

Exclusive Rare B Decays $(B \rightarrow V\gamma)$

1.1 1.3

Flavour and the Fourth Family

III - harn +

Albert Puig

Exclusive Radiative B Decays

Col 1 3

Flavour and the Fourth Family

An Intern 4 and 4

Albert Puig

Outlook

- Theory, motivation of radiative B decays
- Current status
- Measurements with exclusive radiative B decays
- The LHCb contribution
- Prospects for the future

Penguin decays of B mesons

- In the SM, flavor-changing neutral currents (FCNC) are forbidden
- Effective FCNC are introduced by penguin (1-loop) diagrams.
 - Combinations of CKM matrix elements
 - Sensitive to new physics (NP)
- - Sensitivity to $|V_{td}|$ and $|V_{ts}|$

 γ,g,Z^0

Effective theory of penguin decays

Heavy degrees of freedom are integrated out to obtain an effective coupling for point-like interactions

$$\mathcal{H}_{\text{eff}} = -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \sum_{i=1}^{10} C_i(\mu) Q_i(\mu)$$

- Radiative decays are sensitive to the C_7 Wilson coefficient
 - New Physics (NP) is introduced by new heavy particles that modify the Wilson coefficients
 - SUSY, 4th generation, extra Higgs...

1

Inclusive vs Exclusive

- Inclusive B decays are theoretically clean because they are dominated by perturbatively calculable partonic contributions
 - Use of Heavy Mass Expansion (HME) in inverse powers of the b quark mass
- Exclusive radiative B decays are less clean
 - Use of QCD-improved factorization (QCDF) and soft collinear effective theory (SCET) methods
 - Larger nonperturbative QCD corrections than inclusive modes
 - Very difficult to calculate matrix elements from first principles

Inclusive vs Exclusive

	Theory $(\times 10^{-5})$	Experiment $(\times 10^{-5})$
$B \to X_s \gamma$	$1.38^{+0.14}_{-0.21} _{\frac{m_c}{m_1}} \pm 0.15_{\rm CKM} \pm 0.09_{\rm param} \pm 0.05$	$0.72 \pm 0.27 \pm 0.23$
$B \to X_d \gamma$	31.5 ± 2.3	$35.2 \pm 2.3 \pm 0.9$
$B^0 \to K^{*0} \gamma$	4.3 ± 1.4	4.33 ± 0.15
$B_s \to \phi \gamma$	4.3 ± 1.4	$5.7^{+4.8}_{-1.5}{}^{+1.2}_{-1.1}$
$B \to \rho \gamma$	$0.130\substack{+0.018 \\ -0.019}$	$0.139\substack{+0.022\\-0.021}$

Facts about radiative decays

- Electromagnetic (radiative) penguins have a very distinct experimental signature: γ
- Quark-level FCNC processes cannot be directly measured because of hadronization.
- Inclusive decays are well-understood theoretically, but are harder experimentally
- Exclusive final states have less predictive power theoretically, but they are more accessible experimentally.
 - Useful observables beyond branching fractions, such as direct CP and isospin asymmetries, as well as photon polarization.

$$\Delta_{0+}(B^0 \to K^{*0}\gamma) = \frac{\Gamma(B^0 \to K^{*0}\gamma) - \Gamma(B^+ \to K^{*+}\gamma)}{\Gamma(B^0 \to K^{*0}\gamma) + \Gamma(B^+ \to K^{*+}\gamma)}$$

- Strong sensitivity to NP effects (see next slides)
- Theory predictions

 $\Delta_{0-}(B^0 \to K^{*0}\gamma)_{\text{Kagan}} = (+8.0^{+2.1}_{-3.2})\% \times 0.3/T_1^{B \to K^*}$ $(T_1^{B \to K^*} \text{ estimates go from } 0.23 \pm 0.06 \text{ to } 0.38 \pm 0.06)$ $\Delta_{0+}(B^0 \to K^{*0}\gamma)_{\text{Matsumori}} = +(2.7 \pm 0.8)\%$

