The LHC: Status and Performance

Alick Macpherson LHC Operations Group CERN

UK HEP Forum 7th September 2011

Introduction to the LHC

LHC performance to date

What holds us back

- □ Electron Cloud
- □ Beam Induced Heating
- UFOs

Implications of Radiation to Electronics and single event upsets

Outlook: where we think we improve (2011 & 2012)

The LHC: Installed in 26.7 km LEP tunnel Depth of 70-140 m

Lake of Geneva

LHCb

CMS, Totem

Control Room

ATLAS, ALFA

CE ELEE

LHC layout and parameters

- □8 arcs (sectors), ~3 km each
- □ 8 long straight sections (700 m each)
- □ beams cross in **4 points**
- □ 2-in-1 magnet design with separate vacuum chambers $\rightarrow p$ -p collisions

Nominal LHC parameters				
Beam energy (TeV)	7.0			
No. of particles per bunch	1.15x10 ¹¹			
No. of bunches per beam	2808			
Stored beam energy (MJ)	362			
Transverse emittance (µm)	3.75			
Bunch length (cm)	7.6			

LHC layout and parameters

- □8 arcs (sectors), ~3 km each
- □ 8 long straight sections (700 m each)
- □ beams cross in **4 points**
- □ 2-in-1 magnet design with separate vacuum chambers $\rightarrow p$ -p collisions

Nominal LHC parameters				
Beam energy (TeV)	7.0			
No. of particles per bunch	1.15x10 ¹¹			
No. of bunches per beam	2808			
Stored beam energy (MJ)	362			
Transverse emittance (µm)	3.75			
Bunch length (cm)	7.6			

 $\beta^* = 0.55 \text{ m} (\text{beam size} = 17 \ \mu\text{m})$ Crossing angle = 285 \ \mu rad $L = 10^{34} \text{ cm}^{-2} \text{ s}^{-1}$

The LHC needs most of the CERN accelerators...

Energy: Damage potential ... setting the scale

Beam impact with SPS vacuum chamber

Beam Energy: 2MJ

< 1% of a nominal LHC beam

We now routinely operated the LHC with ~100 MJ

... But this is not the worst

groove in a SPS vacuum chamber of several cm.

... that should not be released

S34 Incident in 2008

Energy dissipated was less than the LHC nominal beam energy

The LHC requires a large and complex collimation system *Previous colliders used collimators mostly for experimental background conditions - the LHC can only run with collimators.*

Ensure 'cohabitation' of:

- 100's of MJ of stored beam energy,
- super-conducting magnets with quench limits of few mJ/cm³

Almost 100 collimators and absorbers.

Alignment tolerances <0.1 mm to ensure a collimation cleaning efficiency over 99.99%</p>

Operation: Regular collimation hierarchy and cleaning efficiency validation

beam

Beam in the LHC: Bunches

The LHC 400 MHz Radio-Frequency system provides 35'640 possible bunch positions every 2.5 ns (0.75 m) along the LHC circumference.

• A priori any of those positions could be filled with a bunch...

Smallest bunch-to-bunch distance = 25 ns: max. number of bunches is <u>3564</u>

2011 Standard running: 1380 bunches, 50 ns spacing Bunch Crossings/turn: ATLAS & CMS: 1318, LHCb: 1296, ALICE: 39

1380 bunches with 50 ns spacing

•••)

VLC media player									- • ×			
<u>F</u> ile	<u>v</u> iew	_ <u>s</u> etting	s <u>A</u> ud • ••	•• ••	ieo <u>N</u> a i i≣	avigation <u>r</u>						
File	File Vertical Timebase Trigger Display Cursors Measure Math Analysis Utilities Help											
				· · ·	• •							
									0			
	+ + + + + + + + + + + + + + + + + + + +			+-+-+-								
							<u>.</u>					
1												
<u>Z1</u>							•-*-•-•-	• • •	· ····································			
B	eam	abo	rt g	<mark>ap</mark>		2	ns					
					· ·		· · · ·	LH(C circu	Imferer	nce	
Ţ			na han ya	ייןייין		and the second second						
							Bear	n 1				······
C2												
[C2]		0.50 71	700	m(C2)	أأسمنند			ينفذكن ومتقلاص		Timebas	e -40.0 us Tr	igger Ext OC
	680 m -2 380 V	V/div ofst	770 r 500	nV/div ps/div						1.00 MS	10.0 µs/div N 10 GS/s E	ormal 400 mV dge Positive
0:0	Croy 0:00 / 0:	00: x1.0	00 "LHC	C Bunch	Profile	B1 HD"					2011-07	7-20 12:37:15

1380 bunches with 50 ns spacing

Experimental long straight sections

Example for an LHC insertion with ATLAS or CMS

The 2 LHC beams are brought together to collide in a 'common' region.
 Over ~260 m, beams circulate in the same vacuum chamber
 Potential 'parasitic' beam-beam encounters (with small bunch spacing)

Separation and crossing: example of ATLAS

Horizontal plane: the beams are combined and then separated

Common vacuum chamber

Vertical plane: the beams are deflected to produce a **crossing angle** at the IP **Reason**: **avoid undesired encounters in the common vacuum region.**

	α (μrad)	Î
ATLAS	-120 / ver.	~ 7 mm
ALICE	80 / ver.	
CMS	120 / hor	_
LHCb	-250 /hor	to ocolo
2011	@ 50 ns	. to scale

Beam size: aperture and β* limits at an IP

 \square Focusing at the IP is defined by β^* which relates to the beam size σ

 $\sigma^2 = \beta^* \varepsilon$

 $\square \beta^*$ is limited by aperture of **triplet quadrupoles** around the collision point .

