
h .

W
e
first

look
at

the
splitting

in
the

lim
it
k
s ⇤

k
h .

T
he

splitting

probability
is
then

dom
inated

by
graphs

in
w
hich

parton
s
is
em

itted
from

a
dip

ole
consisting

of
parton

J
and

som
e
other

parton,
call

it
parton

k.
If
s
=

A
,
then

the
em

itting
dip

ole
is

form
ed

from
parton

h
=

B
and

parton
k
=

k(J
)
L ,
w
hile

if
s
=

B
,
then

the
em

itting
dip

ole

is
form

ed
from

parton
h
=

A
and

parton
k
=

k(J
)
R .

T
he

choice
of

k
dep

ends
on

w
hich

of

the
tw
o
daughter

partons
is
parton

s,
so

w
here

needed
w
e
w
ill

use
the

notation
k(s)

instead

of
sim

ply
k.

For
H
,
w
e
start

w
ith

the
dip

ole
approxim

ation
for

the
squared

m
atrix

elem
ent

(w
ith

µ
2s
=
µ
2h
=
0),

H
d
ip
ole ⇥

C
A �

s

2

2
p
h · p

k

2
p
s · p

h
2
p
s · p

k

.

(30)

W
e
use

2
p
s · p

h
=
2k

s k
h [cosh(y

s �
y
h )�

cos(⇤
s �

⇤
h )]

⇥
k
s k

h [(y
s �

y
h ) 2

+
(⇤

s �
⇤
h ) 2]

=
k
s k

h
⇥ 2sh

,

2
p
s · p

k ⇥
k
s k

k ⇥ 2sk
,

2
p
h · p

k ⇥
k
h k

k ⇥ 2h
k
,

(31)

13

b

b-

ISR
ISRg

g

UE

UE

UE

� (85)

Ha (86)

HH (87)

HIS (88)

6

b
b-

b-quarks radiate gluons

FIG. 6: Splitting functions for final state QCD splittings that are modeled as g ⌅ g + g

VI. FINAL STATE QCD SHOWER SPLITTINGS

In this section, we define the main part of the simplified shower, QCD shower splittings.

A. Splitting probability for g ⌅ g + g

The splitting vertex for a QCD splitting g ⌅ g + g is represented by a function Hggg as
illustrated in Fig. 6. We call these the conditional splitting probabilities. Here the condition
is that the mother parton has not split already at a higher virtuality.

Let us examine what we should choose for Hggg for a g ⌅ g + g splitting. We take the
mother parton to carry the label J and we suppose that the daughter partons are labelled
A and B, where A caries the 3̄ color of the mother and is drawn on the left, while B caries
the 3 color of the mother and is drawn on the right. The form of the splitting probability
depends on which of the two daughter partons is the softer. We let h be the label of the
harder daughter parton and s be the label of the softer daughter parton: ks < kh.

By definition, ks < kh. We first look at the splitting in the limit ks ⇤ kh. The splitting
probability is then dominated by graphs in which parton s is emitted from a dipole consisting
of parton J and some other parton, call it parton k. If s = A, then the emitting dipole is
formed from parton h = B and parton k = k(J)L, while if s = B, then the emitting dipole
is formed from parton h = A and parton k = k(J)R. The choice of k depends on which of
the two daughter partons is parton s, so where needed we will use the notation k(s) instead
of simply k.

For H, we start with the dipole approximation for the squared matrix element (with
µ2
s = µ2

h = 0),

Hdipole ⇥
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2

2 ph · pk
2 ps · ph 2 ps · pk

. (30)

We use
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(31)
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FIG. 12: Sudakov factor between final state splittings for QCD a or g partons.

C. Splitting probability

We will insert a splitting probability into each integration over the splitting variables, so
that the splitting probability di⇤erential in the splitting variables µ2

J ,��,�y is

dP = dµ2
J d�� d�y J He�S (69)

and the total splitting probability is
⇥

dP =

⇥
dµ2

J

⇥
d��

⇥
d�y

�

s

J He�S . (70)

Here H (from Sec. VI) is the conditional splitting probability for a mother parton to split if it
has not split at a higher virtuality than µ2

J and e�S is the probability, derived (approximately)
from H, that the mother parton has not split at a higher virtuality. In defining S, we will
approximate the jacobian J by the approximate version J0 in Eq. (68) and will further
approximate H to a function H0 that is simple when written in terms of the splitting
variables that we have chosen.

D. Sudakov exponent for gluon splitting

The Sudakov factor is the probability that the mother parton J did not split at a virtuality
above µ2

J . Thus the Sudakov factor is exp(�S), where S is the probability for the mother
parton to have split at a value of µJ that is greater than the value at which the splitting
did, in fact, occur. The corresponding Sudakov factors are associated with the propagators
in our shower history diagrams. For instance, for an a or g parton, the factors exp(�Sa)
and exp(�Sg) are indicated in Fig. 12. The splittings are treated as g ⇤ g + g splittings
and Sa = Sg.

