

Soft QCD Results from CMS

Xavier Janssen (On Behalf of the CMS Collaboration)

QCD@LHC 2011

St-Andrews ,Scotland ,UK / 22-26 August 2011

The CMS Detector

Introduction

The majority of the pp collisions are soft
 → no hard parton scattering → no "perturbative" predictions
 → need to model them phenomenologically

 \rightarrow Use Monte-Carlo (MC) description to correct data:

- PS, UE and hadronization models tuned on previous (low energy) data
- Different models available diverging at high energy prior to LHC
- → Early LHC data give us a unique chance to fill gaps in our knowledge on soft QCD
- → Reference for high energy pp collisions and heavy ions run

Inelastic Cross-section at \sqrt{s} = 7 TeV

CMS PAS FWD-11-001

Generated Vertex Track Multiplicity [p 200 MeV, Inl<2.4]

3) Assume pile-up (vs) luminosity follow Poisson law to extract σ visible

 $P(n) = \frac{(L \cdot \sigma)^n}{n!} e^{-L \cdot \sigma}$

n: number of inelastic proton-proton (*pp*) interactions in a given bunch crossing *L* is the bunch crossing luminosity

4) Extrapolate to total σ_{inel} with several MC → Systematic error of the extrapolation from differences among MC

Visible Inelastic Cross-section

At least N(=2,3,4) charged particles with pT>200 MeV in $|\eta|$ <2.4

o(mb) CMS Preliminary, $\sqrt{s} = 7$ TeV, L = 36 pb⁻¹ 75 σ [mb] CMS preliminary 120 Δ Ж Х 70 100 65 80 CMS Preliminary PYTHIAS 60 60 PYTHIAS PHOJET QGSJET-II-03 QGSJET-II-04 UA5 CMS SIBYLL-2.1 55 UA1 EPOS UA4 QGS-01 CDF proton-antiproton inelastic data total proton-antiproton E710 ATLAS 50 L 10^{2} 104 10[°] 10 Vs (GeV) Minimum Number of Charged Particles [p. > 200 MeV, [η] < 2.4]

- PHOJET and SIBYLL largely overestimates data
 PYTHIA 6&8, EPOS and QGSJET-II-03 too high
 QGSJET-II-04 and QGS-01 in agreement
- CMS & ATLAS in good agreement

Total Inelastic Cross-section

Extrapolation based on models to

full phase space \rightarrow extra 6% uncertainty

 σ_{inel} follow log increase of lower energy results

 $\sigma_{inel}(pp) = 68 \pm 2.0 \text{ (Syst)} \pm 2.4 \text{ (Lum)} \pm 4(\text{Ext.}) \text{ mb}$

Particle Spectra

Kaidalov, Poghosyan (QGSM)

Gotsman, Levin, Maor (GLMM) Tokarev, Zborovsky (z-scaling)

2

з

5

6

 $\left. dN_{ch} \! / d\eta \right|_{\! \eta=0}$

In² s extrapolation

W. Busza CMS

n

Levin, Rezaian (Gluon Saturation) Sarkisyan, Sakharov (Energy dissipation)

Single Charged Particle Spectra: dN/dη

JHEP 02 (2010) 041 PRL 105 (2010) 022002

However densities are higher than most models and pre-LHC MC at high energy.

→ MC tuning effort on LHC data ongoing (see http://lpcc.web.cern.ch/LPCC/)

Single Charged Particle Spectra: dN/dp_T

CMS Paper QCD-10-008

PRL 105 (2010) 022002

9/37

 $E \frac{d^3 \sigma}{dp^3} = F(x_T) / p_T^{n(x_T,\sqrt{s})} = F'(x_T) / \sqrt{s}^{n(x_T,\sqrt{s})}$

Results at 7 TeV most compatible with PYTHIA 8 while PYTHIA 6 is worse

- Empirical $x_T = 2 p_T / \sqrt{s}$ unifies the differential cross sections from a wide range of collision energies onto a common curve at high x_T
 - → Interpolated (x_T and p_T scaling) data provides a reference for PbPb studies of nuclear modification factors at LHC for $\sqrt{s_{NN}}$ =2.76 TeV