Smaller size σ at the IP implies:

- \rightarrow Larger divergence (phase space conservation !)
- \rightarrow Faster beam size growth in the space from IP to first quadrupole !

Beam size: aperture and β^* limits at an IP

 \square Focusing at the IP is defined by β^{*} which relates to the beam size σ

 $\sigma^2 = \beta^* \epsilon$

 $\square \beta^*$ is limited by aperture of **triplet quadrupoles** around the collision point .

Smaller size σ at the IP implies:

- \rightarrow Larger divergence (phase space conservation !)
- \rightarrow Faster beam size growth in the space from IP to first quadrupole !

Luminosity: collider figure-of-merit

Event rate N for a physics process with cross-section σ is proportional to the collider Luminosity L

$$N = L\sigma$$

$$L = \frac{kN^2 f}{4\pi\sigma_x^* \sigma_y^*} = \frac{kN^2 f\gamma}{4\pi\beta^*\epsilon}$$

$$k = number of bunches$$

$$N = no. protons per bunch$$

$$f = revolution frequency = 11.25 \text{ kHz}$$

$$\sigma^*_{x,\sigma^*y} = beam sizes at collision point$$

Luminosity: collider figure-of-merit

Event rate N for a physics process with cross-section σ is proportional to the collider Luminosity L

$$L = \frac{kN^2 f}{4\pi\sigma_x^*\sigma_y^*} = \frac{kN^2 f\gamma}{4\pi\beta^*\varepsilon}$$

λ

How to Maximize Luminosity
 Many bunches (k)

□ Many protons per bunch (N)

 \Box Small beam sizes $\sigma^*_{x,y} = (\beta^* \epsilon)^{1/2}$

- β* : beam envelope (optics)
- ε : beam emittance
 - ε = phase space volume occupiedby the beam (constant along ring)

What is the LHC

LHC performance to date

What holds us back

- □ Electron Cloud
- □ Beam Induced Heating
- □UFOs

□ Implications of Radiation to Electronics and single event upsets

Outlook: where we think we improve (2011 & 2012)

- The 2010 run was the 'learning to handle high intensity' year.
 - Progressive intensity ramp up.
 - Initial operation with isolated bunches, then moved to **150 ns spacing**.
 - Got up to **368 bunches** .
- Test with 75 and 50 ns beams: \rightarrow Limitations due to **Electron clouds**.

day of year 2010 18

day of year 2010

2011: Beam Intensity Ramp-up (# of bunches)

2011 Proton Run - to date

2011 Proton Run - to date

Expected integrated luminosity for LHCb in

Introduced luminosity leveling for LHCb and ALICE

=> LHCb can run at optimal μ and L_{max}

Achievements To date

	2010	2011	Nominal	
Energy [TeV]	3.5	3.5	7	
β* [m] (IP1,IP2,IP5,IP8)	3.5, 3.5, 3.5, 3.5	1.5, 10, 1.5, 3.0	0.55, 10, 0.55, 10	
Emittance [µm] (start of fill)	2.0 – 3.5	1.5 – 2.2	3.75	
Transverse beam size at IP1&5 [µm]	60	28	16.7	
Bunch population	1.2×10 ¹¹ p	1.35×10 ¹¹ p	1.15×10 ¹¹ p	
Number of bunches	368	1380	2808	
Number of collisions (IP1 & IP5)	348	1318	-	
Stored energy [MJ]	28	110	360	
Peak luminosity [cm ⁻² s ⁻¹]	2×10 ³²	2.41×10 ³³	1×10 ³⁴	
Max delivered luminosity (1 fill) [pb-1]	6.23	100.7	-	
Longest Stable Beams fill [hrs]	12:09	25:59	-	

LHC operation so far:

Proton-proton Collisions at 450, 1380, and 3500 GeV Lead-lead collisions at 450 and 3500 Z GeV Low Luminosity 90m Beta* optics (TOTEM, ALFA) tested

Beam beam interactions

Head on Beam Beam: No limit found so far

□ 2 x nominal bunch intensity, 0.5 x nominal emittance!

Long-range beam-beam

□ Reduced crossing angle in steps from 120 µrad to 36 µrad

• 100% = 120 μ rad = 12 σ beam-beam separation for ϵ ~2.5 μ m!

Strong correlation of losses with number of long range interactions (PACMAN effects).

Beam beam interactions

Head on Beam Beam: No limit found so far

□ 2 x nominal bunch intensity, 0.5 x nominal emittance!

Long-range beam-beam

□ Reduced crossing angle in steps from 120 µrad to 36 µrad

• 100% = 120 μ rad = 12 σ beam-beam separation for ϵ ~2.5 μ m!

