Neutral-current DIS at NNLO in the S-ACOT- χ scheme

Pavel Nadolsky

Southern Methodist University Dallas, TX, U.S.A.

in collaboration with M. Guzzi, H.-L. Lai, and C.-P. Yuan

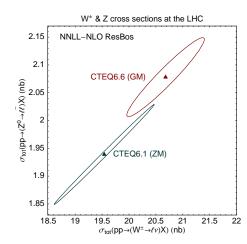
August 23, 2011

Full paper: http://bit.ly/SACOTNNLO11, to be submitted this week

DIS at NNLO in the S-ACOT- χ scheme

General-mass (and not zero-mass of fixed-flavor number) treatment of c, b mass terms in DIS is essential for predicting precision W, Z cross sections at the LHC (Tung et al., hep-ph/0611254)

- Quark mass effects in DIS are comparable to NNLO terms
- NNLO implementation in the S-ACOT- χ scheme is ready to be released
- What is new compared to other mass schemes (FFN, FONLL, TR'...)?

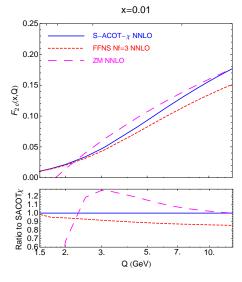


Simplified Aivazis-Collins-Olness-Tung scheme

ACOT, PRD 50 3102 (1994); Collins, PRD 58 (1998) 094002; Kramer, Olness, Soper, PRD (2000) 096007

- Is proved to all orders by the QCD factorization theorem for DIS with massive quarks (Collins, 1998)
- Is relatively simple
 - lackbox One value of N_f (and one PDF set) in each Q range
 - ▶ Sets $m_Q = 0$ in ME with incoming c or b
 - matching to FFN by kinematical rescaling; implemented as a part of the QCD factorization theorem
- Reduces to the ZM \overline{MS} scheme at $Q^2 \gg m_Q^2$, without additional renormalization
- \blacksquare Reduces to the FFN scheme at $Q^2 \approx m_Q^2$
 - has reduced dependence on tunable parameters at NNLO

S-ACOT- χ scheme: merging FFN and ZM



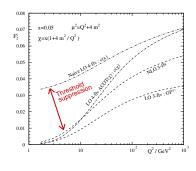
ACOT reduces to FFNS at $Q \approx m_c$ and to ZM at $Q \gg m_c$

Les Houches toy PDFs, evolved at NNLO with threshold matching terms

Cancellations between subtractions and other terms at $Q \approx m_c$ and $Q \gg m_c$; details in backup slides

Energy conservation in the factorization theorem

- Phase space suppression due to energy conversation is numerically important at $Q \approx m_c$
- Collinear approximation for heavy quarks may not obey energy conservation without an additional condition
- In the new treatment, the requirement of energy conservation is included as a part of the factorization theorem (cf. the paper)
 - correct kinematics of HQ production is reproduced without constraints on derivatives, damping factors...



Energy conservation and factorization (cont.)

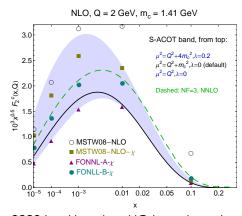
- The Z projection operator of the QCD factorization theorem is modified to obey EC in all channels
 - Other details of the proof are unchanged
- \blacksquare This naturally leads to χ rescaling in Wilson coefficients with an incoming heavy quark h:

$$\begin{split} & \text{in } F(x,Q) = \sum_{a=g,u,d,\dots,h} \int \frac{d\xi}{\xi} C_a \left(\frac{x}{\xi},\frac{Q}{\mu},\frac{m_h}{Q}\right) f_{a/p}(\xi,\mu), \\ & C_h \left(\frac{x}{\xi},\frac{Q}{\mu},\frac{m_h}{Q}\right) \approx C_h \left(\frac{\chi}{\xi},\frac{Q}{\mu},m_h=0\right) \, \theta(\chi \leq \xi \leq 1), \\ & \text{where } \chi \equiv x \, \left(1 + \frac{4m_h^2}{Q^2}\right). \end{split}$$

