

Michael A. Schmidt

Institute for Particle Physics Phenomenology Durham

16 Sep 2011

Flavour and the Fourth Family

AMEND

<u>A</u> <u>Model</u> <u>Explaining</u> <u>N</u>eutrino masses and <u>D</u>ark matter

Michael A. Schmidt

Institute for Particle Physics Phenomenology Durham

16 Sep 2011

Flavour and the Fourth Family

Radiative Neutrino Masses and Dark Matter

Michael A. Schmidt

Institute for Particle Physics Phenomenology Durham

16 Sep 2011

Flavour and the Fourth Family

Radiative Neutrino Masses and Dark Matter

Michael A. Schmidt

Institute for Particle Physics Phenomenology Durham

16 Sep 2011

Flavour and New Electroweak-Scale Particles

Outline

- 2 Radiative Neutrino Mass Generation and Dark Matter
- 3 AMEND: A Model Explaining Neutrino masses and Dark matter
- 4 Conclusions and Outlook

Outline

1 Introduction

- 2 Radiative Neutrino Mass Generation and Dark Matter
- 3 AMEND: A Model Explaining Neutrino masses and Dark matter
- 4 Conclusions and Outlook

Neutrino Masses and Leptonic Mixing

Global Fit to Neutrino Oscillations [Schwetz, Tortola, Valle (2011)]

	Best-fit	Allowed range (3σ)				
$\sin^2 \theta_{12}$	0.312	0.270.36				
$\sin^2 \theta_{23}$	0.52	0.390.64				
cin ² A	0.013	0.0010.035 (n.h.)				
SIN 013	0.016	0.0010.039 (i.h.)				
$\Delta m_{21}^2 [10^{-5} \mathrm{eV}^2]$	7.59	7.098.19				
$\Lambda m^2 [10^{-3} \Lambda /^2]$	2.50	2.142.76 (n.h.)				
Δm_{31} [10 eV]	-2.40	$-2.13 \cdots - 2.67$ (i.h.)				

Neutrino Masses and Leptonic Mixing

Global Fit to Neutrino Oscillations [Schwetz, Tortola, Valle (2011)]

	Best-fit	Allowed range (3σ)			
$\sin^2 \theta_{12}$	0.312	0.270.36			
$\sin^2 \theta_{23}$	0.52	0.390.64			
$cin^2 0$	0.013	0.0010.035 (n.h.)			
SIN 013	0.016	0.0010.039 (i.h.)			
$\Delta m_{21}^2 [10^{-5} \text{ eV}^2]$	7.59	7.098.19			
Λm^2 [10-3 $\Lambda/2$]	2.50	2.142.76 (n.h.)			
Δm_{31} [10 ev]	-2.40	$-2.13\cdots - 2.67$ (i.h.)			

Mass measurements

• Tritium end-point measurement $\sum_{i} |U_{ei}|^2 m_i^2 \leq (2.3 \text{ eV})^2 (95\% CL)$

[MAINZ experiment]

• Neutrinoless double beta decay $\sum_{i} U_{e_i}^2 m_i < (0.35 - 1.05) \text{ eV}$ [Heidelberg-Moscow, NEMO3, CUORICINO experiment]

• Cosmology $\sum m_i \leq (0.44-1.5)\, ext{eV}$ [González-García, Maltoni, Salvado (2010)]

Neutrino Mass Generation

Open Questions

- Nature of neutrinos: Dirac vs. Majorana
- Absolute neutrino mass scale
- Mass ordering
- Only hint for third mixing angle θ_{13}
- CP Phases δ , φ_1 , φ_2

Neutrino Mass Generation

Open Questions

- Nature of neutrinos: Dirac vs. Majorana
- Absolute neutrino mass scale
- Mass ordering
- Only hint for third mixing angle θ_{13}
- CP Phases δ , φ_1 , φ_2

Weinberg operator

Assumption: Some underlying physics generates this effective operator and therefore leads to non-vanishing neutrino masses.

