### NNPDF2.1 @ NNLO/LO

Luigi Del Debbio - NNPDF Collaboration University of Edinburgh

1

# From NLO to NNLO/LO global fits

- Datasets: DIS, Drell-Yan, vector boson production, jet data
- Implementation: FONLL-C, K factors
- **Results**: MC ensemble of PDF probability distribution for the PDFs
- **Comparison** with other determinations
- Phenomenological implications
- Outlook

### Datasets

• Global fit - same cuts at LO and NLO, relax cuts on F2c @ NNLO



| OBS                            | Data set               |  |  |  |
|--------------------------------|------------------------|--|--|--|
| Deep Inelastic Scattering      |                        |  |  |  |
| $F_2^d/F_2^p$                  | NMC-pd                 |  |  |  |
| $F_2^p$                        | NMC, SLAC, BCDMS       |  |  |  |
| $F_2^d$                        | SLAC, BCDMS            |  |  |  |
| $\sigma_{NC}^{\pm}$            | HERA-I, ZEUS (HERA-II) |  |  |  |
| $\sigma_{CC}^{\pm}$            | HERA-I, ZEUS (HERA-II) |  |  |  |
| $F_L$                          | H1                     |  |  |  |
| $\sigma_ u,\sigma_{ar u}$      | CHORUS                 |  |  |  |
| dimuon prod.                   | NuTeV                  |  |  |  |
| $F_2^c$                        | ZEUS, H1               |  |  |  |
| Drell-Yan & Vector Boson prod. |                        |  |  |  |
| $d\sigma^{\rm DY}/dM^2 dy$     | E605                   |  |  |  |
| $d\sigma^{\rm DY}/dM^2 dx_F$   | E866                   |  |  |  |
| W asymm.                       | CDF                    |  |  |  |
| Z rap. distr.                  | D0/CDF                 |  |  |  |
| Inclusive jet prod.            |                        |  |  |  |
| Incl. $\sigma^{(jet)}$         | $CDF(k_T)$ - Run II    |  |  |  |
| Incl. $\sigma^{(jet)}$         | D0 (cone) - Run II     |  |  |  |

#### Monday, 22 August 2011

# NNLO implementation - Quark masses

- quark masses: GM-VFN scheme introduced in NNPDF2.1
  - FONLL method [M Cacciari et al, 1998]; extended to DIS [S Forte et al, 2010]
  - NLO fit used FONLL-A scheme
  - FONLL-C: NNLO massless evolution +  $\mathcal{O}(\alpha_s^2)$  massive coefficient functions

 $m_b = 4.75 \text{ GeV}$ 

• Quark masses:  $m_c = 1.41 \text{ GeV}$ 



# NNLO implementation - hadronic data

- Full NLO implementation in FastKernel for DY, W/Z production
- NNLO evolution, NLO partonic cross-section + K-factor (NNLO/NLO)



Fixed PDF NNPDF21\_nnlo\_100.LHgrid

• inclusive jets: approximated NNLO in FastNLO

# Results @ NNLO

#### • Statistical features

| Experiment | $\chi^2$ | $\chi^2_{\rm nlo}$ | $\langle \sigma^{(\exp)} \rangle_{dat}(\%)$ | $\langle \sigma^{(\rm net)} \rangle_{\rm dat} (\%)$ |
|------------|----------|--------------------|---------------------------------------------|-----------------------------------------------------|
| ТОТ        | 1.16     | 1.16               | 11.9                                        | 3.2                                                 |
| NMC-pd     | 0.93     | 0.97               | 1.8                                         | 0.5                                                 |
| NMC        | 1.63     | 1.73               | 5.0                                         | 1.8                                                 |
| SLAC       | 1.01     | 1.27               | 4.4                                         | 1.8                                                 |
| BCDMS      | 1.32     | 1.24               | 5.7                                         | 2.6                                                 |
| HERAI-AV   | 1.10     | 1.07               | 7.6                                         | 1.3                                                 |
| CHORUS     | 1.12     | 1.15               | 15.0                                        | 3.5                                                 |
| FLH108     | 1.26     | 1.37               | 72.1                                        | 4.8                                                 |
| NTVDMN     | 0.49     | 0.47               | 21.0                                        | 14.0                                                |
| ZEUS-H2    | 1.31     | 1.29               | 14.0                                        | 1.3                                                 |
| ZEUSF2C    | 0.88     | 0.78               | 23.0                                        | 3.7                                                 |
| H1F2C      | 1.46     | 1.50               | 18.0                                        | 3.5                                                 |
| DYE605     | 0.81     | 0.84               | 25.0                                        | 7.2                                                 |
| DYE866     | 1.32     | 1.27               | 21.0                                        | 8.7                                                 |
| CDFWASY    | 1.65     | 1.86               | 6.0                                         | 4.3                                                 |
| CDFZRAP    | 2.12     | 1.65               | 12.0                                        | 3.6                                                 |
| D0ZRAP     | 0.67     | 0.60               | 10.0                                        | 3.0                                                 |
| CDFR2KT    | 0.74     | 0.97               | 23.0                                        | 4.8                                                 |
| D0R2CON    | 0.82     | 0.84               | 17.0                                        | 5.5                                                 |

