The ATLAS Semi-Conductor Tracker Construction, Operation and Performance

Steve McMahon

RAL Friday 1st July 2011 The Tyndel-Fest

The Semi-Conductor Tracker inside the ATLAS ID

Some SCT Operational Parameters

- 150 V reverse bias voltage (U_{standby} = 50 V)
- Binary Readout with 1 fC/hit threshold (standard setting)
- 3 time bin readout (25ns / bin = LHC clock)
- C₃F₈ cooling: -7°C to +4.5°C (temp on the surface of silicon)

The SCT Modules (The basic detector unit)

• Sensor Paramaters

- 770 (768 bonded) p-strips on n-type silicon
- 80 μm pitch (B)
- 285 μ m thick
- 4(2) single-sided sensors glued back-to-back
- Stereo angle of 40 mrad
- 83 % Hamamatsu, 17 % CiS

• Sensor Length

- 12 (2x6) cm (B), 6-12 (1or2 x 6cm) cm (ECs)
- Resolutions
 - ~17 μm(rφ, bending plane), ~580 μm (z)

Baseboard

- Thermal Pyrolitic Graphite
- Mechanical & thermal structure

Readout

- Rad-hard front-end readout chips (ABCD)
- 6 chips/side, 128 channels/chip
- 48 modules served by 1 ROD
- 11 (12) RODs send data to 1 Atlas ROS
- TIM provides trigger signal & clock

1st Sensor (Front) 2nd Sensor (Front) 6 Readout Chips / Side Stereo Angle (Back)

Barrel Module

End Cap Modules

A recent history of the SCT....

I can't hope tell you everything but I can give you a flavour of what was happening at various locations at various times.

The SCT is a collaboration of 42 Institutes from 16 Countries In reviewing the construction I concentrate on the

UK activities

Making Barrel Modules in R12 at RAL

Sensor alignment

Hybrid Mounting

Wire Bonding

Mounting Modules to Barrels in Oxford

End-Cap-C construction in Liverpool

Integration in SR1 (surface building at CERN)

Inserting the Barrel into the TRT

Preparing the Barrel for the Cryostat

Mounting Barrel to Cryostat

Setting the scale of ATLAS

Mounting EndCaps into the Cryostat

Finished : The view at the end of the ID

First Beam Splash Events in ATLAS

2003 2004 2005 2006 2007 <mark>2008</mark> 2009 2010 2011

Friday 19th September 2008 : The catastrophe

2003 2004 2005 2006 2007 <mark>2008</mark> 2009 2010 2011

First Collisions in ATLAS

First Collisions 7TeV collisions in ATLAS

2003 2004 2005 2006 2007 2008 2009 <mark>2010</mark> 2011

First Collisions 7TeV collisions in ATLAS

Integrating luminosity in 2011

Integrating luminosity in 2011

Some LHC statistics so far in 2011

- Beam energy 7TeV (14 TeV nominal)
- ✓ Bunch spacing 50ns (25ns nominal)
- ✓ Bunch intensity 1.25 x10¹¹ (above spec)
- ✓ Peak stable luminosity 1.26 x10³³ cm⁻² s⁻¹ (2 x10³² in 2010)
- ✓ Maximum luminosity in 1 fill 62.1 pb⁻¹ (Monday)
- ✓ Maximum length of a fill 19.2 hrs
- ✓ Max average num interaction per Xing 8.93
- ✓ Max number of colliding bunches 1318 (348 in 2010)

back to back fills with 1092 bunches

30-May-2011 07:41:4	3 Fill #: 1816	Energy: 3500 GeV	l(B1): 1.24e+14	I(B2): 1.25e+14
	ATLAS	ALICE	CMS	LHCb
Experiment Status	PHYSICS	PHYSICS	NOT_READY	PHYSICS
Instantaneous Lumi				296.325
BRAN Luminosity (L	uminosity	1.2-1.3 x1	0 ³³ cm ⁻² s ⁻¹	83.206
Fill Luminosity (nb)^	1 20925.5	11.1	21066.8	5766.5
BKGD 1	0.179	0.392	6.482	0.779
BKGD 2	17.508	1.174	0.002	0.381
BKGD 3	8.419	1.398	3.268	1.087
LHCb VELO Position	Gap: -0.0 mm	STABLE BEAMS	S TOTEM	STANDBY
Performance over the last 24 Hrs	5			Updated: 07:41:4
1.2E14			[[- 3000
8E13-			111	- 2000 5
E 6E13- 4E13-				-1000
2E13-				
08:00 11:00	14:00 17:0	0 20:00	23:00 02:00	05:00
— I(B1) — I(B2) — Energy				