At Tree-Level: Seesaw Mechanism

Standard Seesaw [Minkowski;Yanagida;Glashow;Gell-Mann,Ramond,Slansky;Mohapatra,Senjanovic]

At Tree-Level: Seesaw Mechanism

Standard Seesaw [Minkowski;Yanagida;Glashow;Gell-Mann,Ramond,Slansky;Mohapatra,Senjanovic]

Variants

Type III (fermionic triplet) seesaw

Radiative Neutrino Mass Generation

Zee Model_[Zee (1980)]

- 2 Higgs doublets H_j
- charged scalar ϕ^+

$$(m_{
u})_{lphaeta} \sim rac{(Y^i_e m_e Y_{\phi})_{lphaeta}}{16\pi^2} rac{\langle H_j
angle M_{jk}}{m_{\phi}^2} \left[\ln rac{m_{\phi}^2}{m_{H}^2}
ight]_{ki}$$

Radiative Neutrino Mass Generation

Zee Model[Zee (1980)]

- 2 Higgs doublets H_j
- ullet charged scalar ϕ^+

$$(m_{\nu})_{lphaeta} \sim rac{(Y_e^i m_e Y_{\phi})_{lphaeta}}{16\pi^2} rac{\langle H_j
angle M_{jk}}{m_{\phi}^2} \left[\ln rac{m_{\phi}^2}{m_{H}^2}
ight]_{k_i}$$

Ma Model[Ma (2006)]

$$(m_{
u})_{lphaeta} = \sum_{k} rac{Y_{lpha k} Y_{eta k} M_{k}}{16\pi^{2}} \Big[rac{m_{R}^{2}}{m_{R}^{2} - M_{k}^{2}} \ln rac{m_{R}^{2}}{M_{k}^{2}} - rac{m_{I}^{2}}{m_{I}^{2} - M_{k}^{2}} \ln rac{m_{R}^{2}}{M_{k}^{2}} \Big]$$

Non-exhaustive List of References

- A. Zee, Phys. Lett. B93 (1980) 389.
- K. S. Babu, Phys. Lett. **B203** (1988) 132.
- A. Pilaftsis, Z. Phys. C 55 (1992) 275
- E. Ma, Phys. Rev. Lett. 81 (1998) 1171–1174.
- L. M. Krauss, S. Nasri, and M. Trodden, Phys. Rev. D67 (2003) 085002.
- K. Cheung and O. Seto, Phys. Rev. D69 (2004) 113009.
- T. Asaka, S. Blanchet, and M. Shaposhnikov, Phys. Lett. B631 (2005) 151-156.
- E. Ma, Phys. Rev. D73 (2006) 077301.
- J. Kubo, E. Ma, and D. Suematsu, Phys. Lett. B642 (2006) 18-23.
- E. J. Chun and H. B. Kim, JHEP 10 (2006) 082.
- T. Hambye, K. Kannike, E. Ma, and M. Raidal, Phys. Rev. D75 (2007) 095003.
- J. Kubo and D. Suematsu, Phys. Lett. B643 (2006) 336-341.
- C. Boehm et al., *Phys. Rev.* **D77** (2008) 043516.
- M. Aoki, S. Kanemura, and O. Seto, Phys. Rev. Lett. 102 (2009) 051805.
- M. Aoki, S. Kanemura, and O. Seto, Phys. Rev. D80 (2009) 033007.
- D. Aristizabal Sierra et al., Phys. Rev. D79 (2009) 013011.
- D. Suematsu, T. Toma, and T. Yoshida, Phys. Rev. D79 (2009) 093004.
- Y. Farzan, *Phys. Rev.* **D80** (2009) 073009.
- B. Bajc et al., *JHEP* **05** (2010) 048.
- Y. Farzan, S. Pascoli, and M. Schmidt, JHEP 10 (2010) 111.
- D. Suematsu, T. Toma, and T. Yoshida, Phys. Rev. D82 (2010) 013012.
- D. Suematsu, and T. Toma, 1011.2839
- H. Higashi, T. Ishima, and D. Suematsu, 1101.2704

. .

Outline

1 Introduction

2 Radiative Neutrino Mass Generation and Dark Matter

3 AMEND: A Model Explaining Neutrino masses and Dark matter

4 Conclusions and Outlook

$$(m_{\nu})_{\alpha\beta} \sim \sum_{a} \sum_{k} \frac{Y_{\alpha k}^{a} Y_{\beta k}^{a} M_{k}}{16\pi^{2}} \Big[\frac{m_{R}^{a2}}{m_{R}^{a2} - M_{k}^{2}} \ln \frac{m_{R}^{a2}}{M_{k}^{2}} - \frac{m_{I}^{a2}}{m_{I}^{a2} - M_{k}^{2}} \ln \frac{m_{I}^{a2}}{M_{k}^{2}} \Big]$$