Given the physical meaning of the Sudakov factor, one would like

S ⇥
⇥
dµ̄2

J ⇥(µ2
J < µ̄2

J)

⇥
d�ȳ

⇥
d��̄

�

s̄

J(p̄A, p̄B)H(p̄A, p̄B)⇥({p̄A, p̄B} ⌅ fat jet) . (71)

Here p̄A and p̄B denote the momenta of the daughter partons in a possible splitting and µ̄2
J ,

�ȳ, ��̄ and s̄ denote parameters of the possible splitting, while J is the jacobian for the
change of integration variables to µ̄2

J , �ȳ, ��̄ and s̄ at fixed mother parton variables kJ , yJ ,
and �J .

The theta function ⇥({p̄A, p̄B} ⌅ fat jet) is present for the following reason. Parton J
has, in each interval of virtuality dµ̄2

J , a probability to emit a soft, wide angle gluon that is
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FIG. 12: Sudakov factor between final state splittings for QCD a or g partons.
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Here H (from Sec. VI) is the conditional splitting probability for a mother parton to split if it
has not split at a higher virtuality than µ2

J and e�S is the probability, derived (approximately)
from H, that the mother parton has not split at a higher virtuality. In defining S, we will
approximate the jacobian J by the approximate version J0 in Eq. (68) and will further
approximate H to a function H0 that is simple when written in terms of the splitting
variables that we have chosen.

D. Sudakov exponent for gluon splitting

The Sudakov factor is the probability that the mother parton J did not split at a virtuality
above µ2

J . Thus the Sudakov factor is exp(�S), where S is the probability for the mother
parton to have split at a value of µJ that is greater than the value at which the splitting
did, in fact, occur. The corresponding Sudakov factors are associated with the propagators
in our shower history diagrams. For instance, for an a or g parton, the factors exp(�Sa)
and exp(�Sg) are indicated in Fig. 12. The splittings are treated as g ⇤ g + g splittings
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J , �ȳ, ��̄ and s̄ at fixed mother parton variables kJ , yJ ,
and �J .

The theta function ⇥({p̄A, p̄B} ⌅ fat jet) is present for the following reason. Parton J
has, in each interval of virtuality dµ̄2

J , a probability to emit a soft, wide angle gluon that is

24

Background hypothesis

FIG. 14: Sudakov factor between final state emission of a gluon from a b- or b̄-quarks. The previous
splitting can be either a gluon emission, a g ⇤ b+ b̄ or a ⇤ b+ b̄ splitting or a Higgs boson decay
to b+ b̄.

E. Sudakov exponent for b-quark splitting

The Sudakov factor for a b or b̄ quark splitting is illustrated in Fig. 14. The corresponding
Sudakov exponent is
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(87)

This is nearly the same as the Sudakov exponent for gluon splitting, Eq. (86). The di⇥erence
is that there is only one color connected partner k so there is no sum over the index s that
specifies which color connected partner to choose.

Sometimes there is no color connected parton with label k in the fat jet. Then, as in
Eq. (75) for Sg, we make the replacement ⇥k ⇤ R0.

F. After the last splitting

If in the shower history h, parton J does not split, then we look at its virtuality µ2
J and

include a factor e�Sa , e�Sg , or e�Sb , as illustrated in Fig. 15, that represents the probability
for parton J not to have split at a virtuality above the final virtuality µ2

J .
In principle, we should also include a factor

↵
dH representing the probability that parton

J did finally split at virtuality µ2
J . We do not know the splitting angle ⇥ for this splitting.

We do know that ⇥ was less than Rmicrojet, the radius parameter for the kT -jet algorithm
that we used to define the microjets: if ⇥ were larger than Rmicrojet, the jet algorithm would
not have merged the daughter partons to form the microjet. Thus we would calculate

↵
dH

by integrating the di⇥erential splitting function over the region ⇥ < Rmicrojet.6 We do not, in

6 Here we ignore the fact that we sometimes increase Rmicrojet in order to keep the number of microjets to

no larger than ten.
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FIG. 10: Splitting functions for final state QCD splittings of a b or b̄ quark.