Integ Luminosity to date 1.22fb⁻¹ 0.47 Billion physics events

- \checkmark Configuration
- ✓ Calibration
- \checkmark Intrinsic silicon efficiency
- ✓ Timing (including 50ns operation)
- ✓ Occupancies, data & error rates and DAQ
- ✓ Alignment (including stability and the FSI)
- \checkmark The onset of radiation damage
- ✓ Problems we had along the way & improvements
- \checkmark Material in the inner detector
- ✓ Operation, data taking efficiency and data quality

The SCT Detector Configuration (snapshot)

Modules out of the physics configuration

	Endcap A	Barrel	Endcap C	SCT	Fraction
Total	5	10	15	30	0.73
Fraction (%)	0.5	0.2	1.5	0.7	
Cooling	0	0	13	13	0.32
LV	0	6	1	7	0.17
HV	4	1	1	6	0.15
Readout	1	3	0	4	0.10

Disabled Readout Components	Endcap A	Barrel	Endcap C	SCT	Fraction (%)
Disabled Modules	5	10	15	30	0.73
Disabled Chips	5	24	4	33	0.07
Masked Strips	3,364	3,681	3,628	10,673	0.17
Total Disabled Detector Region					0.97

The SCT Detector Configuration (history)

The number of SCT modules out of the physics configuration as a function of time during 2010 and 2011 up to June.

Noise & Noise Occupancy

Calibration Measurement

- Charge injection circuit in readout chip (0-16) fC
- Measure hits vs. threshold (S-curve)
- Fit by complementary error function
- Width characterizes noise
- SCT noise < 1500 e
- Hit threshold ~ 6200 e

Online Measurement

- Count hits in random triggers (empty bunches)
- 5CT NO ~ 10^{-5} Design NO < 5 * 10^{-5}
- Both methods in good agreement

Noise, noise occupancy test [electrons]

SCT Intrinsic Silicon Efficiency

- Efficiency =
- # of hits / # of possible hits (on tracks)
- Dead modules & chips accounted for
- Barrel: all layers
 > 99.8% efficiency
- End-Caps: all disks
 > 99.6% efficiency
- Time stability: ± 0.1 %
- Above design spec of 99.0 % efficiency

SCT Readout and Timing

- Binary readout (hit or no-hit)
- 3 time bins of 25 ns (LHC clock) around trigger accept signal charge > threshold = hit
- 3 different readout modes:
 - XXX: a hit in any time bin
 - X1X: hit in bin 1 required
 - **01X**: hit in bin 1 required, no hit in bin 0 allowed
- Ran in XXX in 2010 (bunch distance ≥75 ns)
- Due to 50 ns bunch trains, switched to X1X in 2011
- Will switch to 01X for 25 ns trains (2012)
- SCT timed in using dedicated timing scans

SCT Occupancy in proton-proton beam operation

SCT designed to operate with up to 23 protonproton interactions per bunch crossing. ROS event size limit: 65 kB (configured)

Scaling plots to right for 23 interactions and for 14TeV operation expect around 1% peak occupancy in Barrel 3.

Typical occupancies in Heavy Ions ~10%

SCT is not limiting ATLAS L1 rates

11 vertices "typical" in 2011 operation

The SCT Data Acquisition System

Occupancy (%)	Rate Limit (kHz)		Complex DT	Event Size/ROD		
	ABCD	S-Link		(кВ)		
0	754	2000	8/53	0.056		
1	233	89	8/170	2		
10	28	10	8/1395	15.6		
20	14.5	5.2	8/2755	31		

- ATLAS goal is to be able to take data up to a L1 trigger rate of 75kHz.
- Peak rates in 2011 are already touching 60 kHz. (Peak L2 output = 3.9kHz, Physics 400Hz)
- Above see SCT readout rate for different occupancies
- Below error rates measured at 20kHz in 2010. Error rates of front end are low.

SCT and ID Detector Alignment

Optimal track parameters only determined when the alignment of the detectors understood Minimize global χ^2 based the track residuals For PIX and SCT this is Iterative procedure with ~ 35,000 degrees of freedom Initial Alignment from survey and 2008 & 2009 cosmic ray data Followed by 2009 900GeV data and more cosmic ray data

Local x residual [

SCT and ID Detector Alignment

The effect of the new alignment on the Z mass reconstructed with ID tracks only. Before the processing is seen in the open circles and after seen in red.