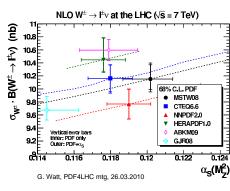
The target (PDF) subgraphs are given by **universal** operator matrix elements

Input parameters of the S-ACOT- χ scheme

At NLO, the charm mass m_c and factorization scale μ of CTEQ PDFs are **tuned** to best describe the DIS data



2009 Les Houches \hat{HQ} benchmarks with toy PDFs; default $\mu=Q$



W, Z cross sections; $m_c = 1.3 \; {\rm GeV} \; {\rm in} \; {\rm CTEQ6.6}$

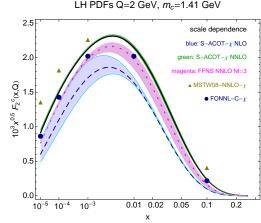
NNLO results for $F_2^{(c)}(x,Q^2)$ - Preliminary

At NNLO and $Q \approx m_c$:

S-ACOT-
$$\chi(N_f=4)\approx {\sf FFN}\,(N_f=3)$$
 without tuning

- S-ACOT is numerically close to other NNLO schemes
- NNLO expressions are close to the FONLL-C scheme

(Forte, Laenen, Nason, arXiv:1001.2312).



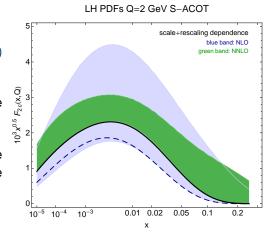
NNLO results for $F_2^{(c)}(x,Q^2)$ - Preliminary

At NNLO and $Q \approx m_c$:

S-ACOT-
$$\chi(N_f=4) \approx \text{FFN}(N_f=3)$$
 without tuning

- S-ACOT is numerically close to other NNLO schemes
- NNLO expressions are close to the FONLL-C scheme

(Forte, Laenen, Nason, arXiv:1001.2312).



■ Even without rescaling (a wrong choice!), NNLO cross sections are much closer to FFN at $Q \approx m_c$ than at NLO

Details of the NNLO computation

- NNLO evolution for α_s and PDFs (HOPPET)
 - ▶ matching coefficients relating the PDFs in N_f and N_{f+1} schemes (Smith, van Neerven, et al.)
- NNLO Wilson coefficient functions for $F_2(x,Q)$, $F_L(x,Q)$
- lacktriangle Pole quark masses or \overline{MS} quark masses as an input
- lacktriangledown CT10.1: pole masses $m_c=$ 1.3 GeV, $m_b=$ 4.75 GeV (as in CT10)

Components of inclusive $F_{2,L}(x,Q)$

Components of inclusive $F_{2,L}(x,Q^2)$ are classified according to the quark couplings to the photon

$$F = \sum_{l=1}^{N_l} F_l + F_h \tag{1}$$

$$F_l = e_l^2 \sum_a \left[C_{l,a} \otimes f_{a/p} \right] (x, Q), \quad F_h = e_h^2 \sum_a \left[C_{h,a} \otimes f_{a/p} \right] (x, Q).$$
 (2)

At
$$F_h^{(2)} = e_h^2 \left\{ c_{h,h}^{NS,(2)} \otimes (f_{h/p} + f_{\bar{h}/p}) + C_{h,l}^{(2)} \otimes \Sigma + C_{h,g}^{(2)} \otimes f_{g/p} \right\}$$

$$\mathcal{O}(\alpha_s^2): \qquad F_l^{(2)} = e_l^2 \left\{ C_{l,l}^{NS,(2)} \otimes (f_{l/p} + f_{\bar{l}/p}) + c^{PS,(2)} \otimes \Sigma + c_{l,g}^{(2)} \otimes f_{g/p} \right\}.$$
(3)

Structure of factorized expressions is reminiscent of the ZM scheme (e.g., in MVV 2005)

Components of inclusive $F_{2,L}(x,Q)$

- Lower case $c_{a,b}^{(2)}$, $\hat{f}_{a,b}^{(k)} \to \text{ZM}$ expressions Zijlstra and Van Neerven PLB272 (1991), NPB383 (1992) S. Moch, J.A.M. Vermaseren and A. Vogt, NPB724 (2005)
- Upper case $C_{a,b}^{(2)}$, $F_{a,b}^{(k)}$ $A_{a,b}^{(k)}$ \rightarrow coeff. functions, structure functions and subtractions with $m_c \neq 0$, Buza et al., NPB 472 (1996); EPJC1 (1998); Riemersma, et al. PLB 347 (1995); Laenen et al. NPB392 (1993)
- All building blocks are available from literature