Here there is no restriction on the angles ys,⇤s of the emitted soft parton. This is potentially
a very bad approximation, but in our case the approximation is tolerable because the emitted
soft parton is necessarily within the fat jet. When, in addition, there is no mother parton
K, this becomes

Hno-K =
CA�s(µ2

J)

2

1

µ2
J

k2
J

kskh
�
�
µ2
J < k2

J

⇥
. (48)

B. Splitting probability for b � b+ g and b̄ � b̄+ g

Bottom quarks are created in the decay of a Higgs boson in signal events and by g � b+ b̄
splittings in background events. The bottom quarks can radiate gluons. These splittings
are represented by the splitting probabilities Hbbg and Hb̄gb̄ that are illustrated in Fig. 10.

A gluon emitted from the b quark is on the right of the daughter b quark in our history
diagram. If it is emitted from the b̄ quark, it is to the left of the b̄ quark in the diagram.
We take the splitting probability to be

Hbbg = Hb̄gb̄ =
CA�s(µ2

J)

2

1

µ2
J

k2
J

kbkg

⇥2bk
⇥2gb + ⇥2gk

�(kg < kb)�

⇤
2
µ2
J

kJ
<

µ2
K

kK

⌅
. (49)

This is similar to the splitting probability in Eq. (46). The matrix element squared in
the eikonal approximation is singular when the gluon momentum approaches zero, but not
when the daughter b or b̄ quark momentum approaches zero. Thus we impose the condition
kg < kb, where kb is the transverse momentum of the daughter b or b̄ quark and kg is the
transverse momentum of the daughter gluon. There is an angle factor in which b labels
daughter b or b̄ quark, g labels the emitted gluon, and k labels the color connected partner
of the b or b̄ quark.

C. Splitting probability for g � b+ b̄

We need one more QCD splitting probability, for f � b + b̄ for a high transverse mo-
mentum f = a or f = g parton. We model this as a g � b + b̄ splitting since we treat
f = a partons as being almost always gluons. Now, a g � b + b̄ splitting is rare compared
to g � g + g splittings, so we could simply approximate the probability for a g � b + b̄
splitting by zero. However, g � b + b̄ is the main background for the H � b + b̄ signal, so
we need to keep track of g � b+ b̄ splittings even if they have a small probability.
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FIG. 11: Splitting functions for final state QCD splittings of a quark or antiquark, including a b

or b̄ quark.

This gives a splitting probability H:
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↵
s

(µ2

J)

µ2

J

k2

J

kskh


1� kskh

k2

J

�
2

✓2hk
✓2sh + ✓2sk

⇥

✓
2
µ2

J

kJ
<

µ2

K

kK

◆
. (52)

Here we evaluate ↵
s

at the virtuality scale of the splitting. When there is no color connected
parton visible, we are forced to simplify this to

H
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Here there is no restriction on the angles ys,�s of the emitted soft parton. This is potentially
a very bad approximation, but in our case the approximation is tolerable because the emitted
soft parton is necessarily within the fat jet. When, in addition, there is no mother parton
K, this becomes

H
no-K = 8⇡CA
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B. Splitting probability for q ! q + g and q̄ ! q̄ + g

Quarks and antiquarks can radiate gluons. These splittings are represented by the split-
ting probabilities Hqqg and Hq̄gq̄ that are illustrated in Fig. 11. We treat the splitting of
a bottom quark as identical to the splitting of a light quark, neglecting the bottom quark
mass. We take the splitting probability to be

Hqqg = Hq̄gq̄ = 8⇡C
F

↵
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kK

◆
. (55)

The derivation follows the derivation that led to Eq. (52). Here kg is the transverse momen-
tum of the gluon, kq is the transverse momentum of the quark or antiquark, and kJ is the
transverse momentum of the mother quark. Then using kq/kJ ⇡ z and kg/kJ ⇡ (1� z), the
factor containing these ratios gives the collinear splitting function

Pqq = CF
1 + z2

1� z
(56)
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Signal hypothesis

FIG. 14: Sudakov factor between final state emission of a gluon from a b- or b̄-quarks. The previous
splitting can be either a gluon emission, a g ⇤ b+ b̄ or a ⇤ b+ b̄ splitting or a Higgs boson decay
to b+ b̄.

E. Sudakov exponent for b-quark splitting

The Sudakov factor for a b or b̄ quark splitting is illustrated in Fig. 14. The corresponding
Sudakov exponent is
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(87)

This is nearly the same as the Sudakov exponent for gluon splitting, Eq. (86). The di⇥erence
is that there is only one color connected partner k so there is no sum over the index s that
specifies which color connected partner to choose.

Sometimes there is no color connected parton with label k in the fat jet. Then, as in
Eq. (75) for Sg, we make the replacement ⇥k ⇤ R0.

F. After the last splitting

If in the shower history h, parton J does not split, then we look at its virtuality µ2
J and

include a factor e�Sa , e�Sg , or e�Sb , as illustrated in Fig. 15, that represents the probability
for parton J not to have split at a virtuality above the final virtuality µ2

J .
In principle, we should also include a factor

↵
dH representing the probability that parton

J did finally split at virtuality µ2
J . We do not know the splitting angle ⇥ for this splitting.

