SM benchmarks

Jonas Rademacker (Univ of Bristol, LHCb)

ordnance survey standard benchmark

).

MILC: PhysRevD.79.054507 error equally divided between exp, lattice-stat, lattice syst

• In 2011, BaBar and BELLE published new |Vub|-exclusive measurements: BaBar: $|V_{ub}| = (3.09 \pm 0.08 \pm 0.12^{+0.35}_{-0.29}) \cdot 10^{-3}$ PhysRevD.83.052011 (2011) PhysRevD.83.032007 (2011)

BELLE:
$$|V_{ub}| = (3.43 \pm 0.33) \cdot 10^{-3}$$

PhysRevD.83.071101 (2011)

• Compare incl/exclusive determination:

My average: $|V_{ub}|$ (excl) = $(3.26 \pm 0.33) \cdot 10^{-3}$

PDG 2010: $|V_{ub}|$ (incl) = $(4.27 \pm 0.38) \cdot 10^{-3}$

(a similar tension in the incl/ excl determination of |V_{cb}|)

 In 2011, BaBar and BELLE published new |Vub|-exclusive measurements:

BaBar: $|V_{ub}| = (3.09 \pm 0.08 \pm 0.12^{+0.35}_{-0.29}) \cdot 10^{-3}$ PhysRevD.83.052011 (2011) PhysRevD.83.032007 (2011)

BELLE:
$$|V_{ub}| = (3.43 \pm 0.33) \cdot 10^{-3}$$

PhysRevD.83.071101 (2011)

• Compare incl/exclusive determination: My average: $|V_{ub}| (excl) = (3.26 \pm 0.33) \cdot 10^{-3}$ PDG 2010: $|V_{ub}| (incl) = (4.27 \pm 0.38) \cdot 10^{-3}$

(a similar tension in the incl/ excl determination of $|V_{cb}|$)

A disturbed benchmark.

 In 2011, BaBar and BELLE published new |Vub|-exclusive measurements:

BaBar: $|V_{ub}| = (3.09 \pm 0.08 \pm 0.12^{+0.35}_{-0.29}) \cdot 10^{-3}$ PhysRevD.83.052011 (2011) PhysRevD.83.032007 (2011)

BELLE:
$$|V_{ub}| = (3.43 \pm 0.33) \cdot 10^{-3}$$

PhysRevD.83.071101 (2011)

• Compare incl/exclusive determination: My average: $|V_{ub}| (excl) = (3.26 \pm 0.33) \cdot 10^{-3}$ PDG 2010: $|V_{ub}| (incl) = (4.27 \pm 0.38) \cdot 10^{-3}$

(a similar tension in the incl/ excl determination of $|V_{cb}|$)

A disturbed benchmark.

 In 2011, BaBar and BELLE published new |Vub|-exclusive measurements:

BaBar: $|V_{ub}| = (3.09 \pm 0.08 \pm 0.12^{+0.35}_{-0.29}) \cdot 10^{-3}$ PhysRevD.83.052011 (2011) PhysRevD.83.032007 (2011)

BELLE:
$$|V_{ub}| = (3.43 \pm 0.33) \cdot 10^{-3}$$

PhysRevD.83.071101 (2011)

• Compare incl/exclusive determination: My average: $|V_{ub}| (excl) = (3.26 \pm 0.33) \cdot 10^{-3}$ PDG 2010: $|V_{ub}| (incl) = (4.27 \pm 0.38) \cdot 10^{-3}$

(a similar tension in the incl/ excl determination of $|V_{cb}|$)

A disturbed benchmark.

Should we arrest the theorists?

Tension between $B \rightarrow \tau \nu$ and sin 2β

Yellow area: 95% CL for combined fit with sin(2 β_{cc}) and BR[B $\rightarrow \tau v$]. The orange dashed area indicates the 1 σ confidence level.

Y

Y

γ and Δm now

Currently: γ (direct) =68° ± 13°, dominant error: statistics γ (from side) = 68° ± 4°, dominant error: Lattice QCD

Gronau, Wyler Phys.Lett.B265:172-176,1991, (GLW), Gronau, London Phys.Lett.B253:483-488,1991 (GLW) Atwood, Dunietz and Soni Phys.Rev.Lett. 78 (1997) 3257-3260 (ADS) Giri, Grossman, Soffer and Zupan Phys.Rev. D68 (2003) 054018 Belle Collaboration Phys.Rev. D70 (2004) 072003

$B^{\pm} \rightarrow D(2-body)K^{\pm}$

CP-violating rate asymmetry

$$A = \frac{\Gamma(B^- \to f_D K^-) - \Gamma(B^+ \to \overline{f}_D K^+)}{\Gamma(B^- \to f_D K^-) + \Gamma(B^+ \to \overline{f}_D K^+)}$$
$$= 2r_D r_B \sin(\gamma) \cos(\delta_B + \delta_D) / R$$

where, for GLW, R=1, $r_D=1$ and $\delta_D=0$. R<1 for ADS.