JHEP 01 (2011) 079

Charged Particle Multiplicities

- Large multiplicity tail observed at 7 TeV (cf. $dN/d\eta$)
- <p_T> vs n scale with energy

CMS

- No Monte Carlo is able to describe all multiplicities at all energies (but PYTHIA 8 better)
- Most MC/tunes can not describe simultaneously the multiplicity and the p_T dependence (again PYTHIA 8 better)
 X. Janssen 08/22/2011

QCD@LHC 2011 – Soft QCD Results from CMS

 $\Lambda\pi^{-}$ invariant mass [MeV/c²]

Strange Particle Production: K_{s}^{0} , Λ , Ξ

QCD@LHC 2011 – Soft QCD Results from CMS

$dN/d\eta$ with with at least one central charged particle

Request from MBUEWG:

CMS

* Avoid NSD definition based on MC process flags → "Unbiased" input for MC tuning / model comparison

* Allow direct comparison between LHC experiments

- PYTHIA 6 pre-LHC tunes (Perugia0, D6T) predict too low dN/dη compared to data.
- PYTHIA 6 Z2 tune (based on CMS UE results) and PYTHIA 8 Tune1 are close to the data.
- Results at 0.9 TeV also available

0.94

-0.8

ALICE/ATLAS

-0.6 -0.4

-0.2

0

0.2

0.4 0.6

0.8

CMS PAS QCD-10-024

Good agreement among

LHC experiments

Underlying Event

The Underlying Event

EPJ C70 (2010) 555

CMS Paper QCD-10-010

The "underlying event" is everything except the outgoing hard scattered partons

UE = beam-beam remnants + initial and final-state radiation + multiple interactions

 \rightarrow UE is what we need to correct for before comparison with hard scattering predictions \rightarrow Need to "tune" soft interactions MC model(s) to UE: previous and LHC data

UE Observables Activity in transverse region: d²N_{ch}/dηdφ d²Σp_r/dηdφ for leading track/jet topologies

Charged Particles (P_T>0.5 GeV/c) Pseudorapidity Density:

MinBias Trigger selection:

- One hit in each BSC + beam halo veto
- Beam pickups (BPTX): Bunch crossing

Event selection:

- Only one vertex
- Vertex within ±15cm of beam spot in z
- At least 3 tracks pointing to the vertex

Track selection:

- $|\eta| < 2 \frac{\&\&}{P_T} > 0.5 \text{ GeV/c}$
- Primary tracks (vertex associated): d0(vtx)/\sigma d0<5 && dz(vtx)/\sigma dz<5
- Background rejection: pT/opT<5
 + extra track quality selection

Jets selection:

- SISCone (R=0.5) + Tracks Jets
- Only jets with $p_T > 1 \text{ GeV/c}$

UE transverse region: charge and Σp_T density

CMS.

Measurement of $dN_{ch} / d\eta d(\Delta \phi)$ and $d^2 \Sigma p_T / d\eta d(\Delta \phi)$ in transverse region as a function of leading track-jet PT \rightarrow Measure activity outside jet(s) \rightarrow Underlying Event

Fast rise for P_T < 8 GeV/c (4 GeV/c), attributed mainly to the increase of MPI activity, followed by a **Plateau-like region** with \approx constant average number of selected particles and a slow increase of ΣP_T , in a saturation regime.

- Old D6T PYTHIA 6 tune reach plateau regime later than data (and is lower)
- New Z2 PYTHIA 6 tune "fitted" on CMS data describes the data
- New 4C PYTHIA 8 tune undershoot data at large P_T (and reach plateau late as well)
- Increase of activity by a factor ~2 in data with \sqrt{s} is more or less reproduced by PYTHIA 6 and PYTHIA 8 X. Janssen - 08/22/2011

QCD@LHC 2011 – Soft QCD Results from CMS

Leading Track Jet

direction

Toward

Away

UE transverse region: charged particles multiplicity

Measurement of charged particles multiplicity, ΣP_T and P_T dependences in transverse region → Measure activity outside jet(s) → Underlying Event

Fast rise for $P_T < 8$ GeV/c (4 GeV/c), attributed mainly to the **increase of MPI activity**, followed by a **Plateau-like region** with \approx constant average number of selected particles and a slow increase of ΣP_T , in a **saturation regime**.