We do know that ⇥ was less than Rmicrojet, the radius parameter for the kT -jet algorithm
that we used to define the microjets: if ⇥ were larger than Rmicrojet, the jet algorithm would
not have merged the daughter partons to form the microjet. Thus we would calculate

↵
dH

by integrating the di⇥erential splitting function over the region ⇥ < Rmicrojet.6 We do not, in

6 Here we ignore the fact that we sometimes increase Rmicrojet in order to keep the number of microjets to

no larger than ten.
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FIG. 10: Splitting functions for final state QCD splittings of a b or b̄ quark.

Here there is no restriction on the angles ys,⇤s of the emitted soft parton. This is potentially
a very bad approximation, but in our case the approximation is tolerable because the emitted
soft parton is necessarily within the fat jet. When, in addition, there is no mother parton
K, this becomes

Hno-K =
CA�s(µ2

J)

2

1

µ2
J

k2
J

kskh
�
�
µ2
J < k2

J

⇥
. (48)

B. Splitting probability for b � b+ g and b̄ � b̄+ g

Bottom quarks are created in the decay of a Higgs boson in signal events and by g � b+ b̄
splittings in background events. The bottom quarks can radiate gluons. These splittings
are represented by the splitting probabilities Hbbg and Hb̄gb̄ that are illustrated in Fig. 10.

A gluon emitted from the b quark is on the right of the daughter b quark in our history
diagram. If it is emitted from the b̄ quark, it is to the left of the b̄ quark in the diagram.
We take the splitting probability to be

Hbbg = Hb̄gb̄ =
CA�s(µ2

J)

2

1

µ2
J

k2
J

kbkg

⇥2bk
⇥2gb + ⇥2gk

�(kg < kb)�

⇤
2
µ2
J

kJ
<

µ2
K

kK

⌅
. (49)

This is similar to the splitting probability in Eq. (46). The matrix element squared in
the eikonal approximation is singular when the gluon momentum approaches zero, but not
when the daughter b or b̄ quark momentum approaches zero. Thus we impose the condition
kg < kb, where kb is the transverse momentum of the daughter b or b̄ quark and kg is the
transverse momentum of the daughter gluon. There is an angle factor in which b labels
daughter b or b̄ quark, g labels the emitted gluon, and k labels the color connected partner
of the b or b̄ quark.

C. Splitting probability for g � b+ b̄

We need one more QCD splitting probability, for f � b + b̄ for a high transverse mo-
mentum f = a or f = g parton. We model this as a g � b + b̄ splitting since we treat
f = a partons as being almost always gluons. Now, a g � b + b̄ splitting is rare compared
to g � g + g splittings, so we could simply approximate the probability for a g � b + b̄
splitting by zero. However, g � b + b̄ is the main background for the H � b + b̄ signal, so
we need to keep track of g � b+ b̄ splittings even if they have a small probability.
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FIG. 6: Splitting functions for final state QCD
splittings that are modeled as g ⌅

g +
g

VI.
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SPLITTINGS

In this section, we define the main part of the simplified shower, QCD
shower splittings.

A.
Splitting

probability
for g ⌅

g +
g

The splitting vertex for a QCD
splitting g ⌅

g +
g is represented by a function H

ggg as

illustrated in Fig. 6. We call these the conditional splitting probabilities. Here the condition

is that the mother parton has not split already at a higher virtuality.

Let us examine what we should choose for H
ggg for a g ⌅

g +
g splitting. We take the

mother parton to carry the label J
and we suppose that the daughter partons are labelled

A
and B, where A

caries the 3̄ color of the mother and is drawn on the left, while B
caries

the 3 color of the mother and is drawn on the right. The form
of the splitting probability

depends on which of the two daughter partons is the softer. We let h
be the label of the

harder daughter parton and s be the label of the softer daughter parton: k
s <

k
h .

By definition, k
s <

k
h . We first look at the splitting in the limit k

s ⇤
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h . The splitting

probability is then dominated by graphs in which parton s is emitted from
a dipole consisting

of parton J
and some other parton, call it parton k. If s =

A, then the emitting dipole is

formed from
parton h =

B
and parton k =

k(J)L , while if s =
B, then the emitting dipole

is formed from
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A
and parton k =

k(J)R . The choice of k depends on which of

the two daughter partons is parton s, so where needed we will use the notation k(s) instead

of simply k.
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FIG. 6: Splitting functions for final state QCD splittings that are modeled as g ⌅ g + g

VI. FINAL STATE QCD SHOWER SPLITTINGS

In this section, we define the main part of the simplified shower, QCD shower splittings.