Conditions for Majorana Neutrino Mass Term

• Coupling Lepton doublet ℓ , scalar S_a and fermion F_k is allowed

$$(m_{\nu})_{\alpha\beta} \sim \sum_{a} \sum_{k} \frac{Y^{a}_{\alpha k} Y^{a}_{\beta k} M_{k}}{16\pi^{2}} \Big[\frac{m_{R}^{a2}}{m_{R}^{a2} - M_{k}^{2}} \ln \frac{m_{R}^{a2}}{M_{k}^{2}} - \frac{m_{I}^{a2}}{m_{I}^{a2} - M_{k}^{2}} \ln \frac{m_{I}^{a2}}{M_{k}^{2}} \Big]$$

- Coupling Lepton doublet ℓ , scalar S_a and fermion F_k is allowed
- Massive scalar S_a and fermion F_k in loop

$$(m_{\nu})_{\alpha\beta} \sim \sum_{a} \sum_{k} \frac{Y_{\alpha k}^{a} Y_{\beta k}^{a} M_{k}}{16\pi^{2}} \Big[\frac{m_{R}^{a2}}{m_{R}^{a2} - M_{k}^{2}} \ln \frac{m_{R}^{a2}}{M_{k}^{2}} - \frac{m_{l}^{a2}}{m_{l}^{a2} - M_{k}^{2}} \ln \frac{m_{l}^{a2}}{M_{k}^{2}} \Big]$$

- Coupling Lepton doublet ℓ , scalar S_a and fermion F_k is allowed
- Massive scalar S_a and fermion F_k in loop
- Mass splitting between scalar and pseudoscalar in loop

$$(m_{\nu})_{\alpha\beta} \sim \sum_{a} \sum_{k} \frac{Y_{\alpha k}^{a} Y_{\beta k}^{a} M_{k}}{16\pi^{2}} \Big[\frac{m_{R}^{a2}}{m_{R}^{a2} - M_{k}^{2}} \ln \frac{m_{R}^{a2}}{M_{k}^{2}} - \frac{m_{I}^{a2}}{m_{I}^{a2} - M_{k}^{2}} \ln \frac{m_{I}^{a2}}{M_{k}^{2}} \Big]$$

- Coupling Lepton doublet ℓ , scalar S_a and fermion F_k is allowed
- Massive scalar S_a and fermion F_k in loop
- Mass splitting between scalar and pseudoscalar in loop
- $\Delta L = 2$ lepton number violation: e.g. Majorana mass term for F_k

$$(m_{\nu})_{\alpha\beta} \sim \sum_{a} \sum_{k} \frac{Y_{\alpha k}^{a} Y_{\beta k}^{a} M_{k}}{16\pi^{2}} \Big[\frac{m_{R}^{a2}}{m_{R}^{a2} - M_{k}^{2}} \ln \frac{m_{R}^{a2}}{M_{k}^{2}} - \frac{m_{I}^{a2}}{m_{I}^{a2} - M_{k}^{2}} \ln \frac{m_{I}^{a2}}{M_{k}^{2}} \Big]$$

- Coupling Lepton doublet ℓ , scalar S_a and fermion F_k is allowed
- Massive scalar S_a and fermion F_k in loop
- Mass splitting between scalar and pseudoscalar in loop
- $\Delta L = 2$ lepton number violation: e.g. Majorana mass term for F_k
- Generally discrete symmetry needed to forbid tree-level mass and/or avoid FCNCs \Rightarrow lightest component of F_k , S_a is stable \Rightarrow DM candidate

Framework

- Lepton number violation either in propagator or in vertex
- Models with discrete symmetry \mathbb{Z}_2 and coupling to lepton doublet ℓ .
- New particles F_k , S_a are odd under \mathbb{Z}_2 (SM particles even).
- Embed discrete symmetry into a continuous symmetry $U(1)_X$ with $U(1)_X \to \mathbb{Z}_2$.

- Here, we only consider scalar DM. The scalar mass eigenstates are denoted by δ_i ordered by its mass with δ_1 being the lightest.
- It works analogously for fermionic DM.