- → Old D6T PYTHIA 6 tune reach plateau regime later than data (and is lower)
- → New Z2 PYTHIA 6 tune "fitted" on CMS data describes the data
- \rightarrow New 4C PYTHIA 8 tune undershoot data at large P_T (and reach plateau late as well)
- → Increase of activity by a factor ~2 in data with \sqrt{s} is more or less reproduced by PYTHIA 6 and PYTHIA 8 X. Janssen - 08/22/2011

QCD@LHC 2011 – Soft QCD Results from CMS

Leading Track Jet direction

Toward

Away

ransvers

Λφ

New UE Approach: Jet Area/Median CMS PAS QCD-10-005

Ratio of jet transverse momentum and area covered by this jet in $\eta - \phi$ plane

Jet area estimated from clustering together with overlaid grid of extremely soft ghost particle:

$$A_j = \frac{N_j^{\text{ghosts}}}{\rho^{\text{ghosts}}} = \frac{N_j^{\text{ghosts}}}{N_{\text{tot}}^{\text{ghosts}}} A_{\text{tot}}$$

Where N_J^{ghosts} : # ghosts clustered in jet ρ^{ghosts} : ghosts density

 \rightarrow Estimate background activity as:

$$\rho = \underset{j \in \text{jets}}{\text{median}} \left[\left\{ \frac{p_{\text{T}j}}{A_j} \right\} \right]$$

For low occupancy (900 GeV data), η – ϕ plane is dominated by ghosts

 \rightarrow Correct ρ by event occupancy C:

$$\rho' = \operatorname{median}_{j \in \text{physical jets}} \left[\left\{ \frac{p_{\mathrm{T}j}}{A_j} \right\} \right] \cdot C$$

Where C = ratio jet covered area / total area:

$$C = \frac{\sum_{\substack{j \in \text{physical jets}}} A_j}{A_{\text{tot}}}$$

JHEP04(2010)065; M. Cacciari, G. Salam, S. Sapeta.

QCD@LHC 2011 – Soft QCD Results from CMS

Data: 900 Gev + similar selection as standard UE event and track selection

19/37

Track selection as for UE

with leading jet

Study of the UE in the transverse region to DY events in the $\mu\mu$ channel

PYTHIA 8 4C tune globally too low PYTHIA 6 DW tune does not reproduce the shape

Study of the UE in the transverse region to DY events in the $\mu\mu$ channel

Correlations

See C. Buttlar talk (Tuesday)

23/37

QCD@LHC 2011 – Soft QCD Results from CMS

MinBias Results: Independent Cluster Model

- Short range correlations in Δη can be characterized by 2 parameters:
 - cluster size $K \rightarrow #$ correlated particles
 - cluster width $\delta \ \rightarrow \ \Delta \eta \ correlation \ size$

X. Janssen - 08/22/2011 QCD@LHC 2011 – Soft QCD Results from CMS

24/37

High Multiplicity Results at $\sqrt{s} = 7$ TeV

Intermediate $pT : 1 < p_T < 3$ GeV/c

MinBias

High Multiplicity: N>110

(b) MinBias, 1.0GeV/c<p₊<3.0GeV/c

(d) N>110, 1.0GeV/c<p_<3.0GeV/c

→ Observation of a Long-Range, Near-Side angular correlations at high multiplicity in pp events at intermediate p_T (Ridge at $\Delta \phi \sim 0$)

High Multiplicity Results at $\sqrt{s} = 7$ TeV

Intermediate $pT : 1 < p_T < 3$ GeV/c

High Multiplicity: N>110

(d) N>110, 1.0GeV/c<p_<3.0GeV/c

High Multiplicity: N>110

(d) N>110, 1.0GeV/c<p_<3.0GeV/c

→ Observation of a Long-Range, Near-Side angular correlations at high multiplicity in pp events at intermediate p_T (Ridge at $\Delta \phi \sim 0$)