Strong correlation of losses with number of long range interactions (PACMAN effects).

Long range Beam beam effects and Crossing angle reduction 50% fine (no lifetime drop),40% (5 σ b-b) still OK, 30% too low! => paves the way for Beta* reduction

What is the LHC

LHC performance to date

What holds us back

- □ Electron Cloud
- □ Beam Induced Heating
- □UFOs

□ Implications of Radiation to Electronics and single event upsets

Outlook: where we think we improve (2011 & 2012)

Electron Cloud and beam scrubbing

Vacuum pressure increase at expts when switched to bunch trains

- more critical as intensity increases and bunch spacing decreases
 - □ Effects can be suppressed by solenoids (CMS, ALICE stray fields…).
- For 50ns spacing: vacuum pressure increase prevented operation
 1000 fold increase => exceeded 10⁻⁶ mbar => closure of vacuum valves.
- Signature Consistent with the signature of **electron clouds**.

Electron Cloud:

□Electrons generated at vacuum chamber surface by beam impact, photons ...

Multiplication: Caused by bunches accelerating secondary emission electrons

- Generates electron cloud: Electron energies are in the 10-300 eV range.
- electron cloud => pressure rise, beam instabilities, detector backgrounds, and possible overload of cryogenic system by beam induced heating
- Electron cloud build-up is a threshold phenomenon

Electron Cloud and beam scrubbing

Vacuum pressure increase at expts when switched to bunch trains

- more critical as intensity increases and bunch spacing decreases
 - □ Effects can be suppressed by solenoids (CMS, ALICE stray fields…).
- For 50ns spacing: vacuum pressure increase prevented operation
 1000 fold increase => exceeded 10⁻⁶ mbar => closure of vacuum valves.
- Signature Consistent with the signature of **electron clouds**.

Electron Cloud:

Electrons generated at vacuum chamber surface by beam impact, photons ...

Multiplication: Caused by bunches accelerating secondary emission electrons

- Generates electron cloud: Electron energies are in the 10-300 eV range.
- electron cloud => pressure rise, beam instabilities, detector backgrounds, and possible overload of cryogenic system by beam induced heating

□ Electron cloud build-up is a **threshold phenomenon**

Solution: **Beam scrubbing** => many bunches, large beam size

impact of the electrons **cleans** the surface (Carbon migration), reduces the electron emission and eventually the cloud disappears – **'beam scrubbing'**

Later bunches in the train see effects from bunches earlier in the train

Later bunches in the train see effects from bunches earlier in the train

Later bunches in the train see effects from bunches earlier in the train

Bunch sizes with strong electron cloud activity

Beam Scrubbing in 2011

Beam Scrubbing in 2011

1020 bunches injected (50 ns bunch spacing) after only 15 hours of scrubbing
 Scrubbing' @ 450 GeV prepared vacuum for 50ns operation
 2012: scrubbing for 25ns operation: ~150hrs of beams => 2-3 wks of scrubbing

Beam cleaning by scrubbing

Situation Now: 50 ns Beams in Physics

Situation Now: 50 ns Beams in Physics

Beam Induced Heating

Significant measured temperature rise due to heating by the beam

LHC injection kickers (MKI)
Cryogenic beam screens
Collimator(s)

Beam induced heating has strong bunch length dependence

Operational solution: run with bunch length increased to 1.2 ns

- □ Possible increase of longitudinal losses and population of abort gap
- □ Improving beam blow-up control during the ramp (RF)
- □ Trapped Higher Order Modes: could an explain bunch length dependence
 - dynamic beam impedance study ongoing

Example: Injection kicker heating

Example: Collimator heating (TCT)

- Temperature Rise on Tertiary Collimators (close to expts)
 - maximum rise typically when ramping: bunch length is shortest

Timeseries Chart between 2011-05-29 00:00:00.000 and 2011-06-04 23:59:59.000 (LOCAL_TIME)

LHC Cryogenic Dipoles & Beam Screens

Beam Heating and Beam Screens

Pressure Spikes close to the expts

Vacuum Pressure at the D1 (Right side of ALICE)

Pressure spikes at injection

Reason not clear but triggered beam dump (ie not e-cloud and not vacuum lon pumps)

- Since July 2010:
 35 fast loss events led to a beam dump.
 - 18 in 2010, 17 in 2011.
 13 around MKIs.
 6 dumps by experiments.
 1 at 450 GeV.
- Typical characteristics:
 - Loss duration: ~10 turns
 - Often unconventional loss locations (e.g. in the arc)

The events are due to UFOs (Unidentified Falling Objects).

Over 10000 candidate UFOs below threshold detected. On average ~6 UFOs/hour during stable beams in the arcs.

Micrometer sized macro-particles are most plausible explanation.

UFOs cause beam dumps at all energies

Over 10000 candidate UFOs below threshold detected. On average ~6 UFOs/hour during stable beams in the arcs.

Micrometer sized macro-particles are most plausible explanation.

UFOs cause beam dumps at all energies

Beam Dump: UFO at Injection Kickers in Pt. 2, at 450 GeV.

Are UFOs just Dust?

Dust particle distribution in ceramic test beam tube

... may not be representative of the LHC.