SCT Internal Alignment and Stability

- Monitor long term stability of SCT geometry
- Optical alignment system using Frequency Scanning Interferometry
- **842** interferometers form geodetic grid of distance measurements
- Detected movements
 - Before magnet ramp down:
 position deviations σ ~ 11 nm
 - During solenoid ramp:
 movements ≤ 3 μm
 - After full magnet cycle: position deviations σ ~ 49 nm

SCT and the onset of radiation damage.

- Radiation damages detector & electronics
- Monitoring needed to predict future performance of current & upgrade SCT
- Linear relation between leakage current & fluence (if T, V = const)
- Measure fluence on-detector
- Barrel: Excellent agreement with simulation
- Inner Rings: Radiation larger than in simulation
- Need to understand difference
- Trip limits increased in Jun '11

SCT Past problems and ongoing worry list

Cooling and Environment

- Multiple problems of evaporative cooling and control system during installation and commissioning.
- Evaporative Heater failures
 - Control system, connectors, feed-back-failures
- The compressor problems
 - A long saga that led to the Thermo-siphon project.
- The heater pad problems
 - Loss of connection to 3 pads around barrel after field ON.

✓ Optical transmitters

- Each SCT module has 3 optical connections
- 2 of these are used to send data from the module
- 1 of these is used to send data to the module (clock and command). These are sent from crates in the side caverns by TX transmitters
- Poor reliability and frequent failures of the off detector VCSELS.
- Initially thought to be due to ESD (wrong!)
- Eventually traced to humidity ingress.
- New developments underway. Very optimistic!
- Redundancy scheme critical to high efficiency

Some SCT Performance Plots

- Top Left: Cluster size vs incidence angle of track
- Top Middle: Lorentz angle for 4 barrels
- Top Right : Number of strips hit on a module.
- Bottom right : Number of SCT hits on track vs pseudorapidity (p-p)
- Bottom Left :Number of SCT hits on track vs pseudorapidity (HI)

Inner Detector Material Plots : did we get it right?

Several different geometries are used to compare simulated samples with data.

The *nominal sample* is the default comparison as used in simulation and in reconstruction.

The additional samples scale structures in the Inner Detector to produce *roughly 10% and 20% more material* in the simulation in terms of radiation length

ATLAS & SCT Data Taking Efficiency and Data Quality

Inne De	r Track etector	ing s	Calorimeters			Muon Detectors			Magnets			
Pixel	SCT	TRT	LAr EM	LAr HAD	LAr FWD	Tile	MDT	RPC	CSC	TGC	Solenoid	Toroid
99.8	99.5	100	89.3	92.7	94.3	99.5	100	99.5	100	99.9	98.5	97.9

Luminosity weighted relative detector uptime and good quality data delivery during 2011 stable beams in pp collisions at Vs=7 TeV between March 13th and June 6th (in %). The inefficiencies in the LAr calorimeter will partially be recovered in the future. The magnets were not operational for a 3-day period at the start of the data taking.

Subdetector	Number of Channels	Approximate Operational Fraction
Pixels	80 M	96.9%
SCT Silicon Strips	6.3 M	99.1%
TRT Transition Radiation Tracker	350 k	97.5%
LAr EM Calorimeter	170 k	99.5%
Tile calorimeter	9800	97.9%
Hadronic endcap LAr calorimeter	5600	99.6%
Forward LAr calorimeter	3500	99.8%
LVL1 Calo trigger	7160	99.9%
LVL1 Muon RPC trigger	370 k	99.5%
LVL1 Muon TGC trigger	320 k	100%
MDT Muon Drift Tubes	350 k	99.8%
CSC Cathode Strip Chambers	31 k	98.5%
RPC Barrel Muon Chambers	370 k	97.0%
TGC Endcap Muon Chambers	320 k	98.4%

SCT The first few years : Summary and Conclusions

- ✓ SCT is performing very well indeed
 - Operational fraction of the detector > 99.1%
 - Product of Operational Efficiency and Data Quality > 99.4%
- ✓ General Performance
 - Calibration, timing, intrinsic efficiency, alignment, mechanical stability, cooling are all making good progress. The onset of radiation damage has started and is following the predictions.
- ✓ Problems
 - Being addressed in an efficient and timely way
- ✓ Most importantly
 - Contributing to the rich physics program of ATLAS.

Mike Tyndel and Taka Kondo at CERN on 24th March

THANKS – MIKE !!!

What is next ? The road to a-few $x \ 10^{34} \ cm^{-2} s^{-1}$