Lepton Flavour Violation

$$\Gamma(\mu
ightarrow e \gamma) = rac{lpha_{
m em} m_\mu^5 |g_\mu g_e|^2}{(384\pi^2)^2 M_+^4} \left| I\left(rac{M_0^2}{M_+^2}
ight)
ight|^2$$

- M_0 mass of neutral part.
- M_+ mass of charged part.
- I(0) = 1 and $I(t) \stackrel{t \to \infty}{\longrightarrow} 0$

Lepton Flavour Violation

 $\Gamma(\mu \to e\gamma) = \frac{\alpha_{\rm em} m_{\mu}^5 |g_{\mu}g_{e}|^2}{(384\pi^2)^2 M_{+}^4} \left| I\left(\frac{M_0^2}{M_{+}^2}\right) \right|^2$

Experimental Limits[PDG 2011, MEG 2011]

 $egin{aligned} & \operatorname{Br}(\mu o e \gamma) < 2.4 \cdot 10^{-12} \ & \operatorname{Br}(au o e \gamma) < 1.1 \cdot 10^{-7} \ & \operatorname{Br}(au o \mu \gamma) < 4.5 \cdot 10^{-8} \end{aligned}$

- M_0 mass of neutral part.
- M_+ mass of charged part.
- I(0) = 1 and $I(t) \stackrel{t \to \infty}{\longrightarrow} 0$

Lepton Flavour Violation

$$\Gamma(\mu \to e\gamma) = \frac{\alpha_{\rm em} m_{\mu}^5 |g_{\mu}g_{e}|^2}{(384\pi^2)^2 M_{+}^4} \left| I\left(\frac{M_0^2}{M_{+}^2}\right) \right|^2$$

Experimental Limits[PDG 2011, MEG 2011]

 $egin{aligned} & ext{Br}(\mu
ightarrow e \gamma) < 2.4 \cdot 10^{-12} \ & ext{Br}(au
ightarrow e \gamma) < 1.1 \cdot 10^{-7} \ & ext{Br}(au
ightarrow \mu \gamma) < 4.5 \cdot 10^{-8} \end{aligned}$

- M_0 mass of neutral part.
- M_+ mass of charged part.
- I(0) = 1 and $I(t) \stackrel{t \to \infty}{\longrightarrow} 0$

Bounds

- $M_+/g\gtrsim 10\,{
 m TeV}$
- unless special flavour structure: $g_e \ll g_\mu$ (or $g_\mu \ll g_e)$

Dark Matter Annihilation Channels

Scalar Interactions

Dark Matter Annihilation Channels

Scalar Interactions

Gauge Interactions

Dark Matter Annihilation Channels

Scalar Interactions

Gauge Interactions

Fermion Exchange

Dark Matter Annihilation (Scalar Interactions)

$$\Rightarrow \left\langle \sigma_{f\bar{f}}^{h} v \right\rangle \simeq N_{c} \frac{|\lambda_{L}|^{2}}{\pi} \frac{m_{f}^{2}}{(4 M_{1}^{2} - m_{h}^{2})^{2}} \frac{(M_{1}^{2} - m_{f}^{2})^{3/2}}{M_{1}^{3}}$$

Dark Matter Annihilation (Scalar Interactions)

$$\Rightarrow \left\langle \sigma_{f\bar{f}}^{h} v \right\rangle \simeq N_{c} \frac{|\lambda_{L}|^{2}}{\pi} \frac{m_{f}^{2}}{(4 M_{1}^{2} - m_{h}^{2})^{2}} \frac{(M_{1}^{2} - m_{f}^{2})^{3/2}}{M_{1}^{3}}$$

In general for Higgs mediated annihilation (for $m_h = 140 \text{ GeV}$, $M_1 = 75 \text{ GeV}$): $\langle \sigma(\delta_1 \delta_1 \rightarrow h^* \rightarrow \dots) v \rangle = (2m_h \Gamma(h \rightarrow \dots))|_{m_h \rightarrow 2M_1} \frac{1}{4M_1^2} \frac{4|\lambda_L|^2 v_h^2}{(4M_1^2 - m_h^2)^2}$

Using HiggsBounds: $\Gamma|_{2 \times 75 \text{ GeV}} = 17.4 \text{ MeV} \Rightarrow \lambda_L \approx 0.037$

Direct DM Detection (eSI) $\frac{dR}{dE_R}(E_R, t) = \frac{\rho_{\chi}}{2M_1m_r^2} A^2 \sigma_p F^2(E_R) \int_{v_{min}}^{v_{esc}} d^3 v \frac{f_{local}(\vec{v}, t)}{v}$

$$\sigma_{p} = \frac{|\lambda_{L}|^{2}}{\pi} \frac{\mu_{\tilde{\delta}_{1}n}^{2} m_{p}^{2}}{M_{1}^{2} m_{h}^{4}} f^{2}$$

\$\approx 7.0 \times 10^{-45} \left(\frac{\lambda_{L}}{0.037}\right)^{2} \left(\frac{75 \text{ GeV}}{M_{1}}\right)^{2} \left(\frac{140 \text{ GeV}}{m_{h}}\right)^{4} \left(\frac{f}{0.3}\right)^{2} \text{ cm}^{2}