• Experimental status $\Delta_{0+}(B^0 \to K^{*0}\gamma)_{\text{Belle}} = +(1.2 \pm 4.4 \pm 2.6)\%$ $\Delta_{0-}(B^0 \to K^{*0}\gamma)_{\text{BaBaR}} = +(6.6 \pm 2.1 \pm 2.2)\%$

Isospin asymmetry and MSSM

- For low $tan\beta$, $Re(C_7)$ is negative as in the SM
- For large $tan\beta$, $Re(C_7)$ can take >0 and <0 values
 - Positive values, which flip the sign of Δ_{0-} , become more probable as tan β increases

IPPP Flavour and Fourth Generation

Isospin asymmetry and mSUGRA

A precise measurement of the isospin asymmetry can help constrain the mSUGRA parameter space

• Isospin asymmetry is more restrictive than inclusive $B \rightarrow X_s \gamma$

arxiv:hep-ph/0610144

Photon polarization

$$\lambda_{\gamma} = \frac{|\mathcal{A}_R|^2 - |\mathcal{A}_L|^2}{|\mathcal{A}_R|^2 + |\mathcal{A}_L|^2}$$

- Admixture of photons with the "wrong" polarization can be large in SM extensions
 - Left Right Symmetric Model (LSRM)
 - Unconstrained MSSM
 - Models with non-supersymmetric extra dimensions
- Measure as "null test", since photons are ~100% polarized in the SM

Time-dependent CP asymmetry

• Time evolution of $B \rightarrow \Phi^{CP} \gamma$

$$\begin{split} \Gamma_{B^0_{(s)} \to \Phi^{CP} \gamma}(t) &= |A|^2 e^{-\Gamma_{(s)} t} (\cosh \frac{\Delta \Gamma_{(s)} t}{2} - \mathcal{A}^\Delta \sinh \frac{\Delta \Gamma_{(s)} t}{2} + \\ &+ \mathcal{C} \cos \Delta m_{(s)} t - \mathcal{S} \sin \Delta m_{(s)} t) \\ \Gamma_{\bar{B}^0_{(s)} \to \Phi^{CP} \gamma}(t) &= |A|^2 e^{-\Gamma_{(s)} t} (\cosh \frac{\Delta \Gamma_{(s)} t}{2} - \mathcal{A}^\Delta \sinh \frac{\Delta \Gamma_{(s)} t}{2} - \\ &- \mathcal{C} \cos \Delta m_{(s)} t + \mathcal{S} \sin \Delta m_{(s)} t) \end{split}$$

Time-dependent CP asymmetry can be used to probe the photon polarization

Photon polarization through time-dependent CP-asymmetry

In the SM sum of B_(s) mixing phase and CP-odd weak phases for right and left amplitudes $\mathcal{A}^{\Delta} \approx \sin 2\psi \cos \varphi_{(s)}$ $\tan \psi \equiv \left| \frac{\mathcal{A}(\bar{B}_{(s)} \to \Phi^{CP} \gamma_R)}{\mathcal{A}(\bar{B}_{(s)} \to \Phi^{CP} \gamma_L)} \right| \longrightarrow \lambda_{\gamma} = \cos 2\psi$

> Therefore, measurement of S and \mathcal{A}^{Δ} directly determines the fraction of "wrongly"-polarized photons

Photon polarization in the B⁰ system

• $\Delta\Gamma$ is negligible, so terms proportional to \mathcal{A}^{Δ} vanish

- $\Gamma_{B^0 \to \Phi^{CP} \gamma}(t) = |A|^2 e^{-\Gamma t} (1 + \mathcal{C} \cos \Delta m t \mathcal{S} \sin \Delta m t)$ $\Gamma_{\bar{B}^0 \to \Phi^{CP} \gamma}(t) = |A|^2 e^{-\Gamma t} (1 - \mathcal{C} \cos \Delta m t + \mathcal{S} \sin \Delta m t)$
- Also one expects in the SM $\varphi = \sin(2\beta \phi_p)$

