Some studies with W + n (=1-4) jets with Blackhat+Sherpa (and ATLAS data) J. Huston Michigan State University

Editorial Comment

- Once we have the NLO calculations needed for the LHC, how do we (experimentalists) use them?
- If a theoretical calculation is done, but it can not be used by any experimentalists, does it make a sound?
- We need public programs and/or public ntuples
- Oftentimes, the program is too complex to be run by nonauthors
- In that case, ROOT ntuples may be the best solution

Example

How it's put together

all of the virtual terms, both leading color and full-minusleading color; the latter is typically a few % effect, but much of the complexity of the calculation

How it's put together

possible Catani-Seymour dipoles, for FF, FI, IF and II situations

 $D_{ij,k}$:

the dipole subtraction terms evaluated in n-body phase space; to make matters more complex, vsub can be either + or -, compensated by other terms in the total cross section; note the sum over all quarks and antiquarks

all of the real emission terms, (W+4 partons for W + 3 jets),modified by the dipole subtraction terms; divergences are gone

many counterevents due to C-S dipoles that are correlated; have to use special weights/procedures to get correct statistical error

note the need for a 3rd parton, the 'spectator'; in the soft limit, it's the color partner

ROOT ntuples

- More complex to use than MCFM
 - no manual for example
 - and you don't produce the events yourself
- ntuples produced separately by Blackhat + Sherpa for _____
- No jet clustering has been performed; that's up to the user
 - a difference from MCFM, where the program has to be re-run for each jet size/algorithm
- What algorithms/jet sizes that can be run depends on how the files were generated
 - i.e. whether the right counterevents are present
- For the files on the right at 7 TeV (for W⁺ + 3 jets), one can use kT, antikT, siscone (f=0.75) for jet sizes of 0.4, 0.5, 0.6 and 0.7

- bornLO (stands alone for pure LO comparisons; not to be added with other contributions below)
 - 20 files, 5M events/file, 780 MB/ file
- Born
 - 18 files, 5M events/file, 750 MB/ file
- loop-lc (leading color loop corrections)
 - 398 files, 100K events/file, 19 MB/file
- loop-fmlc (needed for full color loop corrections)
 - 399 files, 15K events/file, 3 MB/ file
- real (real emission terms)
 - 169 files, 2.5 M event/file, 5 GB/ file
- vsub (subtraction terms)
 - 18 files, 10M events/file, 2.8 GB/ file

Jet Clustering

- For jet clustering, we use SpartyJet, and store the jet results in SJ ntuples
 - and they tend to be big since we store the results for multiple jet algorithms/ sizes
- Then we friend the Blackhat +Sherpa ntuples with the SpartyJet ntuples producing analysis ntuples (histograms with cuts) for each of the event categories
- Add all event category histograms together to get the plots of relevant physical observables

http://projects.hepforge.org/spartyjet/

Branches in ntuple

branch name	type	Notes
id	Ι	id of the event. Real events and their associated counterterms
		share the same id. This allows for the correct treatment of statis-
		tical errors.
nparticle	Ι	number of particles in the final state
px	F[nparticle]	array of the x components of the final state particles
ру	F[nparticle]	array of the y components of the final state particles
\mathbf{pz}	F[nparticle]	array of the z components of the final state particles
\mathbf{E}	F[nparticle]	array of the energy components of the final state particles
alphas	D	$alpha_s$ value used for this event
kf	Ι	PDG codes of the final state particles
weight	D	weight of the event
weight2	D	weight of the event to be used to treat the statistical errors cor-
		rectly in the real part
me_wgt	D	matrix element weight, the same as weight but without pdf factors
me_wgt2	D	matrix element weight, the same as weight2 but without pdf fac-
		tors
x1	D	fraction of the hadron momentum carried by the first incoming
		parton
x2	D	fraction of the hadron momentum carried by the second incoming
		parton
x1p	D	second momentum fraction used in the integrated real part
x2p	D	second momentum fraction used in the integrated real part
id1	Ι	PDG code of the firt incoming parton
id2	Ι	PDG code of the second incoming parton
fac_scale	D	factorization scale used
ren_scale	D	renormalization scale used
nuwgt	Ι	number of additional weights
usr_wgts	D[nuwgt]	additional weights needed to change the scale