Measured 1/x distribution of dust particles seen in vacuum test stand could explain UFO distribution.

UFOs: Implications for Higher Energies

- UFO amplitude: At 7 TeV about
 3 times higher than at 3.5TeV.
- Beam Loss Monitor thresholds: Arc thresholds at 7 TeV are a factor 5 smaller than at 3.5 TeV.

- UFO rate:
 - Observations suggest no dependency with energy

UFOs: Implications for Higher Energies

- UFO amplitude: At 7 TeV about
 3 times higher than at 3.5TeV.
- Beam Loss Monitor thresholds: Arc thresholds at 7 TeV are a factor 5 smaller than at 3.5 TeV.

- UFO rate:
 - Observations suggest no dependency with energy

Arc UFO beam dump Estimates: Scaling from 3.5 TeV to 7 TeV 2 beam dumps @ 3.5TeV => 82 dumps by arc UFOs@ 7TeV

Weekly Report

		Radiation lev	vels in the LH	IC (R2E-related)								
		Week 26 (27.	06.2011 00:00h - 0	3.07.2011 23:59h)								
	- Locations with c	umulated fluences <1E6 H	HEH/cm2 are those	e where the RadMons co	ounts (@5V & @3\	0						
	are statistically not relevant											
	 RadMon reading 	- RadMon readings in shielded areas are strongly affected by the thermal neutron component										
Comments:	Comments: - If more than one detector exists for an area, the highest level is taken into consideration											
	- BLM dose takes	detailed offset correction	into account (BE/	BI)								
	 w25: physics + r machine develop 	VID week. 27th and 28th Ju ments. Some losses expect	ted but significant	two days with lumi fills.	Arterwards the w	eek was dedicated to						
	- UI14/16 show h	ighest values for shielded	areas, US85 > 1F7	UI56 > several SEE f	ailures during the	week						
	Tunnel locations	- factor of 2x	11003, 0303 - 127	, 0350 > 5000101 500 1	and es during the	Heek						
Uncertainties:	Shielded areas - f	actor of 3x										
	ATLAS (ub ⁻¹)	ATLAS (peak) (Hz*ub ⁻¹)	CMS (µb ⁻¹)	CMS (peak) (Hz*ub ⁻¹)	ALICE (ub ⁻¹)	LHCb(ub ⁻¹)						
Lumi/week	109.5	1262.2	106.7	1243.7	0.3	42.7						
DDe	shie	elded areas		tun	nel							
nns	HEH (cm-2/w26)	HEH (cm-2/2011)	HEH	(cm-2/w26)	HEH (cm-2/2011)	BLM dose (mGy/week)						
13	<1.0E+6	2.1E+06		3.5E+06	8.8E+07	<10						
17	<1.0E+6	2.2E+06		3.5E+06	6.7E+07	<10						
53	<1.0E+6	2.9E+06		5.2E+0b	9.7E+07	<10						
	<1.0E+6	2.46+00		<1.0E+6	8.5E+07	<10						
77	<1.0E+6	4.3E+06		5 2E406	1 15+02	<10						
	shie	elded areas		tun	inel	120						
UJs	HEH (cm-2/w26)	HEH (cm-2/2011)	HEH	(cm-2/w26)	HEH (cm-2/2011)	BLM dose (mGy/week)						
14 (13, tun)	3.3E+06	5.7E+07		9.8E+09	3.8E+10	<10						
16 (17, tun)	2.3E+06	4.0E+07		7.7E+08	5.2E+10	<10						
22	N/A	N/A		5.2E+07	1.1E+09	<10						
23	<1.0E+6	<1.0E+6		8.6E+06	1.5E+08	<1						
32	N/A	N/A		<1.0E+6	<1.0E+6	140						
33	<1.0E+6	<1.0E+6		<1.05+0	<1.02+6	(N/)						
76	<1.0E+6	<1.0F+6		8.8F+08	8.85+09	<10						
87	<1.0E+6	1.1E+06		1.3E+08	2.4F+09	<1						
88	N/A	N/A		1.5E+08	8.6E+08	<10						
05.	shie	elded areas		tunne	l/side							
RES	HEH (cm-2/w26)	HEH (cm-2/2011)	HEH	(cm-2/w26)	HEH (cm-2/2011)	BLM dose (mGy/week)						
28	<1.0E+6	<1.0E+6		<1.0E+6	1.3E+07	<10						
32	<1.0E+6	<1.0E+6		<1.0E+6	<1.0E+6	140.						
38	<1.0E+6	<1.0E+6		<1.0E+6	2.8E+07	<10						
62	<1.0E+6	<1.0E+0		1.3E+06	2.0E+07	<10						
78	<1.0E+6	<1.0E+6		1.3E+06	2.8E+07	<10						
	ca	vern US85		caverr	UX85	-40						
US85/UX85	HEH (cm-2/w26)	HEH (cm-2/2011)	HEH	(cm-2/w26)	HEH	(cm-2/2011)						
	<1.0E+6	1.6E+07		3.3E+06		8.3E+07						
				tun	nel							
			HEH	(cm-2/w26)	HEH (cm-2/2011)	BLM dose (mGy/week)						
R34		N/A		3.0E+09	1.9E+10	<10						
R74/76		N/A	1	3.9E+09	4.68+10	<10						
R771		N/A		8.8E+09	8.1E+10	<10						
	shield	ed areas (UA)		tunne	I (RA)							
	HEH (cm-2/w26)	HEH (cm-2/2011)	HEH	(cm-2/w26)	HEH (cm-2/2011)	BLM dose (mGy/week)						
P2 right (27)	<1.0E+6	<1.0E+6		8.9E+07	6.5E+08	<10						
P2 left (23)	<1.0E+6	<1.0E+6		2.3E+08	2.6E+09	<10						
P8 right (87)	<1.0E+6	<1.0F+6		5.4E+08	7.15+10	<10						
P8 left (83)	<1.0E+6	1.6E+06		N/A	N/A	<10						
	Add	itional points of inter	l rest (losses ob	enved in 'unusual'	locations)	10						
	Auu	tuonal points of inter	rest (1055e5 0b)	serveu in unusuar	locations	Idead areas						
	HE	H (cm-2/w26)	HEH (cm-2/2011)	BLM dose (mGv/week)	HEH (cm-2/w26)	HEH (cm-2/2011)						
RB44/46		2.2F+07	1 65409	N//	N/A	N//						
		1 75+09	2.75.00	N/2		N 14/2						
07035		2.55.00	2.72409	N/#								
885		2.66+08	4.1E+09	<10	N/A	N//						
9R5		5.5E+07	8.8E+08	<10	N/A	N//						
11R5		7.4E+07	1.1E+09	<10	N/A	N//						
UPS54		N/A	N/A	<10	2.7E+06	4.3E+0						
11L1		7.6E+07	1.1E+09	<10	N/A	N//						
8L1		2.0E+09	3.3E+10	<10	N/A	N//						
ARC/DS												
18R7		4.5E+06	9.5E+07	<10	b							