 Counting experiment. All parameters can be extracted by simultaneously analysing several decay channels (although external CLEO-c input on δ_D helps).

<u>Gronau, Wyler Phys.Lett.B265:172-176,1991</u>, (GLW), <u>Gronau, London Phys.Lett.B253:483-488,1991</u> (GLW) <u>Atwood, Dunietz and Soni</u> Phys.Rev.Lett. 78 (1997) 3257-3260 (ADS)

"GLW" - D decays to CP eigenstate

KK K

 B^{-}

ADS with $B^{\pm} \rightarrow D(K\pi)K^{\pm}$ at LHCb

- Significant signal (4σ) for suppressed mode in 343/pb.
- Data-driven methods reduce systematics:
 - production and detection asymmetries from data
 - PID efficiencies from data
 - Use B[±]→D(Kπ)π[±] as normalisation mode.

$$B^- \to (K^+\pi^-)_D K^- + cc$$

ADS with $B^{\pm} \rightarrow D(K\pi)K^{\pm}$ at LHCb

$B^{\pm} \rightarrow D(K\pi)K^{\pm}$ summary

huge CP-violation asymmetry of ~50%

ADS from $B \rightarrow D^*K$

• D* goes to either $D\pi^{\circ}$ or $D\gamma$. The two modes are related by a 180° phase shift, thus providing additional phase information. Phase-relation helps resolve

Phase-relation helps resolve ambiguities. Current results indicate negative $\cos(\delta_B^* + \delta_D)\cos\gamma$ and positive $\sin(\delta_B^* + \delta_D)\cos\gamma$

Dalitz analyses to extract $\boldsymbol{\gamma}$

Most precise gamma measurements to date come from 3-body decays.

	Intermediate state	Amplitude $ c_j $	Phase δ_j (°)		
$\mathrm{D}^0 \rightarrow$	$K^{*}(892)^{+}\pi^{-}$	1.656 ± 0.012	137.6 ± 0.6		$K_s \pi \pi$
	$K^{*}(892)^{-}\pi^{+}$	$(14.9 \pm 0.7) \times 10^{-2}$	325.2 ± 2.2		
	$K_0^*(1430)^+\pi^-$	1.96 ± 0.04	357.3 ± 1.5		
	$K_0^*(1430)^-\pi^+$	0.30 ± 0.05	128 ± 8	\rightarrow	
	$K_2^*(1430)^+\pi^-$	1.32 ± 0.03	313.5 ± 1.8		
	$K_{2}^{*}(1430)^{-}\pi^{+}$	0.21 ± 0.03	281 ± 9		
	$K^*(1680)^+\pi^-$	2.56 ± 0.22	70 ± 6		
	$K^*(1680)^-\pi^+$	1.02 ± 0.2	103 ± 11		
	$K_S \rho^0$	1.0 (fixed)	0 (fixed)		
	$K_S \omega$	$(33.0 \pm 1.3) \times 10^{-3}$	114.3 ± 2.3		
	$K_S f_0(980)$	0.405 ± 0.008	212.9 ± 2.3		
	$K_S f_0(1370)$	0.82 ± 0.10	308 ± 8		
	$K_S f_2(1270)$	1.35 ± 0.06	352 ± 3		
	$K_S \sigma_1$	1.66 ± 0.11	218 ± 4		
	$K_S \sigma_2$	0.31 ± 0.05	236 ± 11		
	non-resonant	6.1 ± 0.3	146 ± 3		

Similarly, $D \rightarrow K_S K K$

Dalitz Plots for γ at Belle&BaBar

Combined Could (CrM-fitter, EPS, 2011*): γ = 68° ± 13° Containing of Countraints, but result is completely dominated by Ksππ and KsKK Dalitz plot results) Mocell required to interpret measured D=Dalitz plot in terms of complex amplitudes (magnitudes and phases) codel dependence introduces uncertainty between 3°–9°. Would Action BaBar: Phys.Rev.D78:034023,2008, BELLE: arXiv:0803.3375v1 [hep-ex] CKMfitter: Eur. Phys. J. C41, 1-131 (2005) [hep-ph/0406184], http://ckmfitter.in2p3.fr

