B Physics in the LHC Era: Status and Perspectives

Robert Fleischer

Nikhef (Theory Group)

UK HEP Forum 2011 "Physics at the LHC" Abingdon, United Kingdom, 7–8 September 2011

- Setting the Stage
- Theoretical Framework
- <u>B Physics @ LHC</u>: \rightarrow

Promising Probes for New Physics

• Conclusions & Outlook

Setting the Stage

Quark Flavour Physics & CP Violation

 \rightarrow key players in the history of the Standard Model (SM):

- <u>1963</u>: concept of flavour mixing [Cabibbo].
- <u>1964</u>: discovery of CP violation in $K_{\rm L} \rightarrow \pi^+\pi^-$ [Christenson *et al.*].
- <u>1970</u>: introduction of the charm quark to suppress the flavour-changing neutral currents (FCNCs) [Glashow, Iliopoulos & Maiani].
- <u>1973</u>: quark-flavour mixing with 3 generations allows us to accommodate CP violation in the SM [Kobayashi & Maskawa].
- <u>1974</u>: estimate of the charm-quark mass with the help of the $K^0-\bar{K}^0$ mixing frequency [Gaillard & Lee].
- <u>1980s</u>: the large top-quark mass was first suggested by the large $B^0 \overline{B}^0$ mixing seen by ARGUS (DESY) and UA1 (CERN).

flavour physics has since continued to progress ...

The Quark-Flavour Code

• Quark flavour physics and CP violation: \rightarrow rich phenomenology

$$\begin{cases} \mathsf{flavour} \\ \mathsf{eigen-} \\ \mathsf{states} \end{cases} \begin{pmatrix} d' \\ s' \\ b' \end{pmatrix} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \cdot \begin{pmatrix} d \\ s \\ b \end{pmatrix} \begin{cases} \mathsf{mass} \\ \mathsf{eigen-} \\ \mathsf{states} \end{cases} \xrightarrow{D \quad U} \\ \mathsf{states} \\ V_{UD} \\ \mathsf{cabibbo-Kobayashi-Maskawa matrix} \\ \hat{V}_{\mathrm{CKM}} \\ \rightarrow unitary \text{ matrix} \end{cases}$$

 \Rightarrow encoded in weak decays of K, D and B mesons

[antiquark–quark boundstates $\bar{q}Q$ with Q=s, c and b]

- The key problem: strong interactions \rightarrow "hadronic" uncertainties
 - The theory is formulated in terms of quarks, while flavour-physics experiments use their QCD bound states, i.e. B, D and K mesons.
 - In the calculations of the relevant transition amplitudes, we encounter process-dependent, non-perturbative "hadronic" parameters!?

 $[\rightarrow$ lattice QCD: lots of progress for some parameters, but still challenging...]

- The *B*-meson system is a *particularly promising* flavour probe:
 - Simplifications through the large *b*-quark mass $m_b \sim 5 \text{ GeV} \gg \Lambda_{\text{QCD}}$.
 - Offers various strategies to eliminate the hadronic uncertainties and to determine the hadronic parameters from the data.
 - Tests of SM relations that could be spoiled by physics beyond the SM.
- The last decade was governed by the $e^+e^- B$ factories with the BaBar (SLAC) and Belle (KEK) experiments and B results from the Tevatron:
 - CP-violating phenomena in B-meson decays could be established.
 - The *interplay with theory* resulted in many new insights.
 - With the exception of a few "flavour puzzles" (not yet conclusive because of large errors), also the SM flavour sector is in good shape.
- However, a large territory of the *B*-physics landscape was left unexplored:

 \rightarrow target of another LHC experiment: LHCb [\rightarrow talk by Val Gibson]

Species of *B* Mesons

- Charged *B* mesons:
- $\begin{array}{ccc} B^+ \sim u\,\bar{b} & B^- \sim \bar{u}\,b \\ B^+_c \sim c\,\bar{b} & B^-_c \sim \bar{c}\,b \end{array}$
- <u>Neutral *B* mesons</u>:

$$\begin{array}{ll} B^0_d \sim d\,\bar{b} & \bar{B}^0_d \sim \bar{d}\,b \\ B^0_s \sim s\,\bar{b} & \bar{B}^0_s \sim \bar{s}\,b \end{array}$$

-
$$B_q^0$$
- \overline{B}_q^0 mixing: -

 \rightarrow Quantum Mechanics

$$\begin{array}{c} q \\ w \\ b \\ w \\ \hline b \\ W \\ \hline d \\ \hline d$$

$$\Rightarrow ||B_q(t)\rangle = a(t)|B_q^0\rangle + b(t)|\bar{B}_q^0\rangle :$$

* Schrödinger equation \Rightarrow mass eigenstates:

$$\Delta M_q \equiv M_{\rm H}^{(q)} - M_{\rm L}^{(q)}, \quad \Delta \Gamma_q \equiv \Gamma_{\rm L}^{(q)} - \Gamma_{\rm H}^{(q)}$$

* Decay rates: $\Gamma(\overset{(-)}{B_q^0}(t) \rightarrow \overset{(-)}{f})$:

 $\cos(\Delta M_q t) \& \sin(\Delta M_q t) \rightarrow \text{oscillations!}$

Hope for New Physics ...