	Weekly	/ Report		-		Detailed Analysis	
	Radiation leve			s	hielded areas	tunn	el
	- Locations with cumulated fluences <1E6 H	UJs					
	are statistically not relevant - RadMon readings in shielded areas are str	on	HEH (d	cm-2/w26	6) HEH (cm-2/2011)	HEH (cm-2/w26)	HEH (cm-2/2011) BLM dose (mGy/week)
Comments:	- If more than one detector exists for an are	¹⁴ 14 (13, ti	un)	3.3F+(06 5.7E+07	9.8E+09	3.8E+10 <10
	- W25: physics + MD week. 27th and 28th Ju		,	0.05.0		7.75.00	5 9 5 9 6 10
	- UJ14/16 show highest values for shielded	16(1), tt	in)	2.3E+0	06 4.0E+07	7.7E+08	5.2E+10 <10
Uncertainties:	Tunnel locations - factor of 2x Shielded areas - factor of 3x						
	ATLAS (μb^{-1}) ATLAS (peak) (Hz* μb^{-1})	CMS (µb ⁻¹) CMS (peak) (Hz*µb ⁻¹)	ALICE (µb ⁻¹) LHCb((μb ⁻¹)			
RRc RRc	109.5 1262.2 shielded areas	106.7 1243.7 tu	0.3 42.7 nnel				
13	HEH (cm-2/w26) HEH (cm-2/2011) <1.0E+6 2.1E+06	HEH (cm-2/w26) 3.5E+06	HEH (cm-2/2011) BLM c 8.8E+07 <10	dose (mGy/week)			
17	<1.0E+6 2.2E+06	3.5E+06	6.7E+07 <10				
57	<1.0E+6 2.4E+06	<1.0E+6	8.5E+07 <10				
73	<1.0E+6 2.6E+06 <1.0E+6 4.3E+06	<1.0E+6 5.2E+06	<1.0E+6 <10 1.1E+08 <10				
UJs	shielded areas HEH (cm-2/w26) HEH (cm-2/2011)	tu HEH (cm-2/w26)	nnel HEH (cm-2/2011) BLM (dose (mGy/week)			
14 (13, tun)	3.3E+06 5.7E+07	9.8E+09	3.8E+10 <10				
22	N/A N/A	5.2E+07	1.1E+09 <10				
23	<1.0E+6 <1.0E+6 N/A N/A	8.6E+06 <1.0E+6	1.5E+08 <1.0E+6	<10 1402			
33	<1.0E+6 <1.0E+6 <1.0E+6 9.3E+06	<1.0E+6 9.8E+08	<1.0E+6 1.6E+10 <10	N/A			
76	<1.0E+6 <1.0E+6	8.8E+08	8.8E+09 <10				
88	N/A N/A	1.5E+08	2.4E+09 8.6E+08	<10			
REs	shielded areas HEH (cm-2/w26) HEH (cm-2/2011)	tunn HEH (cm-2/w26)	el/side HEH (cm-2/2011) BLM d	lose (mGy/week)			
28 32	<1.0E+6 <1.0E+6 <1.0E+6 <1.0E+6	<1.0E+6 <1.0E+6	1.3E+07 <10	1402			
38	<1.0E+6 <1.0E+6	<1.0E+6	2.8E+07 <10				
68	<1.0E+6 <1.0E+6	1.3E+06	2.8E+07 <10				
11585/11785	<1.0E+6 <1.0E+6 <1.0E+6	1.3E+06 caver	2.4E+07 <10				
0303/0703	HEH (cm-2/w26) HEH (cm-2/2011) <1.0E+6 1.6E+07	HEH (cm-2/w26) 3.3E+06	HEH (cm-2/2 8.3E+07	2011) 7			
		tu HEH (cm-2/w26)	nnel	doso (mCu hunok)			
R34	N/A	3.0E+09	1.96+10 <10	uose (muy/week)			
R74/76	N/A	3.9E+09	4.6E+10 <10				
R//1	shielded areas (UA)	0.0ETU9	el (RA)				
P2 right (27)	HEH (cm-2/w26) HEH (cm-2/2011)	HEH (cm-2/w26) 8.9E+07	HEH (cm-2/2011) BLM c 6.5E+08 <10	dose (mGy/week)			
P2 left (23)	<1.0E+6 <1.0E+6	2.3E+08	2.6E+09 <10				
P8 right (87) P8 left (83)	<1.0E+6 <1.0E+6	5.4E+08	7.1E+10 <10				
10101010057	Additional points of inter	rest (losses observed in 'unusual	locations)				
	tuni HEH (cm-2/w26)	nel HFH (cm-2/2011) BIM dose (mGv/week)	shielded an	reas			
RB44/46	2.2E+07	1.6E+09 N/	A N/A	N/A			
UXC55 8R5	1.7E+08 2.6E+08	2.7E+09 N/	A N/A	N/A			
9R5	5.5E+07	8.8E+08 <1	10 N/A	N/A			
11R5	7.4E+07	1.1E+09 <1	10 N/A	N/A			
11L1	N/A 7.6E+07	1.1E+09 <1	LO 2.7E+06	4.3E+07 N/A			
8L1	2.0E+09	3.3E+10 <1	10 N/A	N/A			
ARC/DS 18R7	4.5E+06	9.5E+07 <1	10				