Towards Prédision Measurements

 $\psi(3770) \rightarrow D^+ D^-$ IPPP Workshop on 4th generation

 $D^+ \rightarrow K^- \pi^+ \pi^+ \quad D^- \rightarrow K^+ \pi^- \pi^-$

$e^+e^- \rightarrow \psi(3770) \rightarrow D\overline{D}$

CLEAN-c

- Threshold production on *D* tag
- Final state must be CP
 D mesons must have c
- Final state is also flavo
- That gives us access to and phase across the I

Jonas Rademacker (Bristol)

SM benchmarks 18

CP and flavour tagged D°

CP and flavour tagged D°

CP and flavour tagged D° at CLEO-c

First model-independent γ measurement (BELLE)

Why stop here

$$\Gamma \left(\mathsf{B}^{-} \to \left(\mathsf{K}^{+} \mathbf{3} \pi \right)_{\mathsf{D}} \mathsf{K}^{-} \right) \propto r_{B}^{2} + \left(r_{D}^{K3\pi} \right)^{2} + 2 R_{K3\pi} r_{B} r_{D}^{K3\pi} \cdot \cos \left(\delta_{B} + \delta_{D}^{K3\pi} - \gamma \right)$$

• CLEO-c's coherent $\psi(3770) \rightarrow DD$ events allow measurement of R, δ_D .

Phys.Rev.D80:031105,2009

Κπππ and Κππ° Coherence Factor

Jonas Rademacker (Bristol)

BaBar's $B^- \rightarrow (K^- \pi^+ \pi^0)_D K^- + cc$

Phys.Rev.D84:012002,2011.

First to use CLEO-c's coherence factor measurement.

CKM-fitter & UTFit results

EPS 2011, does not yet include new LHCb constraints Now (roughly) agree on uncertainty, but - given they use the same input - the central values are surprisingly different.

B→hh' α/γ

- B→ππ, B→ρρ, B_s→KK proceed (at tree level) via b→u transitions and are thus sensitive to γ.
- Penguin contributions complicate things. Can by disentangled using Uspin (B→ππ, B_s→KK at LHCb in future) or isospin (B-factories) to extract treelevel γ.
- Without subtracting 2β , $B \rightarrow \pi\pi$, $B \rightarrow \rho\rho'$ measure α .

Candidates per 16 MeV/c

90

80 F

70 F

60

50 F

40 F

30 F

20 E

10

5300

LHCb Preliminary, $\sqrt{s} = 7$ TeV

5400

5500

 $N_{tot} = 376$

LHCb,

2010 data

ca 37/pb

5600

μ_{в.→KK} = 5364.2 ± 1.8 MeV

σ_{B,→KK} = 23.9 ± 1.8 MeV

5700

 $f_{B_o \to KK} = 0.667 \pm 0.037$

B_s→KK lifetime

- Measures (approximately) the CP-even B_s lifetime and is thus sensitive to ΔΓ. 1st step to time-dependent B→hh γ measurement.
- LHCb use MC-independent correction for trigger bias (hadronic trigger is based on selecting lona-lived decavs).

Nucl.Instrum.Meth.A570:525-528,2007; Phys.Rev.D83:032008,2011; LHCb-PUB-2009-022

Rate [Evt/0.30ps] 90 LHCb Preliminary, $\sqrt{s} = 7$ TeV LHCb Preliminary, $\sqrt{s} = 7 \text{ TeV}$ ⊢ Data 90 N_{tot} = 376 Fit • Results: B_s→KK µ_{в →кк} = 5364.2 ± 1.8 Ме\ 80⊟ CHCb-CONF-2011-018 Background = 23.9 ± 1.8 MeV 70F $\tau^{LHCb}_{B_S \to KK}$ $.44 \pm 0.10 \pm 0$ to 10 ± 0 60 E LHCb-CONF-201 LHCb, 50 E $\tau^{CDF}_{B_S \to KK}$ 40 2010 data $.53 \pm 0.18 \pm 0.02$) ps **30**⊟ ca 37/pb CDF Note 06-01-26 20 20 $_SM$ 39010 E $\tau_{B_S \to KK}$ Robert Fleischer, Robert Knegjens Eur.Phys.J.C71:1532,2011 5700 5800 8 10 12 14 m_{ĸĸ} proper time [ps] $\tau^{HFAG}_{B_S-\text{flavour}}$ $= (1.48 \pm 0.02)$ ps