# Results @ NNLO

• Singlet sector





# Results @ NNLO





#### NNLO @ hard scale

• PDFs at  $Q^2 = (100 \text{ GeV})^2$ 





9

# Comparison with other NNLO fits

• MSTW08  $\alpha_s = 0.119$ 







-0.005

-0.01

0.1 0.2 0.3 0.4

0.5 0.6 0.7 0.8 0.9

х

1

# Comparison with other NNLO fits

• MSTW08  $\alpha_s = 0.119$ 



# LO implementation

• four different sets of LO fits - LO running

|                                | NLO           | LO $\alpha_s = 0.119$ | LO* $\alpha_s = 0.119$ | LO $\alpha_s = 0.130$ | LO* $\alpha_s = 0.130$ |
|--------------------------------|---------------|-----------------------|------------------------|-----------------------|------------------------|
| Total $\chi^2$                 | 1.16          | 1.74                  | 1.76                   | 1.68                  | 1.74                   |
| Total $\langle \chi^2 \rangle$ | $1.25\pm0.07$ | $1.95\pm0.21$         | $1.89\pm0.22$          | $1.95\pm0.19$         | $1.94\pm0.18$          |
| NMC-pd                         | 0.97          | 1.43                  | 1.12                   | 1.18                  | 1.12                   |
| NMC                            | 1.72          | 2.05                  | 1.68                   | 1.74                  | 1.72                   |
| SLACK                          | 1.29          | 3.77                  | 3.00                   | 2.91                  | 2.70                   |
| BEDIMS                         | 1.24          | 1.87                  | 1.82                   | 1.76                  | 1.75                   |
| HERAI-AV                       | 1.07          | 1.70                  | 1.55                   | 1.58                  | 1.59                   |
| CHORUS                         | 1.15          | 1.51                  | 1.67                   | 1.53                  | 1.67                   |
| NTVDMN                         | 0.45          | 0.69                  | 0.71                   | 0.71                  | 0.78                   |
| ZEUS-H2                        | 1.29          | 1.51                  | 1.42                   | 1.43                  | 1.44                   |
| ZEUSF2C                        | 0.78          | 1.75                  | 1.26                   | 1.56                  | 1.34                   |
| H1F2C                          | 1.51          | 1.77                  | 2.00                   | 1.81                  | 2.02                   |
| DYE605                         | 0.85          | 1.86                  | 2.02                   | 1.70                  | 1.83                   |
| DYE886                         | 1.26          | 1.99                  | 2.52                   | 2.59                  | 3.11                   |
| CDFWASY                        | 1.83          | 1.80                  | 2.50                   | 2.16                  | 2.29                   |
| CDFZRAP                        | 1.64          | 2.88                  | 3.89                   | 2.08                  | 2.58                   |
| D0ZRAP                         | 0.59          | 1.07                  | 1.29                   | 0.87                  | 1.02                   |
| CDFR2KT                        | 0.96          | 2.60                  | 3.22                   | 2.45                  | 2.76                   |
| D0R2CON                        | 0.83          | 1.18                  | 1.56                   | 1.17                  | 1.35                   |
| [M]                            | 1             | 1                     | $1.16 \pm 0.03$        | 1                     | $1.09\pm0.03$          |

No improvement from NLO running; better fit if we release positivity constraint

# Results @ LO

- large theoretical uncertainty due to the lack of higher order terms
- largest shift for gluon, sizeable differences for singlet and valence
- dependence on the coupling/MSR: *comparable* to the statistical uncertainty