- We have indications that the SM *cannot* be complete:
 - Neutrino masses $\neq 0$: suggest see-saw mechanism, GUT scenarios ...
 - Baryon asymmetry of the Universe (SM cannot generate it ...)
 - The long-standing problem of dark matter (?)
- Fundamental theoretical questions/problems:
 - Hierarchy problem
 - Fine-tuning problem...

 \rightarrow | suggest New Physics in the TeV regime

- Popular specific models for physics beyond the SM:
 - Supersymmetry (SUSY)
 - Universal extra dimension (UED)
 - Warped extra dimension (WED)
 - Little Higgs models (LH, with T parity LHT)
 - Z' models
 - 4th generation models

 \rightarrow | new sources of flavour & CP violation

How to Search for New Physics (NP) Beyond the SM?

- Search for *direct* signals of NP: \Rightarrow | physics @ ATLAS \oplus CMS

 - Produce new particles (e.g. squarks, gauge bosons, ...) at colliders;
 - Study the decays of the new particles in general purpose detectors ...

 \rightarrow high-energy frontier

• Search for *indirect* footprints of NP: \Rightarrow

B (flavour) physics @ LHCb

- Sensitivity to NP effects through *virtual quantum effects:*

 \rightarrow high-precision frontier

expect synergy between both avenues to search for NP

Theoretical Framework:

in a nutshell ...

Basic Language: Quantum Field Theory

Lagrangian:

$$\mathcal{L} = \mathcal{L}_{\rm SM}(g_k^{\rm SM}, m_k^{\rm SM}, \hat{V}_{\rm CKM}) + \mathcal{L}_{\rm NP}(g_k^{\rm NP}, m_k^{\rm NP}, \hat{V}_{\rm NP}) \Rightarrow$$

Feynman diagram calculations

- Lagrangian composed of SM and NP fields involves:
 - Couplings: $g_k^{ ext{SM}} \oplus g_k^{ ext{NP}}$ – Particle masses: $m_k^{
 m SM}\oplus m_k^{
 m NP}$, and …
- Quark flavour mixing: $[D \in \{d, s, b\}, U \in \{u, c, t\}]$
 - SM: $D \rightarrow UW$ described by the Cabibbo–Kobayashi–Maskawa (CKM) matrix \hat{V}_{CKM} connecting the quark flavour states with their mass eigenstates through a *unitary* transformation: $\hat{V}_{CKM}^{\dagger} \cdot \hat{V}_{CKM} = \hat{1}$.
 - In general, new sources of flavour mixing through NP: \hat{V}_{NP} .
- NP may induce flavour-changing neutral currents (FCNCs) @ tree level:
 - \rightarrow forbidden in the SM [Glashow–Iliopoulos–Maiani (GIM) mechanism ('70)]

CP Violation in the Standard Model

Behaviour of "charged-current" processes under CP transformations:

• Kobayashi & Maskawa (1973): \hat{V}_{CKM} complex for $N \ge 3$ generations

- N = 2: (real) quark-mixing-matrix parametrized by the Cabibbo angle.
- N = 3: \hat{V}_{CKM} parametrized by three angles and one complex phase:

 \Rightarrow allows us to accommodate CP violation:¹

$$\rightarrow$$
 Kobayashi–Maskawa (KM) mechanism

¹Another source of CP violation: strong CP problem with "QCD vacuum angle" θ (neutron EDM).

The Unitarity Triangle (UT)

• Unitarity of the CKM matrix:² $\Rightarrow V_{ud} V_{ub}^* + V_{cd} V_{cb}^* + V_{td} V_{tb}^* = 0 \Rightarrow$

- $\lambda \equiv |V_{us}| = 0.22 \rightarrow$ phenomenological expansion of the CKM matrix.

 $-\overline{\rho} \equiv (1 - \lambda^2/2)\rho$, $\overline{\eta} \equiv (1 - \lambda^2/2)\eta$ take NLO effects into account, where ρ , η appear in the CKM parametrization by Wolfenstein.

CP violation: non-vanishing height of the UT (i.e. $\gamma \neq 0^{\circ}$)

• Theoretical interpretation of various flavour-physics observables:

 \Rightarrow contours in the $\overline{\rho}$ - $\overline{\eta}$ plane: $\Rightarrow KM \ consistency \ checks \ ...$

²Actually 6 unitarity triangles: 4 are extremely squashed; 2 non-squashed ones agree at LO in $\lambda = 0.22$.