Jonas Rademacker (Bristol)

100_F

90

80

70

60

50

40

30

20

10

Rate [Evt/0.30ps]

CHCb-CONF-2011-018

5800

m_{ĸĸ}

Direct CPV in $B_{(s)} \rightarrow K\pi$ at LHCb

Compare to prev. worldaverage: $A_{CP}(B^0 \rightarrow K^+\pi^-) = -0.098^{+0.012}_{-0.011}$ Best single measurement, first 5 σ observation.

First evidence of CP violation in B_s decays.

Prev result by CDF: $A_{CP}(B_s^0 \rightarrow \pi^+ K^-) = 0.39 \pm 0.17$

 $m_{K_{\pi}}^{2}$ (GeV $^{2}/c^{4}$)

Dalitz Analyses of B decays for CPV in trees.

- B°→Kππ° to extract a tree-only constraints on γ using isospin. Measured at BaBar. Limited sensitivity due to smallness of the tree amplitude. Authors suggest a similar analysis in B_s decays could lead to better constraints.
 Theory: M. Ciuchini, M. Pierini, and L. Silvestrini, Phys. Rev. D 74, 051301(R) (2006) Exp: BaBar: PhysRevD.83.112010
- "Double-Dalitz analysis" of B_d→DKπ, D→K_Sππ allows a clean extraction of γ w/o external input.
 Poluektov & Gershon, Phys.Rev. D81 (2010) 014025
- Measuring β w/o a penguin contribution is possible with time-dependent analyses of B° → Dπ° or B° → Dπ⁺π⁻ decays

J. Charles, A. Le Yaouanc, L. Oliver, O. Pene, and J. C. Raynal, Phys. Lett. B425, 375 (1998) Latham & Gershon, J.Phys.G G36 (2009) 025006

Summary & Outlook

- B-factories / Tevatron continue to publish plenty of beautiful flavour physics results with final / close-to-final data sets.
- The coming flavour-physics years will be LHCb's. With ca 1/3 of the 2011 dataset, LHCb is already competitive and in many channels provides the most precise results.
- With 2011 data LHCb will be in a position to measure tree-level γ from B→DK decays to about 5° to 10° - that's of course just the beginning. CLEO-c and BES-III input will play an important role in high-precision γ measurements - principle proven by BaBar (coherence factor) and BELLE (Dalitz analysis).
- Improvements on $|V_{ub}|$ rely mainly on improvements in theory/LQCD except $B \rightarrow \tau \nu$, where a future flavour factory could have significant impact.

Jonas Rademacker (Bristol)

CAN NOT BE JUST SM4

Simple SM4 light higgs seems strongly disfavored by data

(Amarjit Soni)

 σ SM4/σ SM3 ~ 9 (the reason why a wider range for SM4 has (Xiao-Gang He) been excluded compared with SM3)
 (Xiao-Gang He)

 If with SM3 like cross section, 4th generation is ruled out?
 (Xiao-Gang He)

 If with SM3 like cross section, 4th generation is ruled mass range up to
 (Xiao-Gang He)

 If with SM3 like cross section, 4th generation is ruled mass range up to
 (Xiao-Gang He)

There seems to be a lot of evidence against a "straightforward" 4th generation - are the solutions contrived workarounds?

SM benchmarks

 With 2011 data 1/12/3 will be in a µ orition to measure tree-level γ from B→DK decays b about 5° to 10° - the 's ciccourse just the beginning. CLEO-c and BES if (sourt will place an important role in high-precision γ measurements - principle proven by BaBar (coherence factor) and BELLE (Dalitz analysis). implies a precision of a few degrees after 5/fb at 14TeV

 \rightarrow How precisely do you need to know γ ?

Determination of V_{ub}

(Ulrik Egede)

Use BFs of $B \rightarrow K^*\mu\mu$, $B \rightarrow \rho\mu\nu$, $D \rightarrow K^*\mu\nu$, $D \rightarrow \rho\mu\nu$ Pirjol, Grinstein PRD**70** (2004) 114005

 \rightarrow Any ideas for other cans of worms to be thrown at V_{ub} by LHCb?

⇒How is any of this relevant to 4th generation physics?