... not reproduced in PYTHIA 8 (and PYTHIA 6, HERWIG++, madgraph)

Multiplicity and p_T dependences

p_T range

Study dependence on p_T and multiplicity for 2 < $|\Delta \eta|$ < 4.8 for R($\Delta \phi$) :

$$R(\Delta \phi) = \left((N-1) \left(\frac{\int_{2}^{4.8} S_N(\Delta \eta, \Delta \phi) d\Delta \eta}{\int_{2}^{4.8} B_N(\Delta \eta, \Delta \phi) d\Delta \eta} - 1 \right) \right|_N$$

"Ridge" maximal for high multiplicity and intermediate p_T : 1 < p_T < 3 eV/c

"Ridge" not reproduced by PYTHIA 8

Bose-Einstein Correlations

PRL 105 (2010) 032001

CMS Paper QCD-10-023

When wave-function of identical bosons overlaps, Bose-Einstein statistic changes their dynamics

- → Production probability enhancement for identical light boson with similar momenta.
- → BEC measurements give information about size, shape and space-time development of emitting source
- → First observation in pion-production from pp annihilations — Phys. Rev. 120 (1960) 300
 → Many experimental resutls: e⁺e⁻ @ PETRA, SLAC, LEP / pp @ SPS / ep @ HERA / fix target: NaXX, NOMAD, ...

Observable:

$$R = \frac{P(p_1, p_2)}{P(p_1)P(p_2)}$$

 $\mathbf{D}(\mathbf{n} \mathbf{n})$

 $P(p_{1}, p_{2})$

Joint probability of emission of
a pair of bosons

 $P(p_1), P(p_2)$: Individual probability of emission

→ Need to define a reference sample of non interfering boson pairs !

$$\rightarrow R(Q) = \frac{dN/dQ}{dN/dQ_{ref}}$$

Assuming particle are mostly pions, *Q* is:

$$Q = \sqrt{-(p_1 - p_2)^2} = \sqrt{M_{inv}^2 - 4m_{\pi}^2}$$

<u>Parametrization</u>: $R(Q) = C[1 + \lambda \Omega(Qr)](1 + \delta Q)$

 Ω (Qr) : Fourier transform of emission region of effective size r

 λ : BEC strength δ : Long distance correlations

Bose-Einstein Correlations

→ Fit with Ω (Qr) = exp(-Qr):

√s	0.9 TeV	7 TeV
r (fm)	$1.56 \pm 0.02 \pm 0.15$	$1.89 \pm 0.02 \pm 0.21$
λ	$0.616 \pm 0.011 \pm 0.029$	$0.618 \pm 0.009 \pm 0.042$

→ BEC effective emission region grows with \sqrt{s} while strength is similar

→ BEC effective emission region grows with N as observed by previous experiments
 → This accounts for the grow with √s (cf. dN/dη)

Forward Physics

See B. Roland talk (Tuesday)

Forward Energy Flow

- High energy collisions large parton densities important:
 - \rightarrow MPI, low x physics and possible saturation effects.
- Long range in rapidity between forward and central activity
 - \rightarrow Opens up for higher order reactions
- Energy flow in the forward region
 - \rightarrow Information about color (re)connections to the proton remnant
 - \rightarrow High sensitivity to QCD and MC generators (PYTHIA)
- Forward particle production important in air shower models
 - \rightarrow Majority of the energy carried by the forward particles
 - $\rightarrow\,$ Test of cosmic ray MC: QGSJET, SIBYLL and EPOS

2

Forward Energy Flow: MinBias

- Strong dependence of forward energy flow with \sqrt{s} reproduced by all MC
- Strong contributions from MPI (PYTHIA6-no MI fails)
- PYTHIA 6 (Z2,CW,D6T,P0,..) and PYTHIA 8 with MPI fails at high η (color reconnection)
- HERWIG++ describes the data (but different tunes for both \sqrt{s})
- Cosmic ray generators provide a very good description of data (some still failing at high η)