Status of the Unitarity Triangle

- Fits of the UT by two groups: \rightarrow many plots & correlations ...
 - CKMfitter Collaboration [http://ckmfitter.in2p3.fr/];
 - UTfit Collaboration [http://www.utfit.org/UTfit/WebHome]:

[See, e.g., E. Lunghi & A. Soni ('09–'10); A. Buras & D. Guadagnoli ('09); ...]

(New) Flavour Physics: Where Do We Stand?

- Lessons from the B, D and K decay data collected so far:
 - CKM matrix is the dominant source of flavour and CP violation.
 - New effects not yet established, although there are potential signals:
 - * Example: CP violation in $B^0 \to \pi^0 K_{\rm S}$ [Future @ LHCb: $B_s^0 \to \phi \phi$]

$$\frac{\Gamma(\bar{B}^{0}(t) \to \pi^{0}K_{\rm S}) - \Gamma(B^{0}(t) \to \pi^{0}K_{\rm S})}{\Gamma(\bar{B}^{0}(t) \to \pi^{0}K_{\rm S}) + \Gamma(B^{0}(t) \to \pi^{0}K_{\rm S})}$$
$$= A_{\pi^{0}K_{\rm S}}\cos(\Delta M_{d} t) + S_{\pi^{0}K_{\rm S}}\sin(\Delta M_{d} t)$$

[R.F., S. Jäger, D. Pirjol & J. Zupan ('08)]

• Implications for the structure of New Physics:

 $\mathcal{L} = \mathcal{L}_{\rm SM} + \mathcal{L}_{\rm NP}(\varphi_{\rm NP}, g_{\rm NP}, m_{\rm NP}, \dots)$

- Large characteristic NP scale $\Lambda_{\rm NP}$, i.e. not just \sim TeV, which would be bad news for the direct searches at ATLAS and CMS, or (and?) ...
- Symmetries prevent large NP effects in FCNCs and the flavour sector; most prominent example: *Minimal Flavour Violation (MFV):*

 \rightarrow essentially the same CP & flavour violation as in the SM.

- <u>Comments:</u>
 - MFV has not yet been experimentally established.
 - There are various non-MFV scenarios with room for sizeable effects: SUSY, WED, LHT, Z' models, 4th generation, ...
 - Nevertheless, we have to be prepared to deal with "smallish" NP effects

• Excellent news:

– We are at the beginning of a new era in particle physics: \rightarrow LHC era

B Physics @ LHC:

\Rightarrow promising probes for New Physics

 $[\rightarrow$ Val Gibson's talk for the experimental aspects]

New Territory: B_s -Meson System

• $e^+e^- B$ factories:

- Cannot access the B_s system if operated @ $\Upsilon(4S)$: BaBar (SLAC) & Belle (KEK).
- Belle has collected data @ $\Upsilon(5S)$ as well.

- CDF & DØ @ Tevatron:
 - Observation of $B_s^0 \bar{B}_s^0$ mixing in 2006 (after long efforts).
 - Intriguing results for CP violation in $B_s^0 \rightarrow J/\psi\phi$ since about 3 years.
- <u>LHCb</u>: \rightarrow promising processes for first NP signals:
 - CP violation in $B^0_s \to J/\psi \phi.$
 - Branching ratio of $B_s^0 \rightarrow \mu^+ \mu^-$ (ATLAS & CMS are competitive).
 - Various other decays & strategies ...

 \rightarrow particularly interesting ...

* Search for NP in $B_s^0 - \bar{B}_s^0$ mixing:

Standard Model

New Physics (e.g. SUSY, Z' models)

 \diamond FCNC process: \Rightarrow strongly suppressed in the SM ("box" diagrams)

 \star involves a CP-violating phase $\phi_s = \phi_s^{SM} + \phi_s^{NP}$

ightarrow SM piece is tiny: $\phi_s^{\rm SM} pprox -2^\circ$

 \Rightarrow | sensitive probe for NP

Constraints on NP Parameter Space

• Parameter (complex number) to characterize NP in $B_s^0 - \bar{B}_s^0$ mixing:

$$\kappa_s e^{i\sigma_s} \equiv \text{``NP'' / ``SM''} \Rightarrow$$

- Mass difference: $\Delta M_s = \Delta M_s^{SM} \left| 1 + \kappa_s e^{i\sigma_s} \right|$
- Mixing phase: $\phi_s = \phi_s^{SM} + \phi_s^{NP} = \phi_s^{SM} + \arg(1 + \kappa_s e^{i\sigma_s})$
- Allowed region in the σ_s - κ_s plane:

 $\Delta M_s \Rightarrow$ yellow band;

$$\phi_s \Rightarrow \dots$$

[Details: P. Ball & R.F. (2006)]

CP Violation in $B^0_s ightarrow J/\psi \phi$

- Interference effects through $B_s^0 \bar{B}_s^0$ mixing:
 - *Mixing-induced* CP violation in time-dependent rates.
 - Hadronic parameters cancel to good approximation:

 \Rightarrow CP asymmetries $\sim \sin \phi_s$

 $J/\psi\phi$

 $e^{-i\phi_s}$

• Final state is mixture of CP-odd and -even eigenstates:

 \rightarrow disentangle through $J/\psi[\rightarrow \mu^+\mu^-]\phi[\rightarrow K^+K^-]$ angular distribution.

