DIRECT SEARCHES FOR 4th GENERATION QUARKS AT CMS

Kai-Feng Chen National Taiwan University

Flavour and Fourth Family Workshop, September 14th 2011, Durham, UK

4TH GENERATIONS: MOTIVATION

- The possibility of 4th generation is not really excluded by the electroweak precision data.
- Large impact to the Higgs sector, if the 4th generation exists.

2

- May resolve some potential problems in a low cost way.
- LHC is an ideal place to do a carpet searching –

find them, or *exclude* them!

THE CMS COLLABORATION

¹/₄ of collaboration

3170 scientists and engineers(including ~800 students)from 169 institutes in 39 countries.

THE CMS DETECTOR

SILICON TRACKER Pixels (100 x 150 μm²) ~1m² ~66M channels Microstrips (80-180μm) ~200m² ~9.6M channels

> CRYSTAL ELECTROMAGNETIC CALORIMETER (ECAL) ~76k scintillating PbWO₄ crystals

> > PRESHOWER Silicon strips ~16m² ~137k channels

STEEL RETURN YOKE ~13000 tonnes

SUPERCONDUCTING SOLENOID Niobium-titanium coil carrying ~18000 A

Total weight: 14000 t Overall diameter: 15 m Overall length: 28.7 m Magnetic field: 3.8 Tesla

HADRON CALORIMETER (HCAL) Brass + plastic scintillator ~7k channels FORWARD CALORIMETER Steel + quartz fibres ~2k channels

4

Barrel: 250 Drift Tube & 480 Resistive Plate Chambers Endcaps: 473 Cathode Strip & 432 Resistive Plate Chambers

MUON CHAMBERS

EXCELLENT DETECTOR OPERATIONS

Average fraction of operational channels per subsystem >98% operational

MUON-RPC MUON-CSC MUON-DT MUON-DT HCAL FORWARD HCAL FORWARD HCAL BARREL ECAL BARREL ECAL BARREL TRACKER STRIP

In this talk: **0.2** ~ **1.1 fb**⁻¹ used for 4th generation searches

SIGNATURES OF 4TH GENERATIONS

Main decay signatures for direct searches:

- $t' \rightarrow bW$, $t' \rightarrow qW$: not really different from a <u>heavy top</u>.
- $b' \rightarrow tW(\rightarrow bWW)$: <u>complex signature</u>, $b' \rightarrow qW$: <u>heavy top</u>.
- $t' \rightarrow b'W \& b' \rightarrow t'W$: should be seen after the above two.

SEARCHES FOR t'→bW (dilepton)

- Look for <u>dilepton events</u> + jets.
- Reconstruct two "b-jet+lepton" masses:

Generator level

7

Signal lost due to the resolution, but it (still) keeps the background away.

 \overline{b}

Optimize the b-lepton pairing to keep top background outside of the signal region

SEARCHES FOR t'→bW (dilepton)

Preselection:
 dilepton + 2 tagged b-jets:
 (just dilepton tops!)

channel	ee	μμ	eμ	all
t't'(350 GeV/c ²)	2.51	2.92	6.33	11.8
MC background	176±6	184±6	458±9	818±13
data	184	182	512	878

Signal region: M(lepton+b) > 170 GeV/ c^2

SEARCHES FOR t'→bW (dilepton)

9

- Simple counting analysis.
- Data-driven background estimation.
- Exclusion limit is obtained with the CLs method.

For $t' \rightarrow bW$ decays, M(t') > 422 GeV at 95% C.L.

- Reconstruct a pair of "Heavy Top" in lepton+jets channel.
- Select an electron or a muon, ≥ 4 high p_T jets, missing energy, at last one b-tagged jet.
- Kinematic fit applied for the mass reconstruction:

■ Limit are extracted by 2D fits to **H**_T and **M**_{fit} including the correlations:

- No excess found above the SM background.
- The combined limit is determined with the CLs method.

Channel	e+jets	µ+jets	
Luminosity	573 pb ⁻¹	821 pb ⁻¹	
Total background	510 ± 103	1054 ± 145	
Data	520	1054	

Ref: CMS-EXO-11-051

For **t'→bW**, M(t') > 450 GeV at 95% C.L.

SEARCHES FOR b'→tW

The full decay chain: $b'b' \rightarrow tWtW \rightarrow bbW^+W^-W^+W^-$ (4 *W*-bosons + 2 *b*-jets)

Look for clean signatures: **trilepton** and **same-sign dilepton** events.

CMS SEARCH FOR b'→tW

$3L + \ge 2$ jets

- Select "trilepton + jets" & "same-sign dilepton + jets" events.
- At least 1 b-jet.
- Very clean signature;
 almost no SM background.
- Reconstruct S_T:

 $S_T = \sum p_T(jets) + \sum p_T(leptons) + MET$

CMS SEARCH FOR b'→tW

 Simple counting analysis.
 Exclusion limit is obtained with a Bayesian method.

Channel	SS2L	3L
$b'(400 \text{GeV}/\text{c}^2)$	22	6.7
Estimated background	4.4 ± 1.4	0.16 ± 0.09
Data	5	1

Ref: CMS-EXO-11-036

For **b'→tW** decays, M(b') > 495 GeV at 95% C.L.

SIGNATURES OF VECTOR-LIKE QUARKS

for example, S. Martin, arXiv:0910.2732. 0.4 0.2 0.2 0.2 0.300 400 500 600 700 800 m, GeV

Decay signatures for direct searches:

 $\blacksquare T/B \rightarrow bW, tW:$

not really different from the sequential 4^{th} gen quark searches. **T** \rightarrow **tH**, **tZ** / **B** \rightarrow **bH**, **bZ** : FCNC decays from sequential 4G quarks, or vector-like quark with enhanced branching fractions.

CMS SEARCH FOR VECTOR-LIKE QUARK

CMS SEARCH FOR VECTOR-LIKE QUARK

For $T \rightarrow tZ$ decays, M(T) > 417 GeV at 95% C.L. No event observed.
 Limited determined by the Bayesian approach assuming a 100% branching fraction.

	Yield
$T(350 \text{ GeV}/c^2)$	8.99
Estimated background	0.73 ± 0.31
Data	0

Ref: CMS-EXO-11-005

SUMMARY

Adding 4th generation fermion is one of the straightforward extensions to the Standard Model:

- Big impact to the Higgs sector.
- May resolve some known potential problems in a low cost way.
- Many searches have been carried out at CMS:
 - The strongest limits to date on b' / t':
 M(t'→bW) > 450 GeV/c²;
 M(b'→tW) > 495 GeV/c².
 Already close to unitarity bound!
 - Exotic top partner / vector-like quarks searches started; no hit at this moment.
- Prospects for LHC end of year data, 5 fb⁻¹ scenario:
 - Push sequential 4G limit by another 50~80 GeV if no hint.
 - More direct searches are coming soon.