Direct Detection 16

Outline

1 Introduction

2 Radiative Neutrino Mass Generation and Dark Matter

3 AMEND: A Model Explaining Neutrino masses and Dark matter

4 Conclusions and Outlook

Model

Particle Content							
	SU(2)	U(1)	$U(1)_X$	\mathbb{Z}_2			
$\ell_L^{(i)}$	2	-1/2	0	+			
R_R	2	-1/2	1				
R_R'	2	1/2	-1				
Δ	3	1	1	-			
ϕ	1	0	-1				

- Symmetry explanation for smallness of couplings $\mathsf{U}(1)_X o \mathbb{Z}_2$
- $\bullet\,\Rightarrow\,$ here explicit, spontaneous symmetry breaking also possible
- Symmetry protects smallness from large quantum corrections
- Lepton number violation in vertex

Fermion Sector

Neutrino Masses

One Loop Diagram Generating Neutrino Masses

- neutral scalar mass
 eigenstates δ_i
- with scalar masses M_i
- α_1 mixing between $\delta_{1,3}$
- α_2 mixing between $\delta_{2,4}$

 $g(m_
u)_{lphaeta} = g_lpha(ilde{g}_\Delta)_eta ilde{\eta} + ilde{g}_lpha(ilde{g}_\Delta)_eta extsf{\eta} + (lpha \leftrightarrow eta) + (lpha \leftrightarrow eta)$

 $\eta = \eta(m_{RR}, M_i, lpha_i)$ $ilde{\eta} = ilde{\eta}(m_{RR}, M_i, lpha_i)$

Neutrino Masses

One Loop Diagram Generating Neutrino Masses

- neutral scalar mass eigenstates δ_i
- with scalar masses M_i
- α_1 mixing between $\delta_{1,3}$
- α_2 mixing between $\delta_{2,4}$

$$(m_
u)_{lphaeta}=g_lpha(ilde g_\Delta)_eta ilde\eta+ ilde g_lpha(ilde g_\Delta)_eta\eta+(lpha\leftrightarroweta)$$

$$\begin{split} g\tilde{g}_{\Delta} \simeq 4.0 \times 10^{-6} \frac{m_{\nu}}{0.05 \text{ eV}} \frac{70 \text{ GeV}}{M_1} \frac{50 \text{ MeV}}{\delta} \frac{m_{RR}}{300 \text{ GeV}} \frac{0.1}{|\sin \alpha_1|} \left(\frac{m_{RR}^2}{m_{RR}^2 - m_{\Delta}^2} \dots\right)^{-1} \\ g\tilde{g}_{\Delta} \simeq 4.5 \times 10^{-6} \frac{m_{\nu}}{0.05 \text{ eV}} \frac{300 \text{ GeV}}{m_{RR}} \frac{1 \text{ GeV}^2}{\tilde{m}_{\phi\Delta}^2} \left(\frac{m_{\Delta}}{500 \text{ GeV}}\right)^2 \frac{m_{RR}^2 - m_{\Delta}^2}{m_{\Delta}^2} \left(\log \frac{m_{RR}^2}{m_{\Delta}^2}\right)^{-1} \\ \tilde{g}\tilde{g}_{\Delta} \simeq 1.8 \times 10^{-10} \frac{m_{\nu}}{0.05 \text{ eV}} \frac{300 \text{ GeV}}{m_{RR}} \frac{0.1}{\sin \alpha_1} \frac{m_{RR}^2 - m_{\Delta}^2}{m_{\Delta}^2} \left(\log \frac{m_{RR}^2}{m_{\Delta}^2}\right)^{-1} \end{split}$$

Lepton Flavour Violation and $(g-2)_{\mu}$

Lepton Flavour Violation

$$\begin{split} &\operatorname{Br}(\mu \to e\gamma) = 2.5 \cdot 10^{-9} \left(\frac{300 \,\operatorname{GeV}}{m_{RR}}\right)^4 \left|\frac{g_{\mu}^*}{0.1} \frac{g_{e}}{0.1}\right|^2 \\ &\operatorname{Br}(\tau \to \alpha\gamma) = 4.5 \cdot 10^{-10} \left(\frac{300 \,\operatorname{GeV}}{m_{RR}}\right)^4 \left|\frac{g_{\tau}^*}{0.1} \frac{g_{\alpha}}{0.1}\right|^2 \end{split}$$

Experimental Limits[PDG 2011, MEG 2011]