• <u>Smallish CPV in the SM</u>: \Rightarrow sensitive probe for NP in $B_s^0 - \bar{B}_s^0$ mixing

[Dighe, Dunietz & R.F. ('99); Dunietz, R.F. & Nierste ('01); Faller, R.F. & Mannel ('08)]

Examples of Specific NP Analyses ($S_{\psi\phi} = -\sin \phi_s$)

• Littlest Higgs Model with T-Parity (LHT):³

[Blanke, Buras, Poschenrieder, Recksiegel, Tarantino, Uhlig & Weiler (2007)]

• Warped Extra Dimensions:

[Blanke, Buras, Duling, Gori & Weiler (2009)]

 $^{3}A_{\rm SL}^{s\rm SM} \sim 2 \times 10^{-5}$: "wrong-charge" lepton asymmetry measuring CP violation in $B_{s}^{0} - \bar{B}_{s}^{0}$ oscillations.

Tevatron $B^0_s ightarrow J/\psi \phi$ Results

• Interesting results on this channel since 2008 ...

- DØ includes also the anomalous like-sign dimuon charge asymmetry;
- CDF plot uses only $B_s \rightarrow J/\psi\phi$ data.
- <u>Bad news:</u> situation is (still...) not conclusive (?)

LHCb $B^0_s \rightarrow J/\psi \phi$ Results

• Update at Lepton–Photon 2011:

• $\phi_s = (7.4 \pm 10.3 \pm 4.0)^\circ$ consistent with $\phi_s^{SM} = -2.1^\circ \rightarrow |$ stay tuned ...

[G. Raven @ Lepton–Photon 2011]

Prospects for $B_s o J/\psi \phi$

- Experimental reach @ LHCb: very impressive ...
 - End of first phase of LHCb (5 fb $^{-1}$ \sim 2015): $\sigma(\phi_s)_{\rm exp} \sim 1^{\circ}$
 - LHCb upgrade (50 fb $^{-1}$): $\sigma(\phi_s)_{\rm exp} \sim 0.3^{\circ}$ [M. Merk @ Beauty 2011]
- <u>However</u>: SM penguin effects were so far fully neglected:⁴

 $A(B_s^0 \to J/\psi\phi) \propto \mathcal{A}_f \left[1 + \lambda^2 (ae^{i\theta})e^{i\gamma}\right]$

- Impact of these corrections: $\mathcal{A}_{CP}^{mix} = \sin \phi_s \rightarrow \sin(\phi_s + \Delta \phi_s).$
- Hadronic shift $\Delta \phi_s$ can be controlled through $B_s^0 \rightarrow J/\psi \bar{K}^{*0}$. [CDF reported observation of this channel @ ICHEP 2010; LHCb @ Beauty 2011]
- <u>Two scenarios</u>: $[\Delta \phi_s \text{ must in any case be controlled to match LHCb accuracy]$
 - *Optimistic:* $|A_{CP}^{mix}| \sim 40\%$ would be an unambiguous signal of NP!
 - $Pessimistic: A_{CP}^{mix} \sim -(5...10)\%$ would require further work from theorists and experimentalists to clarify the picture ...

[Faller, R.F. & Mannel (2009)]

 $^{^{4}\}lambda \equiv |V_{us}| = 0.22$ is the Wolfenstein parameter of the CKM matrix.

Another (Emerging) Hot Topic: $B^0_s ightarrow J/\psi f_0(980)$

- $f_0(980)$ is a scalar $J^{PC} = 0^{++}$ state: \Rightarrow no angular analysis is required!
- Dominant mode: $B_s^0 \to J/\psi f_0$ with $f_0 \to \pi^+\pi^-$.
- Recent observation of $B_s^0 \rightarrow J/\psi f_0$ at LHCb, Belle, DØ and CDF:

$$R_{f_0/\phi} \equiv \frac{\mathrm{BR}(B_s^0 \to J/\psi f_0; f_0 \to \pi^+ \pi^-)}{\mathrm{BR}(B_s^0 \to J/\psi \phi; \phi \to K^+ K^-)} \sim 0.25$$

... but as no angular analysis is required:

 $\Rightarrow \mid B_s^0 \rightarrow J/\psi f_0$ offers an interesting alternative to $B_s^0 \rightarrow J/\psi \phi$

[S. Stone & L. Zhang (2009)]

New Results for $B^0_s o J/\psi f_0(980)$

• First measurement of the effective lifetime: [CDF, arXiv:1106.3682 [hep-ex]]

$$\tau_{J/\psi f_0} = \left[1.70^{+0.12}_{-0.11} \,(\text{stat}) \pm 0.03 \,(\text{syst})\right] \,\text{ps}$$

• First study of CP violation in $B_s^0 \rightarrow J/\psi f_0$: [LHCb, G. Raven @ LP 2011]

Theoretical Uncertainties?