A. Splitting probability for g ⌅ g + g

The splitting vertex for a QCD splitting g ⌅ g + g is represented by a function Hggg as
illustrated in Fig. 6. We call these the conditional splitting probabilities. Here the condition
is that the mother parton has not split already at a higher virtuality.

Let us examine what we should choose for Hggg for a g ⌅ g + g splitting. We take the
mother parton to carry the label J and we suppose that the daughter partons are labelled
A and B, where A caries the 3̄ color of the mother and is drawn on the left, while B caries
the 3 color of the mother and is drawn on the right. The form of the splitting probability
depends on which of the two daughter partons is the softer. We let h be the label of the
harder daughter parton and s be the label of the softer daughter parton: ks < kh.

By definition, ks < kh. We first look at the splitting in the limit ks ⇤ kh. The splitting
probability is then dominated by graphs in which parton s is emitted from a dipole consisting
of parton J and some other parton, call it parton k. If s = A, then the emitting dipole is
formed from parton h = B and parton k = k(J)L, while if s = B, then the emitting dipole
is formed from parton h = A and parton k = k(J)R. The choice of k depends on which of
the two daughter partons is parton s, so where needed we will use the notation k(s) instead
of simply k.

For H, we start with the dipole approximation for the squared matrix element (with
µ2
s = µ2

h = 0),

Hdipole ⇥
CA�s
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2 ph · pk
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VI. FINAL STATE QCD SHOWER SPLITTINGS

In this section, we define the main part of the simplified shower, QCD shower splittings.

A. Splitting probability for g ⌅ g + g

The splitting vertex for a QCD splitting g ⌅ g + g is represented by a function Hggg as
illustrated in Fig. 6. We call these the conditional splitting probabilities. Here the condition
is that the mother parton has not split already at a higher virtuality.

Let us examine what we should choose for Hggg for a g ⌅ g + g splitting. We take the
mother parton to carry the label J and we suppose that the daughter partons are labelled
A and B, where A caries the 3̄ color of the mother and is drawn on the left, while B caries
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depends on which of the two daughter partons is the softer. We let h be the label of the
harder daughter parton and s be the label of the softer daughter parton: ks < kh.

By definition, ks < kh. We first look at the splitting in the limit ks ⇤ kh. The splitting
probability is then dominated by graphs in which parton s is emitted from a dipole consisting
of parton J and some other parton, call it parton k. If s = A, then the emitting dipole is
formed from parton h = B and parton k = k(J)L, while if s = B, then the emitting dipole
is formed from parton h = A and parton k = k(J)R. The choice of k depends on which of
the two daughter partons is parton s, so where needed we will use the notation k(s) instead
of simply k.
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FSR evolution
analogously

Wrapping up all factors gives weight for shower history

Here 
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Event selection cuts

‣ Cluster hadrons to ‘detector cells’ 0.1 x 0.1, ET > 0.5 GeV

‣ lepton pT > 15 GeV

‣ two hardest leptons mZ +- 10 GeV

‣ at least 1 fat jet (anti-kT, R=1.2, pT>200 GeV)

Normalize signal/background cross section 
to the NLO results obtained from MCFM

is because if the problem is simple, one can solve it with simple cuts and the method that

we propose is not necessary.

The method that we propose is quite general, but in order to explain it with reason-

able clarity, we need to consider a specific process. As outlined above, we should pick a

complicated process. However, if we did that, it would be di⇥cult to explain the method.

For that reason, we choose a simple process.

The simple process that we use as an example is the search for the Higgs boson using

the process p+ p ⌅ H + Z +X where the Z-boson decays to µ+ + µ� (or e+ + e�) while

the Higgs boson H decays to b+ b̄. Competing backgrounds are p+ p ⌅ jets +Z +X and

also p+ p ⌅ Z+Z+X where the second Z-boson decays hadronically. The ratio of signal

cross section to background cross section that we start with after event selection cuts is

very small, smaller than 1/1000. That is, of course, a disadvantage for having the method

work well, but it does not hurt in explaining the method.

2.1 Event selection

In order to make the Higgs boson easier to find, we demand that the Z-boson against

which it recoils has a large transverse momentum. Specifically, we select events consistent

with a leptonically decaying Z-boson for which the leptons are central (|yl| < 2.5), fairly

hard (pT,l > 15 GeV). The invariant mass of the leptons is required to recombine to the

Z-boson mass

|ml+l� �mZ | < 10 GeV . (2.1)

The reconstructed Z-boson is required to be is highly boosted in the transverse plane,

pT,l+l� > pT,min ⇤ 200 GeV . (2.2)

We next combine final state hadrons in simulated detector cells of size 0.1 ⇥ 0.1 and

adjust the absolute value of the momentum in each cell so that the the four-momentum

is massless. We remove cells with energy less than 0.5 GeV. We then use these cells as

input to the anti-kT jet-finding algorithm with a large e�ective cone size, R = 1.2. We find

the jet with the highest transverse momentum of all such jets in the event and require its

transverse momentum to be larger than pT,min.