 $egin{aligned} & \mathrm{Br}(\mu
ightarrow e \gamma) < 2.4 \cdot 10^{-12} \ & \mathrm{Br}(au
ightarrow e \gamma) < 1.1 \cdot 10^{-7} \ & \mathrm{Br}(au
ightarrow \mu \gamma) < 4.5 \cdot 10^{-8} \end{aligned}$

Solutions

•
$$m_{RR}/g\gtrsim 10$$
 TeV

$$* \hspace{0.1 cm} g_{e} \ll g_{\mu} \hspace{0.1 cm} ({
m or} \hspace{0.1 cm} g_{\mu} \ll g_{e}) \ ({
m allowed} \hspace{0.1 cm} {
m by} \hspace{0.1 cm} {
m flavour} \hspace{0.1 cm} {
m structure})$$

Anomalous Magnetic Moment of Muon

$$\delta(g-2)_\mu/2\sim 10^{-11}\left(rac{300\,\,\,{
m GeV}}{m_{RR}}
ight)^4|g_\mu|^2\lesssim {
m exp.} \,\,{
m uncertainty}$$

Electroweak Precision Tests

Fermionic Doublets[Maekawa (1995); Cynolter, Lendvai (2008)]

$$\hat{S} \simeq 0$$
$$W \simeq \frac{g_{\rm SU(2)}^2}{120\pi^2} \frac{m_W^2}{m_{RR}^2}$$

$$\hat{T} \simeq 0$$

 $Y \simeq rac{\mathcal{B}_{\mathrm{U}(1)}^2}{120\pi^2} rac{m_W^2}{m_{RR}^2}$

Higgs Triplet

$$\hat{S} \simeq \frac{g_{SU(2)}^2}{24\pi^2} \xi \qquad \qquad \hat{T} \simeq \frac{25g_{SU(2)}^2}{576\pi^2} \frac{m_{\Delta}^2}{m_W^2} \xi \\ W \simeq -\frac{7g_{SU(2)}^2}{720\pi^2} \frac{m_W^2}{m_{\Delta}^2} \qquad \qquad Y \simeq -\frac{7g_{U(1)}^2}{480\pi^2} \frac{m_W^2}{m_{\Delta}^2}$$

with $\xi:=(m_{\Delta^{++}}^2-m_{\Delta}^2)/m_{\Delta}^2$ and $m_{\Delta^{++}}^2=m_{\Delta}^2+2m_{\Delta^+}^2$

$$\frac{10^{3}\hat{S}}{m_{h}} = 115 \,\text{GeV} \quad 0.0 \pm 24.0 \quad 0.6 \pm 5.0 \quad -2.2 \pm 4.4 \quad 6.1 \pm 73.6$$

[Barbieri, Pomarol, Rattazi, Strumia (2004); Cacciapaglia, Csaki, Marandella, Strumia (2006)²¹

Invisible Z Decay Width

If DM particle δ_1 couples to Z-boson and $M_1 + M_2 < m_Z$:

$$\Gamma(Z
ightarrow \delta_1 \delta_2) = rac{G_F \sin^2 lpha_1 \sin^2 lpha_2}{6\sqrt{2}\pi} m_Z^3$$

 \Rightarrow Bound on mixing angles: sin $\alpha_1 \sin \alpha_2 \lesssim 0.07$

Higgs Search

• Higgs might decay dominantly invisibly if $2 M_1 < m_h$

 $H o \delta_1 \delta_1$, $H o \delta_2 \delta_2 o (\delta_1
u ar
u) (\delta_1
u ar
u)$

Higgs Search

• Higgs might decay dominantly invisibly if $2 M_1 < m_h$

$$H o \delta_1 \delta_1\,, \quad H o \delta_2 \delta_2 o (\delta_1
u ar
u) (\delta_1
u ar
u)$$

• Displaced vertex if there is a large mass splitting between $\delta_{1,2}$: For $\delta_2 \rightarrow \delta_1 \mu^+ \mu^-$ in ATLAS Muon detector: $M_2 - M_1 \gtrsim 480 \text{ MeV}(\gamma \nu)^{1/5}$

Higgs Search

• Higgs might decay dominantly invisibly if $2 M_1 < m_h$

$$H o \delta_1 \delta_1\,, \quad H o \delta_2 \delta_2 o (\delta_1
u ar
u) (\delta_1
u ar
u)$$