- The composition of the $f_0(980 \text{ is still poorly known}) \rightarrow 2$ benchmarks:
 - Quark-antiquark: $|f_0(980)\rangle = \cos \varphi_{\rm M} |s\bar{s}\rangle + \sin \varphi_{\rm M} \frac{1}{\sqrt{2}} \left(|u\bar{u}\rangle + |d\bar{d}\rangle \right)$
 - Tetraquark: $|f_0(980)\rangle = \frac{1}{\sqrt{2}}\left([su][\bar{s}\bar{u}] + [sd][\bar{s}\bar{d}]\right) \rightarrow$

[R.F., Rob Knegjens & Giulia Ricciardi, arXiv:1109.1112 [hep-ph]]

- Detailed analysis: $A(B_s^0 \to J/\psi f_0) \propto \left[1 + \lambda^2 (be^{i\vartheta}) e^{i\gamma}\right]$
 - Effective $B_s^0 \rightarrow J/\psi f_0$ lifetime and mixing-induced CP asymmetry S are quite robust with respect to hadronic effects encoded in $be^{i\theta}$:

• Should smallish CPV $-0.1 \leq S \leq 0$ be found: [LHCb@LP11: $S = -0.43^{+0.43}_{-0.34}$]

 \Rightarrow crucial to constrain hadronic corrections to disentangle NP from SM

• <u>Control channel</u>: $B_d^0 \to J/\psi f_0(980) \Rightarrow search for it & add to agenda!$

[R.F., Rob Knegjens & Giulia Ricciardi, arXiv:1109.1112 [hep-ph]]

Implications of the Data for the B_d^0 System

• Tension in fit of UT:
$$(\phi_d)_{J/\psi K^0} - 2\beta_{\text{true}} = -(8.7^{+2.6}_{-3.6} \pm 3.8)^\circ \rightarrow |\text{NP!?}|$$

• <u>SM corrections</u>: doubly Cabibbo-suppressed penguins $|(\lambda \equiv |V_{us}| = 0.22) \rightarrow$

$$A(B_d^0 \to J/\psi K_{\rm S}) \propto \left[1 + \epsilon a e^{i\theta} e^{i\gamma}\right] \left[(\epsilon \equiv \lambda^2/(1-\lambda^2) \sim 0.05) \right]$$

• Generalized expression for mixing-induced CP violation: $[\phi_d = 2\beta + \phi_d^{NP}]$

$$\frac{S(B_d \to J/\psi K_{\rm S})}{\sqrt{1 - C(B_d \to J/\psi K_{\rm S})^2}} = \sin(\phi_d + \Delta\phi_d)$$

$$\sin \Delta \phi_d \propto 2\epsilon a \cos \theta \sin \gamma + \epsilon^2 a^2 \sin 2\gamma$$
$$\cos \Delta \phi_d \propto 1 + 2\epsilon a \cos \theta \cos \gamma + \epsilon^2 a^2 \cos 2\gamma$$

•
$$\Delta \phi_d \ cannot \ be \ calculated: \Rightarrow use \ B^0_d \to J/\psi \pi^0 \ data \ \& \ SU(3)$$

– Fit to all current data, allowing also for SU(3)-breaking corrections:

 $\Rightarrow \Delta \phi_d \in [-6.7, 0.0]^{\circ}$, i.e. softens the tension in the fit of the UT.

– NP mixing phase: $\phi_d^{\text{NP}} \in [-14.9, 4.0]^\circ$, i.e. no significant effect.