Those selection cuts force the Higgs boson to recoil against the Z-boson with a large

transverse momentum, so that the decay products of the Higgs boson are fairly well colli-

mated.

We denote the cross section for signal events that pass these cuts by �MC(s) and denote

the cross section for background events that pass these cuts by �MC(B). With some help

from next-to-leading order calculations, we estimate 2
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imperfect b-tagging (60%,2%) no b-tag required

Results of shower deconstruction (SD)

section but with ⇥MC({p, t}N ) < ⇥0, we raise the total background cross section within the

cut while keeping the signal cross section the same. Thus using contours of ⇥MC({p, t}N )

to define our cut is the best that we can do.

What value of ⇥0 should one choose? For a simple optimized cut based analysis with

a given amount of integrated luminosity, one would choose ⇥0 so as to maximize the ratio

of the expected number of signal events to the square root of the expected number of

background events. We discuss this further in section 14.

Instead of using an optimized cut on ⇥MC to separate signal from background, one

could imagine using a log likelihood ratio constructed from ⇥MC. We do not discuss that

method in this paper.

Now we must face the fact that to construct ⇥MC({p, t}N ), we would need two things:

the di�erential cross section to find microjets {p, t}N in background events and then the

di�erential cross section to find microjets {p, t}N in signal events. In each case, we would

consider this di�erential cross section in a parton shower approximation to the full theory.

Unfortunately for us, a parton shower produces d�MC(S)/d{p, t}N and d�MC(B)/d{p, t}N
by producing Monte Carlo events at random according to these distributions. If we have 10

microjets described by 4 momentum variables each and we divide each of these 40 variables

into 12 bins, then we have approximately 1240/10! � 1036 total bins (accounting for the

interchange symmetry among the 10 microjets). The parton shower Monte Carlo event

generator will fill these bins with events, but it will be a long time before we have of order

100 counts per bin in order to estimate d�MC(S)/d{p, t}N and d�MC(B)/d{p, t}N at each

bin center. Thus it is not practical to calculate ⇥MC({p, t}N ) numerically by generating

Monte Carlo events. It is also not practical to calculate ⇥MC({p, t}N ) analytically using

the shower algorithms in Pythia or Herwig. These programs are very complicated, so

that we have no hope of finding PMC({p, t}N |S) and PMC({p, t}N |B) for either of them.

2.4 Probabilities according to simplified shower

What we need is an observable ⇥({p, t}N ) that is an approximation to ⇥MC({p, t}N ) such

that we can calculate ⇥({p, t}N ) analytically for any given {p, t}N . For this purpose, we

define a simple, approximate shower algorithm, which we will call the simplified shower

algorithm. We let P ({p, t}N |S) and P ({p, t}N |B) be the probabilities to produce the mi-

crojet configuration {p, t}N in, respectively, signal and background events according to the

simplified shower algorithm. Define

⇥({p, t}N ) =
P ({p, t}N |S)
P ({p, t}N |B) . (2.9)

This function, ⇥({p, t}N ) without the “MC” subscript, is the observable that we use. We

may call the calculation of ⇥({p, t}N ) shower deconstruction.

The parton state with N microjets is a possible intermediate state in a parton shower.

We seek to determine the probability that this intermediate state with parameters {p, t}N
is generated. We try to build enough into the simpler shower to provide a reasonable

approximation to QCD and the rest of the standard model. Furthermore, we can define

the shower so that the deconstruction is as simple as we can make it, even if that means that

– 7 –FIG. 1: d�
MC

(B)/d log� for background events (upper curve) and d�
MC

(S)/d log� for signal
events (lower curve) for samples of signal and background events generated by Pythia. We use
the cuts described in Sec. II A.

This function, �({p, t}N) without the “MC” subscript, is the observable that we use. We
may call the calculation of �({p, t}N) shower deconstruction.

The parton state with N microjets is a possible intermediate state in a parton shower.
We seek to determine the probability that this intermediate state with parameters {p, t}N
is generated. We try to build enough into the simpler shower to provide a reasonable ap-
proximation to QCD and the rest of the standard model. Furthermore, we can define the
shower so that the deconstruction is as simple as we can make it, even if that means that
the corresponding shower algorithm is not so practical as an event generator. For instance,
an implementation of the simplified shower algorithm as an event generator might generate
weighted events in a way that makes unweighting the events costly in computer time. Addi-
tionally, probability conservation might be only approximate, so that the generated weights
for di↵erent outcomes do not sum exactly to one. No matter: we are not going to use the
simplified shower algorithm to generate events anyway. Additionally, we can ignore any
factors in P ({p, t}N |S) and P ({p, t}N |B) that are common between them for each {p, t}N
since such factors cancel in �.