• Displaced vertex if there is a large mass splitting between $\delta_{1,2}$: For $\delta_2 \rightarrow \delta_1 \mu^+ \mu^-$ in ATLAS Muon detector: $M_2 - M_1 \gtrsim 480 \text{ MeV}(\gamma \nu)^{1/5}$

- New particles couple dominantly to leptons
 - \Rightarrow although accessible, more difficult to produce at the LHC

Higgs Search

• Higgs might decay dominantly invisibly if $2 M_1 < m_h$

$$H o \delta_1 \delta_1 \,, \quad H o \delta_2 \delta_2 o (\delta_1
u ar
u) (\delta_1
u ar
u)$$

• Displaced vertex if there is a large mass splitting between $\delta_{1,2}$: For $\delta_2 \rightarrow \delta_1 \mu^+ \mu^-$ in ATLAS Muon detector: $M_2 - M_1 \gtrsim 480 \text{ MeV}(\gamma \nu)^{1/5}$

- New particles couple dominantly to leptons
 ⇒ although accessible, more difficult to produce at the LHC
- They decay into the SM particles and DM \Rightarrow missing energy

Higgs Search

• Higgs might decay dominantly invisibly if $2 M_1 < m_h$

$$H o \delta_1 \delta_1 \,, \quad H o \delta_2 \delta_2 o (\delta_1
u ar
u) (\delta_1
u ar
u)$$

• Displaced vertex if there is a large mass splitting between $\delta_{1,2}$: For $\delta_2 \rightarrow \delta_1 \mu^+ \mu^-$ in ATLAS Muon detector: $M_2 - M_1 \gtrsim 480 \text{ MeV}(\gamma \nu)^{1/5}$

- New particles couple dominantly to leptons
 ⇒ although accessible, more difficult to produce at the LHC
- They decay into the SM particles and DM \Rightarrow missing energy
- Measurement of Yukawa couplings via decays of charged particles, e.g. $\Gamma(E_R^- \to \ell_\alpha^- \delta_{1,2}) \propto |g_\alpha|^2 \text{ and } \Gamma(\Delta^{++} \to \ell_\alpha^+ \ell_\beta^+ \delta_{1,2}) \propto |(\tilde{g}_\Delta)_\alpha g_\beta + (\tilde{g}_\Delta)_\beta g_\alpha|^2$

Higgs Search

• Higgs might decay dominantly invisibly if $2 M_1 < m_h$

$$H o \delta_1 \delta_1\,, \quad H o \delta_2 \delta_2 o (\delta_1
u ar
u) (\delta_1
u ar
u)$$

• Displaced vertex if there is a large mass splitting between $\delta_{1,2}$: For $\delta_2 \rightarrow \delta_1 \mu^+ \mu^-$ in ATLAS Muon detector: $M_2 - M_1 \gtrsim 480 \text{ MeV}(\gamma \nu)^{1/5}$

- New particles couple dominantly to leptons
 ⇒ although accessible, more difficult to produce at the LHC
- They decay into the SM particles and DM \Rightarrow missing energy
- Measurement of Yukawa couplings via decays of charged particles, e.g. $\Gamma(E_R^- \to \ell_\alpha^- \delta_{1,2}) \propto |g_\alpha|^2 \text{ and } \Gamma(\Delta^{++} \to \ell_\alpha^+ \ell_\beta^+ \delta_{1,2}) \propto |(\tilde{g}_\Delta)_\alpha g_\beta + (\tilde{g}_\Delta)_\beta g_\alpha|^2$
- Mass relation of triplet $2m_{\Delta^+}^2 = m_{\Delta^{++}}^2 + m_{\Delta}^2$ testable

Outline

1 Introduction

2 Radiative Neutrino Mass Generation and Dark Matter

3 AMEND: A Model Explaining Neutrino masses and Dark matter

4 Conclusions and Outlook

• Origin of neutrino masses from TeV scale physics and linked to dark matter.

- Origin of neutrino masses from TeV scale physics and linked to dark matter.
- This usually implies a discrete symmetry which leads DM candidate.

- Origin of neutrino masses from TeV scale physics and linked to dark matter.
- This usually implies a discrete symmetry which leads DM candidate.
- These models are testable.

- Origin of neutrino masses from TeV scale physics and linked to dark matter.
- This usually implies a discrete symmetry which leads DM candidate.
- These models are testable.
- The interplay of different experiments imposes strong constraints: DM detection, LFV, collider, ...

- Origin of neutrino masses from TeV scale physics and linked to dark matter.
- This usually implies a discrete symmetry which leads DM candidate.
- These models are testable.
- The interplay of different experiments imposes strong constraints: DM detection, LFV, collider, ...
- At the moment, the strongest ones are from LFV rare decays.