Components of inclusive $F_{2,L}(x,Q)$

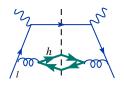
The separation into ${\cal F}_l$ and ${\cal F}_h$ (according to the quark's electric charge $e_i^2)$ is valid at all Q

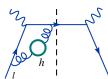
The "light-quark" F_l contains some subgraphs with heavy-quark lines, denoted by " $G_{l,l,heavy}$ ".

The "heavy-quark" $F_h \neq F_2^c$:

$$F_2^c = F_h + (G_{l,l,heavy})_{real},$$

where $G_{i,j} = C_{i,j}^{(2)}, \ F_{i,j}^{(2)}$, and $A_{i,j}^{(2)}$





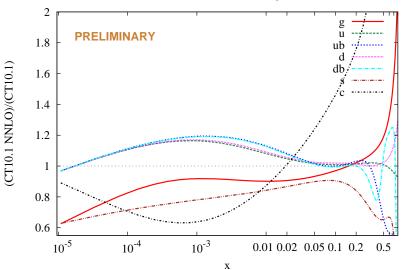


Conclusions

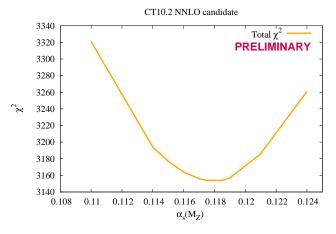
- In the CTEQ-TEA fit, an NNLO calculation for $F_{2,L}^{c,b}$ in the S-ACOT scheme is demonstrated to be viable.
- lacksquare S-ACOT- χ formalism provides recipe-like formulas for implementing NNLO
- Energy conservation is realized as a part of the QCD factorization theorem
- It leads to rescaling of Wilson coefficient functions with incoming heavy quarks. The PDFs are given by universal operator matrix elements.
- First NNLO fits are being currently investigated

Candidate NNLO fit (compared to CT10.1 NLO)

Ratios of central CT10.1 PDFs $\mu = 2 \text{ GeV}$



Dependence on α_s in the CT10.1 fit



 α_s decreases slightly at NNLO, has about the same PDF uncertainty as at NLO

- NLO: $\alpha_s(M_Z) = 0.11964 \pm 0.0064$ at 90% c.l.
- NNLO: $\alpha_s(M_Z) = 0.118 \pm 0.005$

Backup slides 1. Details on S-ACOT- χ scheme at NNLO

S-ACOT input parameters

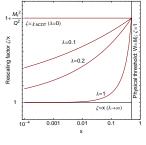
At $Q \approx m_c, F_2^c$ depends significantly on

- 1. Charm mass: $m_c = 1.3$ GeV in CT10
- **2. Factorization scale:** $\mu = \sqrt{Q^2 + \kappa m_c^2}$; $\kappa = 1$ in CT10
- 3. Rescaling variable $\zeta(\lambda)$ for matching in γ^*c channels (Tung et al., hep-ph/0110247; Nadolsky, Tung, PRD79, 113014 (2009))

$$F_i(x,Q^2) = \sum_{a,b} \int_{\zeta}^1 \frac{d\xi}{\xi} \ f_a(\xi,\mu) \, C^a_{b,\lambda} \left(\frac{\zeta}{\xi}, \frac{Q}{\mu}, \frac{m_i}{\mu}\right) \qquad \text{a.s.}$$