Forward Energy Flow: Dijets

- Significantly higher forward energy flow in dijets events than in MinBias
- Good description by PYTHIA6 & PYTHIA8
- MPI required (PYTHIA6-no MI & CASCADE failing)
- HERWIG++ describes the data (but different tunes for both \sqrt{s})
- Cosmic ray generators again providing a good description of data
 - \rightarrow High sensitivity to MC and tunes \rightarrow Data to be used for the MC tuning effort

CMS Monte-Carlo Tuning

See R. Field talk (Thursday)

CMS UE PYTHIA Tune Z1

- All my previous tunes (A, DW, DWT, D6, D6T, CW, X1, and X2) were PYTHIA 6.4 tunes using the old Q²-ordered parton showers and the old MPI model (really 6.2 tunes)!
- I believe that it is time to move to PYTHIA 6.4 (p_T-ordered parton showers and new MPI model)!
- Tune Z1: I started with the parameters of ATLAS Tune AMBT1, but I changed LO* to CTEQ5L and I varied PARP(82) and PARP(90) to get a very good fit of the CMS UE data at 900 GeV and 7 TeV.

Parameter	Tune Z1 (R. Field CMS)	Tune AMBT1 (ATLAS)
Parton Distribution Function	CTEQ5L	LO*
PARP(82) - MPI Cut-off	1.932	2.292
PARP(89) – Reference energy, E0	1800.0	1800.0
PARP(90) – MPI Energy Extrapolation	0.275	0.25
PARP(77) – CR Suppression	1.016	1.016
PARP(78) – CR Strength	0.538	0.538
PARP(80) – Probability colored parton from BBR	0.1	0.1
PARP(83) – Matter fraction in core	0.356	0.356
PARP(84) – Core of matter overlap	0.651	0.651
PARP(62) - ISR Cut-off	1.025	1.025
PARP(93) – primordial kT-max	10.0	10.0
MSTP(81) - MPI, ISR, FSR, BBR model	21	21
MSTP(82) – Double gaussion matter distribution	4	4
MSTP(91) – Gaussian primordial kT	1	1
MSTP(95) – strategy for color reconnection	6	6

→ CMS use Z2 tune (Same as Z1 +CTEQ6L) for new round of MC production

Status of CMS Soft QCD/FWD analysis in Rivet

Strange Partcicles at 0.9 and 7 TeV OCD-10-007, CMS 2011 S8978280

Multiplicities at 0.9, 2.36, and 7 TeV OCD-10-004, CMS 2011 S8884919 < 2.4, $\sqrt{s} = 7$ TeV 10 рп 10° MC (D6T) 10^{-3} 10^{-4} 10^{-5} 10^{-6} MC/data 1.4 1.2 1 0.8 0.6 0 20 40 100 180 120 n

TODO:

- UE leading jet (being validated)
- Other UE: DY, jet area.
- dN/dp_T : "extended p_T range"
- $dN/d\eta$ with central particles
- Bose-Einstein correlations
- Forward: energy flow, fwd jets, jet kT factors, ...

CONCLUSIONS

Inelastic cross-section:

New method exploiting the pile-up at LHC !

 $\sigma_{inel}(pp) = 68 \pm 2.0 \text{ (Syst)} \pm 2.4 \text{ (Lum)} \pm 4(\text{Ext.}) \text{ mb}$

Particle spectra and correlations:

- Understanding of soft QCD contributions is crucial for new physics searches and precision measurements of Standard Model processes
- Pre-LHC Monte Carlo tunes do not describe the data well in all aspects → Monte Carlo tuning effort ongoing
- Strangeness production has been investigated showing similar discrepancy
- Bose-Einstein correlations have been studied in detail
- Long-range correlations has been observed in proton data

Forward physics:

- Need of MPI to describe the forward energy flow and jets
- Forward energy flow provides further constraints for Monte Carlo tuning and a validation of cosmic ray generators