Our construction will be far from perfect, and it can be useful even if it is not perfect.
We will use Pythia to measure the cross section d�

MC

(S)/d log� to have signal events with
a given value of � and the corresponding cross section d�

MC

(B)/d log� to have background
events with this value of �. In Fig. 1, we show these two functions for the simplified shower
as defined in the following sections. In this illustration, we see that increasing � favors signal
compared to background.

There is another way to present the results in Fig. 1 that is more informative. Let us

7

FIG. 17: Plot of s2/b versus s, where s and b are defined in Eq. (10). We use samples of signal and
background events generated by Pythia as in Fig. 1. This is the same plot as in Fig. 2 except that
we plot s2/b instead of s/b. The total signal cross section with the cuts used is �

MC

(S) = 1.57 fb.
We also show a point corresponding to a signal cross section �

BDRS

(S) = 0.22 fb and background
cross section �

BDRS

(B) = 0.44 fb that we obtained using the method of Ref. [4].

In Fig. 1, we displayed the � distribution for signal and background. We used this
information to display s/b as a function of s in Fig. 2. In order to understand the statistical
significance of a counting experiment with a simple cut on �, we have seen above that one
wants to look at the maximum of s2/b. For that reason, in Fig. 17, we display the information
from Fig. 2 as a plot of s2/b versus s. We have used here the function �({p, t}N) from our
simplified shower algorithm. If we could somehow use �

MC

({p, t}N), using the same Monte
Carlo that we use to generate events, we would obtain a curve for s2/b versus s that is
everywhere higher. No algorithm could produce a curve above this limiting curve, but we
have no way of determining the limiting curve.

We see in Fig. 17 that one can achieve a fairly good statistical significance with, say,
an integrated luminosity of

R
dL = 30 fb�1. With s2/b ⇡ 0.26 and this luminosity we

have N(S)/
p

N(B) ⇡ 2.8. We can compare to the method of Ref. [4] (BDRS). Applying
this method with our data sample, we find a signal cross section �

BDRS

(S) = 0.22 fb and
background cross section �

BDRS

(B) = 0.44 fb. We have plotted this point in Fig. 17. The
corresponding statistical significance with

R
dL = 30 fb�1 is 1.8. Of course, this analysis

ignores all systematic uncertainties.
In the analysis presented above, we include events with zero, one, and two b-tags. Then

shower deconstruction has to overcome a signal to background ratio of about 1/1700 in the
complete event sample in order to extract a few events with a signal to background ratio of
order 1. One suspects that, in fact, the events with zero or one b-tags do not contribute much
to the discriminating power of the method. Accordingly, we now explore what happens when
we give shower deconstruction an easier job by restricting the event sample to just events in
which there are two b-tagged microjets among the three microjets with the highest transverse
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imperfect b-tagging but 2 b-tagged microjets

FIG. 18: d�
MC

(B)/d log� for background events (upper curve) and d�
MC

(S)/d log� for signal
events (lower curve) for samples of signal and background events generated by Pythia. We use
the cuts described in Sec. II A and, in addition, require that at least two of the three highest pT
microjets with pT > 15 GeV have positive b-tags.

momenta that have, additionally, pT > 15 GeV. With these cuts, the signal sample is 0.39
fb and the background sample is 11 fb. We lose a lot of signal events, but now the signal to
background ratio in the event sample is only about 1/30, so the job remaining for shower
deconstruction is easier.

In Fig. 18 we display the functions d�
MC

(S)/d log� and d�
MC

(B)/d log� for the two b-tag
sample. We again find a region with s > b. In Fig. 19, we display the information from
Fig. 18 as a plot of s2/b versus s. We also show the s2/b versus s curve from Fig. 17 for
all events with no restriction on b-tags and the point that we obtained using the method of
Ref. [4].7 We see that for s >⇠ 2.5 fb, s2/b with the restricted event sample is smaller than it
is with the unrestricted event sample. However for s <⇠ 2.0 fb, s2/b with the restricted event
sample is about the same as with the unrestricted event sample.