• Observation:

- The quality of the *B*-factory data has essentially reached a level of precision where subleading SM effects have to be included!
- This will be even much more relevant in the LHC era, but $B_d^0 \rightarrow J/\psi \pi^0$ is very challenging for this experiment (super-*B* factory could do) \Rightarrow

[S. Faller, R.F., M. Jung & T. Mannel (2008)]

A New Channel for LHCb: $B^0_s o J/\psi K_{ m S}$

 $A(B_s^0 \to J/\psi K_{\rm S}) \propto \mathcal{A} \left[1 - a e^{i\theta} e^{i\gamma}\right]$

- <u>U-spin symmetry</u>:⁵ $B_s^0 \to J/\psi K_S \Leftrightarrow B_d^0 \to J/\psi K_S$ [R.F. (1999)]
 - Determination of the UT angle γ .
 - Control of penguins in the determination of ϕ_d from $B_d^0 \to J/\psi K_{\rm S}$.
- Experimental status of the $B_s^0 \rightarrow J/\psi K_S$ decay:
 - Recent news from LHCb [P. Koppenburg @ Physics in Collision 2011]:

 $\frac{\mathsf{BR}(B_s \to J/\psi K_{\rm S})}{\mathsf{BR}(B_d \to J/\psi K_{\rm S})} = 0.0378 \pm 0.0058 (\mathsf{stat}) \pm 0.0020 (\mathsf{syst}) \pm 0.0030 (\mathsf{frag})$

– First observation by CDF @ ICHEP2010: $0.041\pm0.007\pm0.004\pm0.005$

 $^{^{5}}U$ spin is an SU(2) subgroup of strong $SU(3)_{
m F}$ relating down and strange quarks to each other.

• Fresh look: [with Kristof De Bruyn & Patrick Koppenburg, arXiv:1010.0089 [hep-ph]]

- First LHCb (toy) feasibility study: $\rightarrow \gamma$ extraction;
- Main application: control of the penguin effects in $(\phi_d)_{J/\psi K_S}$:

 \Rightarrow interesting study for the LHCb upgrade [100 fb⁻¹]

***** Further Benchmark Decays

for the

LHCb Experiment

 \rightarrow very rich physics programme ...

[Detailed studies: LHCb Collaboration, LHCb-PUB-2009-029, arXiv:0912.4179v2]

Two Major Lines of Research

- 1. Precision measurements of the angle γ of the UT:
 - Tree strategies, with expected sensitivities after 1 *nominal* year:
 - $$\begin{split} &- B_s^0 \to D_s^{\mp} K^{\pm}: \ \sigma_{\gamma} \sim 14^{\circ} \\ &- B_d^0 \to D^0 K^*: \ \sigma_{\gamma} \sim 8^{\circ} \qquad \dots \text{ to be compared with the} \\ &- B^{\pm} \to D^0 K^{\pm}: \ \sigma_{\gamma} \sim 5^{\circ} \\ &\text{ current } B\text{-factory data: } \gamma|_{D^{(*)}K^{(*)}} = \begin{cases} (71^{+21}_{-25})^{\circ} & [\text{CKMfitter}] \\ (73 \pm 11)^{\circ} & [\text{UTfit}] \end{cases} \end{split}$$
 - Decays with penguin contributions:

$$\diamond \ B_s^0 \to K^+K^- \text{ and } B_d^0 \to \pi^+\pi^-: \ \sigma_\gamma \sim 5^\circ \\ - \ B_s^0 \to D_s^+D_s^- \text{ and } B_d^0 \to D_d^+D_d^-$$

2. "Rare" (strongly suppressed) decays which are absent at the SM tree level:

•
$$B_s^0 \rightarrow \phi \phi$$

• $B_s^0 \rightarrow \mu^+ \mu^-$, $B_d^0 \rightarrow \mu^+ \mu^-$ (ATLAS & CMS are competitive)
• $B_d^0 \rightarrow K^{*0} \mu^+ \mu^-$, $B_s^0 \rightarrow \phi \mu^+ \mu^-$; ...

ightarrow let's have a closer look at two of my "favourites" \diamond ...

The

 $B_s \to K^+ K^-$, $B_d \to \pi^+ \pi^-$

System

Decay Topologies & Amplitudes

• The decays $B_d \to \pi^+\pi^-$ and $B_s \to K^+K^-$ are related to each other through the interchange of all down and strange quarks:

$$U\text{-spin symmetry} \quad \Rightarrow \quad d' = d, \ \theta' = \theta$$

- Determination of γ and hadronic parameters $d(=d')\text{, }\theta$ and $\theta'.$
- Internal consistency check of the U-spin symmetry: $\theta \stackrel{?}{=} \theta'$.

[R.F. (1999)]

• Detailed studies show that this strategy is very promising for LHCb:

LHCb Collaboration (B. Adeva *et al.*) LHCb-PUB-2009-029, arXiv:0912.4179v2

A Fresh Look:

\rightarrow get ready for LHCb data...

- Use *B*-factory data as input, as well as ...
- ${\sf BR}(B_s \to K^+K^-)$ measurements by CDF and Belle @ $\Upsilon(5S)$,
- updated information of *U*-spin-breaking form-factor ratios.