# Comparison with other LO fits

• Largest differences for the gluon distribution at small and large x





### Perturbative stability

• Compare the PDFs obtained at different orders in PT



1

1

#### Momentum of partons

- Momentum fraction  $[q](Q^2) = \int dx \, xq(x,Q^2)$
- Total momentum

$$[M] = [\Sigma] + [g] = 1$$



#### Momentum of partons

• perturbative prediction

$$\lim_{Q^2 \to \infty} [\Sigma](Q^2) = \frac{3n_f}{16 + 3n_f} \approx 0.5294; \quad \lim_{Q^2 \to \infty} [g](Q^2) = \frac{16}{16 + 3n_f} \approx 0.4706$$



• parton luminosities



18

• parton luminosities comparison with MSTW08



• Higgs production via gluon fusion



• ttbar production













# Outlook

- NNLO/LO global fits (DIS, DY, vector boson, inclusive jets)
- NNLO fits compatible with NLO within statistical errors
- **consistent** picture @ NNLO GM-VFN (momentum sum rule, standard candles)
- flexible parametrization, unchanged since NNPDF1.2
- MC treatment of statistical fluctuations, statistically meaningful errors
- new data: reweighting the MC ensemble (cfr R Ball, Thurs)
- address theoretical uncertainties

### Extras

• backup slides with detailed information

#### MC ensemble of PDFs

- output of our fits: set of replicas
- central value:

$$\mathcal{F} = \langle \mathcal{F} \rangle_{\mathrm{rep}} = \frac{1}{N_{\mathrm{rep}}} \sum_{k=1}^{N_{\mathrm{rep}}} \mathcal{F}[q^{(k)}]$$

• variance:

$$\sigma_{\mathcal{F}}^2 = \frac{1}{N_{\text{rep}}} \sum_{k=1}^{N_{\text{rep}}} \left( \mathcal{F}[\{q^{(k)}\}] - \mathcal{F} \right)^2$$

• correlation:

$$\rho = \frac{\langle \mathcal{F} \mathcal{G} \rangle_{\text{rep}} - \langle \mathcal{F} \rangle_{\text{rep}} \langle \mathcal{G} \rangle_{\text{rep}}}{\sigma_{\mathcal{F}} \sigma_{\mathcal{G}}}$$

# Confidence level intervals

• Given the MC sample, we can compute the variance of the sample, or the central 68% percentile.



# FONLL

• DIS structure function in the FONLL scheme:

$$F^{\text{FONLL}}(x,Q^2) = \theta(Q^2 - m^2) \left(1 - \frac{m^2}{Q^2}\right) F^{(d)}(x,Q^2) + F^{(n_l)}(x,Q^2)$$

$$F^{(d)}(x,Q^2) = F^{(n_l+1)}(x,Q^2) - F^{(n_l,0)}(x,Q^2)$$

$$F^{(n_l,0)}(x,Q^2) = x \int_x^1 \frac{dy}{y} \sum_i B_i^{(0)} \left(\frac{x}{y}, \frac{Q^2}{m^2}, \alpha_s^{(n_l+1)}(Q^2)\right) f_i^{(n_l+1)}(y,Q^2)$$

$$\lim_{m \to 0} \left[ B_i\left(z, \frac{Q^2}{m^2}\right) - B_i^{(0)}\left(z, \frac{Q^2}{m^2}\right) \right] = 0$$

### Dependence on the HQ mass

#### • F Cerruti @ Moriond 2011



# Dependence on the HQ mass

#### vector boson production



Charm mass dependence is within the statistical errors

#### Parametrization

- NN and parameter count
- no change in the parametrization since 1.2

#### **Parton Distributions Combination**

#### NN architechture

| Singlet $(\Sigma(x))$                                                  | $\implies$ | 2-5-3-1 (37 pars) |
|------------------------------------------------------------------------|------------|-------------------|
| Gluon $(g(x))$                                                         | $\implies$ | 2-5-3-1 (37 pars) |
| Total valence $(V(x) \equiv u_V(x) + d_V(x))$                          | $\implies$ | 2-5-3-1 (37 pars) |
| Non-singlet triplet $(T_3(x))$                                         | $\implies$ | 2-5-3-1 (37 pars) |
| Sea asymmetry $(\Delta_S(x) \equiv \overline{d}(x) - \overline{u}(x))$ | $\implies$ | 2-5-3-1 (37 pars) |
| Total Strangeness $(s^+(x) \equiv (s(x) + \overline{s}(x))/2)$         | $\implies$ | 2-5-3-1 (37 pars) |
| Strange valence $(s^-(x) \equiv (s(x) - \bar{s}(x))/2)$                | $\implies$ | 2-5-3-1 (37 pars) |