The formulas that define the simplified shower used to construct Fig. 19 contain a number
of parameters that reflect nonperturbative physics. Among them are c

np

, 2

np

, n
np

, cR, nR,
and 2

p

in Eq. (32), N g
pdf

in Eq. (23), andNH
pdf

in Eq. (24). There are other parameters like the
factor 2 for the hardness cut on splittings in Eq. (50) that could have been set di↵erently.
We have not systematically tested whether the performance of shower deconstruction as
reflected in Fig. 19 is sensitive to the parameter choices, but we have tried some variations.
Typically we found that d�

MC

(B)/d log� for background events and d�
MC

(S)/d log� for
signal events change in the same direction. Thus we find that the curve in Fig. 19 is not
very sensitive to the parameter variations that we tested.8

We have used Pythia [33] for our comparisons. What would happen if we used Herwig

7 The method of Ref. [4] uses only events with two b-tags.
8 We did find that s2/b could be increased by making the Sudakov exponent for gluon splitting a bit larger,

but we have not explored this further.
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FIG. 19: Plot of s2/b versus s for events with at least two b-tags among the three highest pT
microjets that have pT > 15 GeV in addition. We use samples of signal and background events
generated by Pythia as in Fig. 18. We also show the curve from Fig. 17 for all events with no
restriction on b-tags (dashed curve) and the point that we obtained using the method of Ref. [4].

[34] instead? We show in Fig. 20 the cross sections d�
MC

(B)/d log� and d�
MC

(S)/d log� for
two b-tag samples of signal and background events generated by Pythia and by Herwig.
We have normalized the cross sections within our cuts to be the same for both Pythia and
Herwig, so that we are looking at di↵erences in shape rather than normalization. We see
that the behaviors obtained with the two event generators are quite similar but that with
Herwig a somewhat larger fraction of the background events have large �. That there are
di↵erences is not a surprise since both event generators work at leading order in perturbation
theory for their splitting kernels and make approximations with respect to color and spin of
partons. One lesson from this is that in experimental applications of shower deconstruction
or of other jet substructure measures one will want to test the Monte Carlo cross sections
against experiment.

In Fig. 21 we compare results from the two b-tag sample using Pythia and Herwig for
s2/b as a function of s. We also show results using Pythia and Herwig for s2/b using the
BDRS method. For Pythia, these are the results that were exhibited in Fig. 19. We see
that there is about a 30% di↵erence between Pythia and Herwig results. Again, this level
of di↵erence using leading order event generators is not a surprise.

XII. CONCLUSIONS

We have proposed a method, shower deconstruction, for separating signal and background
events when we have a definite theory in mind for the signal as well as for the standard model
background with the signal process omitted. We have explained the method using a simple
signal process, p+p ! H+Z+X ! H+ `++ `�+X. Here the event selection is chosen so
that the Higgs boson that we hope to find is boosted to a substantial transverse momentum.
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Monte-Carlo uncertainties

FIG. 20: d�
MC

(B)/d log� for background events and d�
MC

(S)/d log� for signal events for samples
of signal and background events generated by Pythia and by Herwig. We use the cuts described
in Sec. II A and, in addition, require that at least two of the three highest pT microjets with
pT > 15 GeV have positive b-tags. The solid (blue) lines are for Pythia while the dashed (red)
lines are for Herwig. At small �, the background curves are on the top and the signal curves are
on the bottom.

FIG. 21: Plot of s2/b versus s for events with two positive b-tags. We compare the distribution
of s2/b for events generated with Pythia as in Fig. 19, to the same distribution using events
generated with Herwig. We normalize the total signal and background cross sections with these
cuts to be �

MC

(S) = 0.39 fb, �
MC

(B) = 11 fb. We also show points that we obtained using the
method of Ref. [4]. Using Pythia we found �

BDRS

(S) = 0.22 fb and �
BDRS

(B) = 0.44 fb, as in
Fig. 19, while using Herwig we found �

BDRS

(S) = 0.20 fb and �
BDRS

(B) = 0.49 fb.
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of s2/b for events generated with Pythia as in Fig. 19, to the same distribution using events
generated with Herwig. We normalize the total signal and background cross sections with these
cuts to be �

MC

(S) = 0.39 fb, �
MC

(B) = 11 fb. We also show points that we obtained using the
method of Ref. [4]. Using Pythia we found �
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(S) = 0.22 fb and �
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(B) = 0.44 fb, as in
Fig. 19, while using Herwig we found �
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Lots of room for improvement:

Matrix
element

FSR
simulation

ISR
simulation

UE
simulation

Simulation of 
experimental 
issues, e.g. b-

tagging

Modular build -> improvements are additive
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‣ LHC is QCD and BSM machine -> new heavy particles? many jets! 

‣ Boosted scenarios can be superior way to look for new physics

‣ Many different substructure approaches, very active field

‣ Shower deconstruction is maximum information approach

‣ Combines first principle QCD with BSM search

‣ Modular set-up -> parts can be improved independently

Conclusions
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