Therefore

$$\mathcal{S}_{B^0} = \sin 2\psi \sin 2\beta$$

Photon polarization in the B_s system

• $\Delta\Gamma$ is not negligible, and

$$\varphi_s = \sin(2\beta_s - \phi_p) \approx 0$$

so the term with S vanishes

$$\Gamma_{B^0_s \to \Phi^{CP}\gamma}(t) = |A|^2 e^{-\Gamma_s t} (\cosh \frac{\Delta \Gamma_s t}{2} - \mathcal{A}^\Delta \sinh \frac{\Delta \Gamma_s t}{2})$$

$$\Gamma_{\bar{B}^0_s \to \Phi^{CP}\gamma}(t) = \Gamma_{B^0_s \to \Phi^{CP}\gamma}(t)$$

Therefore

$$\mathcal{A}_{B_s^0}^{\Delta} \approx \sin 2\psi$$

Direct CP asymmetry

- Uncertainties due to form factors cancel to a large extent
- In B $\rightarrow K^* \gamma$ CP asymmetry is suppressed by $m_{s,d}/m_b$
 - > Theoretically, values of O(3%) with uncertainties ~1.5%
 - Experimental measures dominated by BaBaR

$$\mathcal{A}_{CP}^{0} = -(1.6 \pm 2.2 \pm 0.7)\%$$
$$\mathcal{A}_{CP}^{+} = (1.8 \pm 2.8 \pm 0.7)\%$$
$$\mathcal{A}_{CP}^{\text{combined}} = -(0.3 \pm 1.7 \pm 0.7)\%$$

In B → ργ , one finds O(10%) predictions in the SM
Very challenging experimentally

What does LHCb have to offer?

Experimental challenges (in LHCb)

Experimental signature of radiative decays is the γ

- \blacktriangleright Resolution in the B mass peak is completely dominated by γ
- Calorimeter calibration is essential
- > Difficult separation between γ/π^0
- High background level due to pp interactions
- In $b \rightarrow d\gamma$ decays, huge background from $b \rightarrow s\gamma$
 - Both BaBaR and Belle measurements were established in the later stages of the experiments

First LHCb measurement

First measurement (LPII)

 $\frac{\mathcal{B}(B \to K^* \gamma)}{\mathcal{B}(B_s \to \phi \gamma)} = 1.52 \pm 0.15 \text{(stat)} \pm 0.10 \text{(syst)} \pm 0.12$ $\mathcal{B}(B_s \to \phi \gamma) = (2.8 \pm 0.5) \times 10^{-5}$

 Within 1.5\sigma from previous result from Belle but with lower uncertainty

$$\mathcal{B}(B_s \to \phi \gamma) = (5.7^{+2.1}_{-1.8}) \times 10^{-5}$$

> LHCb can do very good physics with $B_s \rightarrow \phi \gamma$

 $B_s \rightarrow \phi \gamma$ in Belle

21

 $B_s \rightarrow \phi \gamma$ in LHCb

LHCb prospects

• Direct CP asymmetry in $B \rightarrow K^* \gamma$

- Expected statistical precision at the level of ~2% with I fb⁻¹
- Isospin asymmetry in $B \rightarrow K^* \gamma$
 - No studies so far, will start soon

• Photon polarization in $B_s \rightarrow \phi \gamma$

- Not easily accessible until now, but with the B_s decay one can directly access "wrongly"-polarized fraction
- \blacktriangleright Need to 2fb⁻¹ to achieve a precision of ~0.2 in \mathcal{A}^{Δ}

Conclusions

- Exclusive B radiative decays are sensitive probes to NP
- Experimentally easier than inclusive measures
- While BRs are difficult to predict theoretically, there is plenty of NP-sensitive observables
 - Isospin asymmetry
 - Photon polarization
 - CP asymmetries
- Radiative decays are starting to give results in LHCb
 - Many interesting prospects

Exciting times ahead!

Thank you