[with R. Knegjens, arXiv:1011.1096 [hep-ph]]

Current Picture for γ

- Input data:
 - Information on $K \propto BR(B_s \to K^+K^-)/BR(B_d \to \pi^+\pi^-)$;
 - CP violation in $B^0_d \to \pi^+\pi^-$ and $B^0_d \to \pi^\mp K^\pm$;
 - U-spin-breaking corrections: $\xi \equiv d'/d = 1 \pm 0.15$, $\Delta \theta \equiv \theta' \theta = \pm 20^{\circ}$:

• Fits of the UT: $\gamma = (67.2^{+3.9}_{-3.9})^{\circ}$ (CKMfitter), $(69.6 \pm 3.1)^{\circ}$ (UTfit).

The Effective $B^0_s ightarrow K^+K^-$ Lifetime

• Particularly nice and simple observable: $[\langle \Gamma(B_s(t) \to f) \rangle \to \text{``untagged'' rate}]$

$$\tau_{K^+K^-} \equiv \frac{\int_0^\infty t \, \left\langle \Gamma(B_s(t) \to K^+K^-) \right\rangle \, dt}{\int_0^\infty \left\langle \Gamma(B_s(t) \to K^+K^-) \right\rangle \, dt}$$

• Using K, $\mathcal{A}_{CP}^{dir}(B_d \to \pi^{\mp} K^{\pm})$ and $\gamma = (68 \pm 7)^{\circ} [\oplus U$ -spin-breaking]: \Rightarrow

[CDF (2006): $\tau_{K^+K^-} = (1.53 \pm 0.18 \pm 0.02) \text{ps}^{-1} \Rightarrow \tau_{K^+K^-} / \tau_{B_s} = 1.04 \pm 0.12$]

• Recent News from LHCb:

\rightarrow first results on the effective lifetime of $B_s^0 \rightarrow K^+ K^-$:

- The error will be reduced soon.
- Analysis to measure CP violation in $B_s^0 \to K^+ K^-$ is also in progress.

 \rightarrow stay tuned ...

Mixing-Induced $B^0_s \rightarrow K^+K^-$ CP Asymmetry

• The next observable to enter the stage: $\mathcal{A}_{CP}^{mix}(B_s \to K^+K^-)$

$$a_{\rm CP}(t) = \frac{\mathcal{A}_{\rm CP}^{\rm dir}\cos(\Delta M_s t) + \mathcal{A}_{\rm CP}^{\rm mix}\sin(\Delta M_s t)}{\cosh(\Delta\Gamma_s t/2) + \mathcal{A}_{\Delta\Gamma}\sinh(\Delta\Gamma_s t/2)}$$

• Using K, $\mathcal{A}_{CP}^{dir}(B_d \to \pi^{\mp} K^{\pm})$, $\gamma \oplus U$ -spin-breaking effects: \Rightarrow

- Correlation is very robust with respect to uncertainties.
- Allows also an unambiguous determination of ϕ_s with $\sin \phi_s$.

 \Rightarrow Another interesting probe for NP in $B_s^0 - \bar{B}_s^0$ mixing

Search for New Physics

The Rare Decay $B^0_s o \mu^+ \mu^-$

• Only loop contributions in the SM ("penguins' & "box" diagrams):

• <u>Hadronic sector</u>: \rightarrow simple situation (only *B* decay constant f_{B_s} enters):

$$\Rightarrow \mid B_s^0 \rightarrow \mu^+ \mu^-$$
 is one of the cleanest rare B decays

• <u>SM prediction</u>: $BR(B_s \to \mu^+ \mu^-) = (3.6 \pm 0.4) \times 10^{-9}$ [A.J. Buras ('09)]

NP may enhance BRs significantly...

[Babu & Kolda, Dedes et al., Foster et al., Carena et al., Isidori & Paradisi, ...]

• Example of a recent analysis: \rightarrow supersymmetric flavour models:

[Altmannshofer, Buras, Gori, Paradisi & Straub (2009); see also review by A. Buras, arXiv:1012.1447 [hep-ph]] • <u>Tevatron:</u>

- DØ (2010): BR $(B_s^0 \to \mu^+ \mu^-) < 5.1 \times 10^{-8}$ (95% C.L.)
- CDF (2011): BR $(B_s^0 \to \mu^+ \mu^-) < 4.0 \times 10^{-8}$ (95% C.L.)

 \oplus report of observation of an excess of B_s candidates (!): BR $(B_s^0 \to \mu^+ \mu^-) = (18^{+11}_{-9}) \times 10^{-9} \dots$

- Large Hardon Collider:
 - CMS (2011): BR $(B_s^0 \to \mu^+ \mu^-) < 1.9 \times 10^{-8}$ (95% C.L.)
 - LHCb (2011): BR $(B_s^0 \to \mu^+ \mu^-) < 1.5 \times 10^{-8}$ (95% C.L.)
 - 1st LHC combined limit: $| BR(B_s^0 \to \mu^+ \mu^-) < 11 \times 10^{-9} (95\% \text{ C.L.}) |$

 \rightarrow LHC upper bound already ~ 3 \times SM value ...