Radiation can cause single event upsets that lead to equipment failure and beam downtime

Equipment	Locations	# of Failures		Concoguonoo	Mitigation	Commente	
Equipment	Locations	Conf	Likely	Consequence	willigation	Comments	
Collimation Control	UJ14/16/56	2	2	Dump	Relocation Shielding	<u>Details</u>	
Cryogenics Control	UJ14/16/56/76	4	2	Dump	Relocation Shielding	<u>Details</u>	
Cryogenics WorldFip	TI2, RR53	2		Dump	Software Update	<u>Details</u>	
Biometry	UJ14/16		2	Delay	Relocation		
Cryogenics PLCs	US85	3	1	Dump	Relocation	Details	
Cryogenics Power Converter	US85	2		Dump	Relocation		
Power Converters auxilliary power supply	UJ14/43 RR17 UA87	4	1	Dump	Relocation Shielding Re-Design	<u>Details</u>	
Power Converters Other	several	several		Dump	Relocation Shielding Re-Design	<u>confirmed after</u> <u>H4IRRAD tests</u>	
UPS	UJ56/US85		2	Dump	Relocation		
QPS Control	UJ14/16	1	1	Dump	Re-Design	<u>Details</u>	
QPS ISO-150	Tunnel, UJ14/16, RR53	38		some: Dump	Firmware Re-Design	<u>23 cases</u> <u>transparent</u> <u>to operation after</u> <u>firmware update</u>	
uFIP	Tunnel, UJ14	1	1		Re-Design	<u>Details</u>	
wic	ті8	1		Dump	Relocation (done)	<u>Details</u>	
Power Converters 60A	Tunnel		?		Re-Design	<u>analysis is ongoing</u> <u>(H4IRRAD)</u>	
Valve Controllers	US85	?			Replacement	under investigation	

Radiation and Single Event Upsets

Radiation can cause single event upsets that lead to equipment failure and beam downtime

up to M/k 26	# of Failures						
	Conf	Likely		Grand Total			
Total:	58	1	2		70	Dump	Transparent
Shielded Area.:	21	12 33		33	33		
Tunnel:	37				37	12	25
Power Converters auxilliary power supply	UJ14/43 RR17 UA87		4	1	Dump	Relocation Shielding Re-Design	<u>Details</u>
Power Converters Other	several		several		Dump	Relocation Shielding Re-Design	<u>confirmed after</u> <u>H4IRRAD tests</u>
UPS	UJ56/US	85		2	Dump	Relocation	
QPS Control	UJ14/16		1	1	Dump	Re-Design	Details
QPS ISO-150	Tunnel, UJ14/16 RR53	,	38		some: Dump	Firmware Re-Design	<u>23 cases</u> <u>transparent</u> <u>to operation after</u> <u>firmware update</u>
uFIP	Tunnel,	UJ14	1	1		Re-Design	<u>Details</u>
wic	TI8		1		Dump	Relocation (done)	Details
Power Converters 60A	Tunnel			?		Re-Design	<u>analysis is ongoing</u> (H4IRRAD)
Valve Controllers	US85		?			Replacement	under investigation

Radiation and Single Event Upsets

Radiation can cause single event upsets that lead to equipment failure and beam downtime

up to M/k 26		# of Fa	ilures		
	Conf	Likely	Grand Total		
Total:	58	12	70	Dump	Transparent
Shielded Area.:	21	12	33	33	
Tunnel:	37		37	12	25

SEUs that lead to a beam dump can result in significant recovery time: eg cryogenics recovery can be 24hrs++

Concern: How to Scale SEUs to Nominal Operation?