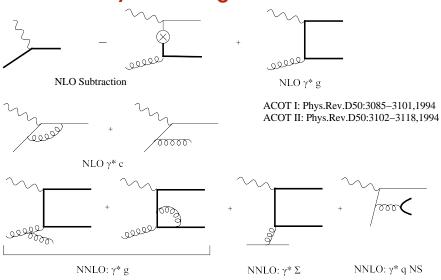
$$x = \zeta \left/ \left(1 + \zeta^{\lambda} \cdot (4m_c^2)/Q^2\right), \text{ with } 0 \le \lambda \lesssim 1 \right\}$$

$$\zeta(0) \equiv \chi \equiv x \left(1 + 4m_c^2 / Q^2 \right),$$



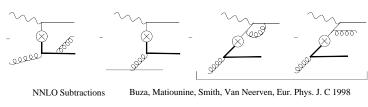
motivated by momentum conservation

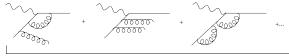
Classes of Feynman diagrams I



Riemersma et. al. Phys.Lett. B347 (1995)

Classes of Feynman Diagrams II





NNLO γ* c

Moch, Vermaseren and Vogt, Nucl.Phys.B724, 2005

Cancellations between Feynman diagrams

Validity of the S-ACOT calculation was verified by checking for certain cancellations at $Q \approx m_c$ and $Q \gg m_c$

 $\blacksquare Q \approx m_c$:

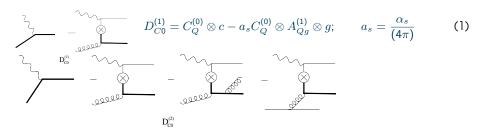
$$D_{C1}^{(2)} \ll D_{C0}^{(2)} \ll D_{C0}^{(1)} \le F_2^c(x, Q)$$

 $\blacksquare Q \gg m_c$:

$$D_g^{(2)} \ll D_g^{(1)} < F_2^c(x,Q)$$

These cancellations are indeed observed in our results

NNLO: Cancellations at $Q^2 \approx m_c^2$

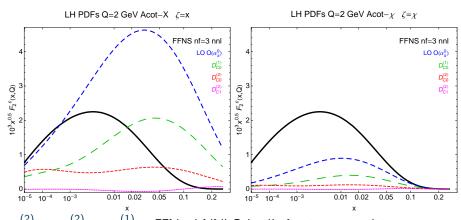


$$D_{C0}^{(2)} = D_{C0}^{(1)} - a_s^2 C_Q^{(0)} \otimes A_{Qg}^{(2),S} \otimes g - a_s^2 C_Q^{(0)} \otimes A_{Q\Sigma}^{(2),PS} \otimes \Sigma$$
 (2)

$$D_{C1}^{(2)} = C_Q^{(1)} \otimes c - a_s^2 C_Q^{(1)} \otimes A_{Qg}^{(1)} \otimes g$$

$$D_{C1}^{(2)} = C_Q^{(1)} \otimes c - a_s^2 C_Q^{(1)} \otimes A_{Qg}^{(1)} \otimes g$$
(3)

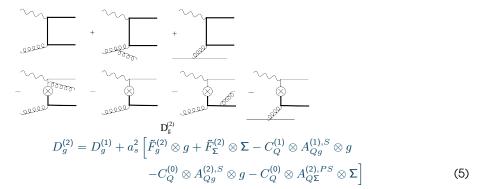
NNLO: Cancellations at $Q^2 \approx m_c^2$



 $D_{C1}^{(2)} \ll D_{C0}^{(2)} \ll D_{C0}^{(1)} \leq \text{FFN at NNLO both for } \zeta = x \text{ and } \zeta = \chi.$

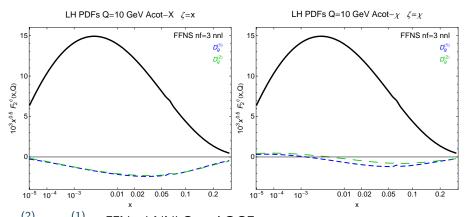
NNLO: Cancellations at $Q\gg m_c$

$$D_g^{(1)} \equiv C_g^{(1)} = a_s \left(F_g^{(1)} \otimes g - C_Q^{(0)} \otimes A_{Qg}^{(1),S} \otimes g \right) \tag{4}$$



 $D_g^{(1)}$ is of order of α_s^2 while $D_g^{(2)}$ is of order of α_s^3 .

F_2^c at NNLO: Cancellations at $Q=10~{\sf GeV}$



 $D_g^{(2)} \ll D_g^{(1)} < {
m FFN}$ at NNLO < ACOT $\log {Q^2 \over m_c^2}$ terms in FFN are cancelled well by subtractions.