Reweighting

can reweight each event to new

-factorization scale -renormalization scale -α_s (tied to the relevant PDFs)

2.1 Born and real contributions

The new weight is given by

$$w = \operatorname{me_wgt2} \cdot f(\operatorname{id1}, \mathbf{x1}, \mu_F) F(\operatorname{id2}, \mathbf{x2}, \mu_F) \frac{\alpha_s(\mu_R)^n}{(\operatorname{alphas})^n}$$
(1)

with μ_F the new factorization scale, μ_R the new factorization scale, f the new PDF, α_s the corresponding running coupling and n the number of strong coupling (the number of jets n_j for the born contribution and $n_j + 1$ for the real contribution). If the factorization scale is not changed, one can simplify the computation (and save the pdf function call):

$$w = \text{weight}2\frac{\alpha_s(\mu_R)^n}{(\text{alphas})^n} \tag{2}$$

2.2 Virtual contribution

The virtal contribution is treated like the real and born contribution, but the matrix element has a dependence on the renormalization scale parametrized using the additional weights usr_wgts.

$$w = m \cdot f(\mathrm{id}\mathbf{1}, \mathbf{x}\mathbf{1}, \mu_F) F(\mathrm{id}\mathbf{2}, \mathbf{x}\mathbf{2}, \mu_F) \frac{\alpha_s(\mu_R)^n}{(\mathrm{alphas})^n}$$
(3)

$$m = \text{me_wgt2} + lusr_wgts[0] + \frac{l^2}{2}usr_wgts[1]$$
(4)

$$l = \log\left(\frac{\mu_R^2}{\text{ren_scale}^2}\right) \tag{5}$$

based on weights stored in ntuple (and linking with LHAPDF)

so, for example, the events were generated with CTEQ6, and were re-weighted to CTEQ6.6

Reweighting, cont.

Integrated subtraction 2.3

.

The computation of the new weight for the integrated subtraction is the most complicated. The ROOT file has 16 additional weights to make this possible.

$$w = m \frac{\alpha_s(\mu_R)^n}{(alphas)^n}$$
(6)

$$m = me_wgt2 \cdot f(id1, x1, \mu_F) f(id2, x2, \mu_F)$$
(7)

$$+ (f_a^1 \omega_1 + f_a^2 \omega_2 + f_a^3 \omega_3 + f_a^4 \omega_4) F_b(x_b)$$
(8)

$$+ (F_b^1 \omega_5 + F_b^2 \omega_6 + F_b^3 \omega_7 + F_b^4 \omega_8) f_a(x_a)$$
(9)

$$\omega_i = usr_wgts[i-1] + usr_wgts[i+\mathcal{A}] \log\left(\frac{\mu_R^2}{ren.scale^2}\right)$$
(10)
where

$$g \longrightarrow documentation was wrong; ntuples allow for built-in cross-checks$$
(11)

$$f_a^1 = \begin{cases} a = quark : f_a(x_a, \mu_F) \\ a = gluon : \sum_{quarks} f_q(x_a, \mu_F) \leftarrow (11) \\ a = gluon : \sum_{quarks} \frac{f_a(x_a/x'_a, \mu_F)}{x'_a} \leftarrow (12) \\ a = gluon : \sum_{quarks} \frac{f_a(x_a/x'_a, \mu_F)}{x'_a} \leftarrow (13) \\ f_a^4 = \frac{f_g(x_a/x'_a, \mu_F)}{x'_a}$$
(14)

and $n = n_i + 1$.