Backup Slides

CLEO-c's input to $\boldsymbol{\gamma}$

• CLEO-c's input is concerned with δ_D , the phase difference between

```
A(D^{\circ} \rightarrow K_{S}\pi^{+}\pi^{-}) and A(\overline{D^{\circ}} \rightarrow K_{S}\pi^{+}\pi^{-})
```

at each point on the Dalitz plot.

• Measure the cosine and sine of this phase difference, averaged over bins:

$$c_i = \left< \text{cos}(\delta_D) \right>_{i}, \, s_i = \left< \text{sin}(\delta_D) \right>_{i}$$

Jonas Rademacker (Bristol)

*bin width uniform in δ_D based on BaBar model PRL 95 (2005) 121802 SM benchmarks 37

Giri, Grossmann, Soffer, Zupan, Phys Rev D 68, 054018 (2003).

Optimal binning

- γ sensitivity improves if δ_D is as constant as possible over each bin^[1]. Other considerations for optimal binning include event numbers per bin, robustness against migration etc.
- Results for several options based on BaBar and BELLE amplitude models were obtained.
- Choice of model will not bias result instead a bad model reduces the statistical precision of the result, so you might get blind, but not biased.

Equal-δ binning based on BaBar model*

Phys. Rev. D 78, 034023 (2008).

[1] Bondar, Poluektov hep-ph/0703267v1 (2007) Jonas Rademacker (Bristol)

• In 2011, BaBar and BELLE published new |Vub|exclusive measurements:

 $\begin{array}{l} \text{BaBar:} & |V_{ub}| = \left(3.09 \pm 0.08 \pm 0.12^{+0.35}_{-0.29}\right) \cdot 10^{-3} \\ \text{BELLE:} & |V_{ub}| = \left(3.43 \pm 0.33\right) \cdot 10^{-3} \end{array}$

• Compare incl/exclusive determination:

My average: $|V_{ub}| (\text{excl}) = (3.26 \pm 0.33) \cdot 10^{-3}$ PDG 2010: $|V_{ub}| (\text{incl}) = (4.27 \pm 0.38) \cdot 10^{-3}$

• A Vini area of a sist 3.38
$$\pm 0.36$$
 $\times 10^{-3}$ determination of $|V_{cb}|$
 $|V_{ub}|(incl) = (4.27 \pm 0.38) \times 10^{-3}$

$$B^{\pm} \rightarrow D(2-body)K^{\pm}$$

• Measure:

ratio suppressed/favoured (only ADS):

$$R = \frac{\Gamma(B^- \to f_D K^-) + \Gamma(B^+ \to \overline{f}_D K^+)}{\Gamma(B^- \to \overline{f}_D K^-) + \Gamma(B^+ \to f_D K^+)}$$
$$= r_B^2 + r_D^2 + 2r_D r_B \cos(\gamma) \cos(\delta_B + \delta_D)$$

CP-violating rate asymmetry $A = \frac{\Gamma(B^- \to f_D K^-) - \Gamma(B^+ \to \overline{f}_D K^+)}{\Gamma(B^- \to f_D K^-) + \Gamma(B^+ \to \overline{f}_D K^+)}$ $= 2r_D r_B \sin(\gamma) \cos(\delta_B + \delta_D) / R$ where, for GLW, R=1, r_D=1 and δ_D =0.

• Counting experiment. All parameters can be extracted by simultaneously analysing several decay channels (although external CLEO-c input on δ_D helps).

<u>Gronau, London Phys.Lett.B253:483-488,1991</u> (GLW) <u>Atwood, Dunietz and Soni</u> Phys.Rev.Lett. 78 (1997) 3257-3260 (ADS)

$B^{\pm} \rightarrow D(K\pi)K^{\pm}$ summary

huge CP-violation asymmetry of ~50%

ADS from $B \rightarrow D^*K$

• D^{*} goes to either $D\pi^{\circ}$ or D γ . The two modes are related by a 180° phase shift, thus providing additional phase information.

Phase-relation helps resolve ambiguities. Current results indicate negative $\cos(\delta_B^* + \delta_D)\cos\gamma$ and positive $\sin(\delta_B^* + \delta_D)\cos\gamma$

New results at Lepton Photon. BELLE-CONF-1112

Loops vs Trees

 The co-incidence (?) that α≈90° gives two pairs of nearly de-coupled tree vs loop measurements. (Of course tree-level benchmarks are also important for many other New-Physics sensitive channels.)