#### Total **259** params

#### Comparison with other NNLO fits

• ABKM09  $n_f = 3, \alpha_s = 0.1135 \pm 0.0014$ 



### Distance between LO fits

• Different values of  $\alpha_s$ 





### Distance between LO fits

• fits w and w/out momentum sum rule





#### Parton luminosities

• Definition:

on:  

$$\sigma = \sum_{i,j} \int dx_1 dx_2 f_i(x_1, \mu^2) f_j(x_2, \mu^2) \hat{\sigma}_{ij}$$

$$= \sum_{i,j} \int \frac{d\hat{s}}{\hat{s}} dy \frac{dL_{ij}}{d\hat{s}dy} \hat{s} \hat{\sigma}_{ij}$$

$$\tau = x_1 x_2 = \hat{s}/s, \quad y = \frac{1}{2} \log(x_1/x_2), \quad \hat{s} = M_X^2$$

$$\frac{dL_{ij}}{d\hat{s}} = \int dy \, \frac{1}{s} f_i(x_1, M_X^2) f_j(x_2, M_X^2)$$
$$= \int_{\tau}^1 \frac{dx_1}{x_1} f_i(x_1, M_X^2) f_j(\frac{\tau}{x_2}, M_X^2)$$

# NMC cross section

#### • Statistical features

|          | NNPDF2.1 NLO |       |       | NNPDF2.1 NNLO |       |       |
|----------|--------------|-------|-------|---------------|-------|-------|
|          | str. fctn.   | xsec. | noNMC | str. fctn.    | xsec. | noNMC |
| Total    | 1.16         | 1.14  | 1.09  | 1.16          | 1.16  | 1.12  |
| NMC-pd   | 0.97         | 0.98  | -     | 0.93          | 0.93  | -     |
| NMCp     | 1.73         | 1.67  | -     | 1.69          | 1.63  | -     |
| SLAC     | 1.27         | 1.27  | 1.28  | 1.05          | 1.01  | 1.00  |
| BCDMS    | 1.24         | 1.23  | 1.18  | 1.29          | 1.32  | 1.27  |
| HERAI-AV | 1.07         | 1.05  | 1.07  | 1.12          | 1.10  | 1.08  |
| CHORUS   | 1.15         | 1.11  | 1.07  | 1.12          | 1.12  | 1.12  |
| FLH108   | 1.37         | 1.34  | 1.38  | 1.27          | 1.26  | 1.29  |
| NTVDMN   | 0.47         | 0.51  | 0.42  | 0.50          | 0.49  | 0.50  |
| ZEUS-H2  | 1.29         | 1.23  | 1.24  | 1.32          | 1.31  | 1.30  |
| ZEUSF2C  | 0.78         | 0.74  | 0.72  | 0.88          | 0.88  | 0.89  |
| H1F2C    | 1.51         | 1.48  | 1.49  | 1.47          | 1.56  | 1.52  |
| DYE605   | 0.85         | 0.93  | 0.88  | 0.81          | 0.81  | 0.81  |
| DYE866   | 1.27         | 1.40  | 1.34  | 1.31          | 1.32  | 1.34  |
| CDFWASY  | 1.85         | 1.87  | 1.60  | 1.55          | 1.65  | 1.41  |
| CDFZRAP  | 1.62         | 1.76  | 1.64  | 2.16          | 2.12  | 2.18  |
| D0ZRAP   | 0.60         | 0.57  | 0.56  | 0.67          | 0.67  | 0.67  |
| CDFR2KT  | 0.97         | 0.73  | 0.81  | 0.79          | 0.74  | 0.80  |
| D0R2CON  | 0.84         | 0.90  | 0.96  | 0.84          | 0.82  | 0.84  |

# NMC cross section

• PDFs at ew scale





# NMC cross section

• Higgs production