PDF Errors

Better than what is done in MCFM (as far as disk space is concerned); PDF errors are generated on-the-fly through calls to LHAPDF. But then don't store information for individual eigenvectors.

```
void BlackhatAnalysis::GetPdfErrors(const std::vector<Double_t> x,
                                         const Double_t f_c,
                                         const std::vector<int> flav,
                                         Double_t Q,
                                         bool shiftUp,
                                         Double_t &delta)
                                                                          \Delta X_{\max}^{+} = \sqrt{\sum_{i=1}^{N} [\max(X_{i}^{+} - X_{0}, X_{i}^{-} - X_{0}, 0)]^{2}},
{
    Double_t f_p,f_m;
    // Loop over all eigenvectors
    for(int e=1;e<=m_nEigen;e++)</pre>
    ł
                                                                          \Delta X_{\max}^{-} = \sqrt{\sum_{i=1}^{N} [\max(X_0 - X_i^+, X_0 - X_i^-, 0)]^2}.
         LHAPDF::initPDF(2, 2*e-1); // init positive shift pdf
         LHAPDF::initPDF(3, 2*e); // init negative shift pdf
         //std::cout << "Eigenvector " << e << std::endl;</pre>
         f_p = LHAPDF::xfx(2,x[0],Q,flav[0])/x[0]*LHAPDF::xfx(2,x[1],Q,flav[1])/x[1];
         f_m = LHAPDF::xfx(3,x[0],Q,flav[0])/x[0]*LHAPDF::xfx(3,x[1],Q,flav[1])/x[1];
         if(shiftUp) // if positive pdf shift
             delta += pow(std::max(std::max(f_p-f_c,f_m-f_c),0.0),2);
         else // if negative pdf shift
             delta += pow(std::max(std::max(f_c-f_p,f_c-f_m),0.0),2);
    delta = sqrt(delta);
    if(!shiftUp) delta *= -1.0;
    //std::cout << "Total delta: " << delta << std::endl;</pre>
}
```

Logistics

- So total file disk space is quite large, multi-TB (and there are many events to be processed)
 - I bought a 20TB disk specifically for this purpose
- But they're divided into few GB files (Blackhat +SJ)
- So we can make our analysis parallel using 350 nodes at MSU
- Possible to run through W + 4 jet NLO analysis in ~few hours (much faster without the scale variations)

...so for example

- W⁺ + 3 jets at 7 TeV for standard cuts (plus for electron cuts)
 - ♦ |y_µ|<2.4</p>
 - ♦ p_T^µ>20 GeV/c
 - ▶ p_T^v > 25 GeV/c
 - ◆ P_T^{jet}>20 GeV/c
 - ♦ |y_{jet}|<2.8</p>
 - m_T(μ,ν)>40 GeV
- New cuts or histograms means re-running through the ntuples

For antikT4

- born: 22.69 pb
- ♦ loop-lc: -0.69 pb
- loop-fmlc: 0.39 pb
- vsub: 27.16 pb
- real: -17.34 pb
- Total: 32.21 pb

Running

- From Blackhat+Sherpa, we have NLO ntuples (in same format) for W + 1,2, 3, 4 and 5 (LO only) jets
- Makes it easy to make plots for different jet multiplicities and/or combined jet multiplicities, by just running Python scripts over processed ntuples

Look at jet size, algorithm dependences; scale uncertainty

CrossSection (pb)

antikt7: NLO (top) and LO (bottom)

NLO: antitkt7 (top) and siscone7 (bottom)

LHC: W/Z+jets

Note the use of Blackhat+Sherpa for predictions for 3 and 4 jet final states. First use of B+S by experimentalists.

More (better) predictions available in W+jets paper

ATLAS: W+jets

Good agreement observed between the predictions and the data over full kinematic range. Again, NLO BH+S comparisons to W+4 jets soon to be public.

Note that UE/hadronization corrections not trivial, i.e. they don't fall as $1/p_T$, due to to steepness of n jet cross section and multiplicative factor of n jets.

Exclusive sums

Infrom Giulia's talk at LP11

200

400

- What about using NLO information from each jet multiplicity using an exclusive sum (cut on pTjet>30 GeV/c)
- No double-counting; but Sudakov FF's only from NLO ME

600 Н_т [GeV] NB: high H_T region of interest for various New Physics searches

...not just for high H_T

for high p_T of lead jet (in data), there will be a large jet multiplicity for the event

G. Zanderighi – Oxford University

There's a lot of physics that can be investigated using the abundant NLO calculations now available.