Luminosity: P1/5 (x50), P8: (x3-5)

□ Energy: P1/5/7/8: (x1.5)

□ Intensity: P7(Collimation): Losses & Distribution (x ???)

Beam-Gas: P1/5/7/8 + ARC @25ns & Scrubbing (x ???)

Valve Controllers

US85

SEUs: Failures & Correlations

Performed Mitigations

Shielding:

□ P6 (RA63/UA63 and RA67/UA67) (gain ~factor 5-10)

- □ UJ22/23/76/88/87 (gain ~factor 10)
- □ RR77/73 (gain ~factor 10)
- □US85 Safe-Room (gain ~factor 10)

Relocations:

- □ Fire-Control Racks UJ56/76, US85 (safe)
- □ RTU relocated from safe room in UJ56/76 (safe)
- Cryo-relocations/valve replacement in UX85 (safe)
- □ UPS from UJ76 (safe)
- □ Fire-Detectors: US85, other points prepared (safe)
- □ PLCs from US85 (safe)
- Replacements & Upgrades:
 - QPS Firmware Upgrade (ISO150 failures) (transparent)
 - □ US85 24V Power Supply -> replaced by old model (more robust)

R2E (Radiation 2 Electronics) RoadMap

2011 Operation shows:

□ failures will continue to occur **but not limit luminosity reach**

- □ Identifies the most critical equipment
- Evolution of radiation levels compared with expectations

2011/12 Christmas Break (and Technical Stops):
 Relocation of most critical elements
 Additional shielding of most critical areas

2012 Operation:

□ Aim is that SEEs will not limit LHC performance

Next long-shutdown:

Relocation & Shielding for all critical areas

Long shut down R2E Mitigation work is in parallel to the Splice Consolidation program for the Magnet inter-connects

What is the LHC

- LHC performance to date
- What holds us back
 - □ Electron Cloud
 - □ Beam Induced Heating
 - □UFOs
 - □ Implications of Radiation to Electronics and single event upsets

Outlook: where we think we can improve (2011 & 2012)

LHC Machine Development: Whats next ...

Machine Development 22 days allocated in 2011.

MD website
<u>http://www.cern.ch/lhc-md</u>

Investigate luminosity reach

- MD3 (end of August):
 - □ β* =1m for 50ns
 - factor 1.5 in luminosity
 - explore 25ns beams setup

Machine Development: Exploring the LHC

Machine Development: Exploring the LHC

MDs: Bunch Intensity and Emittance

MD: Bunch Intensity and Emittance

MD Results: Bunch Intensity and Emittance

Optimal performance improvement

Assume 1.2 mm mrad minimum emittance

Injection limit on high emittance

Beam Dump (TCDQ) Robustness

Intensity Limit for Smallish Emittance

Exclude Region with Lower Luminosity

Room for Improvements

Room for Improvements (with injector limit)

Room for Improvements (with injector limit)

LHC MDs: Conclusion to Date

MD Achievements in numbers

- High bunch intensity in LHC: excellent beam lifetime Colliding beam @ 450 GeV: twice nominal intensity, half nominal emittance, head-on & parallel separation OK Long-range beam-beam for 50ns: crossing angle can be more than halved • Short bunch spacing \rightarrow 25ns: 24b trains, vacuum ~OK, heat load ~OK, instabilities, better than 50ns at same stage Injection: Tune working point: more space in tune diagram for BB footprint
 - ATS optics:

Ν _p γε	= ≈	2.7×10 ¹¹ p/bunch 3.3 μm
Ν_p γε	= ≈	2.3×10 ¹¹ p/bunch 1.7 μm
α c/2	=	48 μ rad for $\tau \approx 15$ h
N _{bunch} N _p γε	Ⅱ	216 1.2×10 ¹¹ p/bunch 2.7 μ m first batches
γε	≈ 3.	5 μm OK for injection
Q _x /Q _y	=	0.47/0.47
β*	=	0.3 m

Lumi Reach for remainder of 2011

	Adiabatic	Max Lumi Improvement	Lost Physics Time	Risk/ Reversibility	Pileup	Cumulative improvement factor	
		Tactor	(Days)			50 ns	25 ns
bunch Intensity	Yes	2	0	0	higher	Yes	No
Emittance	Yes	1.35	0	0	higher	Yes	No
Beta* = 1m	No	1.5	3	>0	higher	Yes	Yes
Beta* = 1.5m	No	1	3	0	higher	Yes	Yes
25ns	No	1.9	10	>0	same	No	Yes
		Luminosity Improvement Factor			4.1	2.9	
Pile Up				28	10		
		Relative Integrated Luminosity Factor			3.42	2.06	
Luminosity Improvement Factor		Factor	2.7	1.9			
Pile Up				19	7		
			Relative Integrated Luminosity Factor		2.32	1.38	
			Est. Integrated Lumi if stay as we are		~1.0	fb ⁻¹	