[G. Raven @ Lepton-Photon 2011, LHCb-CONF-2011-047]

The Limiting Factor for the Measurement:

• The analysis of $B_s^0 \to \mu^+ \mu^-$ relies on normalization channels:

$$\mathsf{BR}(B_s^0 \to \mu^+ \mu^-) = \mathsf{BR}(B_q \to X) \frac{\epsilon_X}{\epsilon_{\mu\mu}} \frac{N_{\mu\mu}}{N_X} \frac{f_q}{f_s}$$

- ϵ factors are total detector efficiencies.
- ${\cal N}$ factors denote the observed numbers of events.
- f_q are fragmentation functions, which describe the probability that a b quark will fragment in a B_q meson ($q \in \{u, d, s\}$).
- <u>A closer look shows</u>: f_s/f_d is the major source of uncertainty:

 \Rightarrow "boring" non-perturbative, hadronic parameter ...

• <u>New method</u>: \rightarrow use non-leptonic *B* decays to *determine* f_s/f_d ...

$$\Rightarrow$$
 U-spin-related $\bar{B}_s^0 \to D_s^+ \pi^-$, $\bar{B}_d^0 \to D^+ K^-$ system:

[R.F., Nicola Serra & Niels Tuning (2010)]

- Prime examples for "factorization" (but so far no application ...) \Rightarrow
- Ratio of branching ratios can be calculated:
 - Non-fact. SU(3)-breaking corrections: tiny (constrainted through data).
 - Factorizable SU(3)-breaking corrections:
 - \rightarrow form-factor ratio [QCD sum rules \oplus lattice QCD (in progress)]:

• Resulting NP Reach at LHCb through New Method for f_s/f_d :

 \rightarrow contours for the detection of a 5 σ NP signal ("toy" study):

[R.F., N. Serra & N. Tuning (2010)]

Various

<u>other</u>

Interesting Topics ...

Examples

- Charm physics: $D^0 \rightarrow K^+ K^-$, ...
 - While FCNCs in the B system are sensitive to new effects in the up sector, charm physics probes the down sector (b, s, d in SM loops)!
 - D^0 - \overline{D}^0 mixing seen in the ball park of the SM, but NP could be hiding there: we have to struggle with long-distance QCD effects.
 - Interesting NP probe: search for CP-violating effects, which are tiny in the SM but could be enhanced through NP!
- Search for lepton flavour violation: $B^0_{d,s} \to e^{\pm} \mu^{\mp}$, $B^0_{d,s} \to \mu^{\pm} \tau^{\mp}$
 - In the SM such processes are forbidden!
 - However, they may arise in NP scenarios, such as SUSY.
 - Studies complement other searches of this phenomenon such as by means of $\mu \to e\gamma$, $\tau \to \mu\gamma$, $\tau \to \mu\mu\mu$, ...

Will we eventually see signals?

Conclusions & Outlook

Where Do We Stand in *B* Physics?

• Tremendous progress in *B* physics in the last decade:

Fruitful interplay between $theory \oplus experiment$

- $e^+e^- B$ factories: have produced $\sum O(10^9) B\bar{B}$ pairs;
- Tevatron: first pioneering B_s results.

 \rightarrow Data agreed globally with CKM, but also a few potential deviations

- Towards new frontiers in *B* physics: | LHC $| \rightarrow$ already many results:
 - Full exploitation of the B_s physics potential has started!
 - First studies of CP violation: $B^0_s \to J/\psi \phi$, \ldots
 - New analyses of rare decays: $B^0_s \to \mu^+\mu^-$, $B^0_d \to K^{*0}\mu^+\mu^-$, \ldots
- Still no signals for New Physics (as from the direct searches):
 - Impressive (also frustrating ...), but we are still at the beginning.
 - We will continue to see more and more precise measurements ...

An Optimistic Scenario: If Nature is Kind (!?) ...

- First unambiguous signs for NP @ LHC in the flavour sector:
 - Could eventually emerge @ LHCb as CP violation in $B_s^0 \rightarrow J/\psi \phi$.
 - Would imply new sources of CP violation!
 - Study correlations with observables provided by other ${\cal B}$ decays.

 \rightarrow NP reach limited by *precision*

- Ideally, NP signals would be complemented by collider physics:
 - Direct signals of new particles @ ATLAS and CMS (\oplus Tevatron).
 - Measure masses, couplings of new particles (e.g. Z' bosons, SUSY).
 - Flavour-physics observables determine then the new flavour- and CPviolating structures (NP particle masses, couplings important input).

 \rightarrow NP reach limited by the *energy* of the LHC (or ILC, CLIC, ...)

• LHC data collected so far: \Rightarrow prepare to deal with smallish NP effects...