Luminosity comparison wrt:

1380 bunches, 1.1E11 av bunch intensity, emittance = 2.7um, beta* = 1.5, Peak Lumi = 1.2E33

Lumi Reach for remainder of 2011

	Adiabatic	Max Lumi Improvement	Lost Physics Time	Risk/ Reversibility	Pileup	Cumulative improvement factor	
		Tactor	(Days)			50 ns	25 ns
bunch Intensity	Yes	2	0	0	higher	Yes	No
Emittance	Yes	1.35	0	0	higher	Yes	No
Beta* = 1m	No	1.5	3	>0	higher	Yes	Yes
Beta* = 1.5m	No	1	3	0	higher	Yes	Yes
25ns	No	1.9	10	>0	same	No	Yes

Plan of attack

- Continue with 50ns
- Operate with Beta* =1m and emittance < 2um
- Increase bunch intensity (max 1.55e11)

Est. Integra	ated Lumi if st	ay as we are	~1.0	fb ⁻¹
Relative In	tegrated Lumi	nosity Factor	2.32	1.38
Pile Up			19	7
Luminosity	Improvement	Factor	2.7	1.9
Relative In	tegrated Lumi	nosity Factor	3.42	2.06
Pile Up			28	10
Luminosity	Improvement	Factor	4.1	2.9
10	>0	same	INO	res

Luminosity comparison wrt:

1380 bunches, 1.1E11 av bunch intensity, emittance = 2.7um, beta* = 1.5, Peak Lumi = 1.2E33

LHC Outlook ... till end of 2012

Proton Physics data-taking until end of 2012

□ 50ns or 25 ns

- 50ns with Beta* = 1m should give better delivered luminosity
- Peak Luminosity better with 50ns due to better beams from the injectors.
- Very high intensity operation at 50ns may need beam scrubbing with 25ns

Beam energy

 After copper stabilizer resistances measurements during the Christmas stop, re-evaluate maximum energy for 2012 (Chamonix 2012)

Ions Phyiscs

□ Lead-lead for 4-5 weeks at end of 2011

increase number of bunches and luminosity wrt 2010

□ Feasibility Test end 2011 for protons-lead (possibly 2012)

□ Possibility of protons-lead in 2012. Otherwise stay with lead-lead.

- Beam Intensity, peak and Integrated luminosity are still going up
- Successfully implemented luminosity calibration + leveling for LHCb
- Reached 2011 target integrated luminosity, with ~16 wks remaining
- Several issues being addressed that effect delivered luminosity progress (intensity, beam instabilities, ß*, emittance, electron cloud)
- Questions on energy, 25ns operation and schedule for 2012 to be addressed in "Chamonix 2012" (Jan 2012)
- Machine Protection issues are foremost in LHC operation
 We currently operate with ~110MJ of stored energy
- The LHC is an immensely interesting environment, and we are looking forward to delivering a lot of luminosity both before both and after the 2011/2012 break (ie before the 2013 long shutdown).

LHC target energy: the way down

All main magnets commissioned for 7TeV operation before installation		When	Why
	7 TeV	2002 2007	Design
Detraining found when hardware commissioning sectors in 2008	12 kA	2002-2007	Design
– 5 TeV poses no problem			
 Difficult to exceed 6 TeV 	5 TeV	Summer 2008	Detraining
	9 kA		
Machine wide investigations following			
S34 incident showed problem with magnet inter-connect joints	3.5 TeV	Late 2008 Spring 2009	Joints
magnet inter-connect joints	6 kA	001119 2000	
Commissioning of new			
Quench Protection System			
(nQPS)	1.18 TeV	Nov. 2009	nQPS
	2 kA		
450 GeV			

LHC target energy: the way up

Train magnets		When	What
 – 6.5 TeV is in reach – 7 TeV will take time 	7 TeV	2015++	Training
Repair joints	6 TeV	2015	Stabilizers
Complete pressure relief system		2014	
		2012	
Commissioned nQPS system	3.5 TeV	2011	000
		2010	nQPS
	1.18 TeV	2009	
450 GeV			

••• UFOs not just in the ARCs

13 beam dumps due to UFOs around injection kicker magnets (MKIs) In total ≈1500 UFOs around MKIs

On average now ~6 UFOs/hour. Is there a conditioning effect?

2301 candidate UFOs (excluding MKI UFOs) during stable beams in fills with at least 1 hour stable beams. all UFOs: Signal RS05 > 2·10⁻⁴ Gy/s. Data scaled with 1.85 (detection efficiency from reference data)

Measured and Calculated Power Spectra

- Beam Frequency Spectrum: simulation agrees with measurement below 1.2GHz for bunch length of ~ 1.2ns
- Beam impedance indicates higher order modes above 1GHz
- Significant power at 1.6 GHz.

□ 35 dB below 400 MHz component(factor of 3000 in power)

Phase I Surfacing of bus bar and installation of redundant shunts by soldering

Phase I Surfacing of bus bar and installation of redundant shunts by soldering