- Origin of neutrino masses from TeV scale physics and linked to dark matter.
- This usually implies a discrete symmetry which leads DM candidate.
- These models are testable.
- The interplay of different experiments imposes strong constraints: DM detection, LFV, collider, ...
- At the moment, the strongest ones are from LFV rare decays.
- This mechanism also works with a fourth generation. So, the talk might be justified in this context:

Flavour and the Fourth Family

- Origin of neutrino masses from TeV scale physics and linked to dark matter.
- This usually implies a discrete symmetry which leads DM candidate.
- These models are testable.
- The interplay of different experiments imposes strong constraints: DM detection, LFV, collider, ...
- At the moment, the strongest ones are from LFV rare decays.
- This mechanism also works with a fourth generation. So, the talk might be justified in this context:

Flavour and the Fourth Family

Neutrino Masses and a Fourth Generation of Fermions

[M. Lindner, MS, A. Smirnov (Sep. 2011)]

Outlook

• Generalization of results [with Y. Farzan, S. Pascoli] \rightarrow different groups, gauged group, higher loop orders, particle content

- Symmetry is larger: \mathbb{Z}_m , m > 2, U(1), non-Abelian
- Possibly multi-component DM [see e.g. Batell(2010); Adulpravitchai, Batell, Pradler (2011)]
- DM annihilation more involved: e.g. $\chi\chi o \chi h$ [D'Eramo, Thaler (2010)]
- LFV rare decays still at one loop level \Rightarrow flavour symmetry needed

Outlook

• Generalization of results [with Y. Farzan, S. Pascoli] \rightarrow different groups, gauged group, higher loop orders, particle content

- Symmetry is larger: \mathbb{Z}_m , m > 2, U(1), non-Abelian
- Possibly multi-component DM [see e.g. Batell(2010); Adulpravitchai, Batell, Pradler (2011)]
- DM annihilation more involved: e.g. $\chi\chi o \chi h$ [D'Eramo, Thaler (2010)]
- LFV rare decays still at one loop level \Rightarrow flavour symmetry needed
- Flavour symmetries [with M. Holthausen]

Outlook

• Generalization of results [with Y. Farzan, S. Pascoli] \rightarrow different groups, gauged group, higher loop orders, particle content

- Symmetry is larger: \mathbb{Z}_m , m > 2, U(1), non-Abelian
- Possibly multi-component DM [see e.g. Batell(2010); Adulpravitchai, Batell, Pradler (2011)]
- DM annihilation more involved: e.g. $\chi\chi o \chi h$ [D'Eramo, Thaler (2010)]
- LFV rare decays still at one loop level \Rightarrow flavour symmetry needed
- Flavour symmetries [with M. Holthausen]
- Study of collider signatures

Discussion: Experimental Tests

- LFV processes
 - At one loop level unless there is a flavour symmetry
 - Strongest bound today from $\mu
 ightarrow e \gamma$
 - What are the experimental prospects for further constraints?
 - What about other LFV processes like au decays?
- 2 DM experiments
 - Direct detection experiments: future prospects? Can the current low mass DM hints be explained?
 - In future: constraints from indirect detection experiments
 - High-energy neutrino flux from sun. Further improvements?
- Sollider searches:
 - What branching fraction is acceptable for invisible Higgs decay?
 - New particles couple to EW gauge bosons
 - Decay channels: directly into leptons plus missing energy or via EW gauge bosons
 - What is the potential reach of the LHC for these particles?
 - Can the LHC exclude these models in combination with the other experiments?

Thank you very much for your attention.

Basics of Dark Matter Freeze Out

- Assumption: thermal production after inflation
- Annihilation rate related to production rate
- Quasi-degenerate scalar masses because of approximate U(1)_X ⇒ both species have to be considered
- If $\sigma_{12} \ll \sigma_{11}, \sigma_{22} \Rightarrow \delta_1$ and δ_2 produced and later $\delta_2 \rightarrow \delta_1 \nu \bar{\nu}$ • $\sum_{i=1}^2 \langle \sigma(\delta_i \delta_i \rightarrow \dots) v \rangle = 3 \cdot 10^{-26} \frac{\text{cm}^3}{\text{sec}}$

Thermal freezeout one species 0.001 0.0001 10-10-Increasing $\langle \sigma, v \rangle$ 10-1 10-8 10-* 10-1 10-11 10-18 Comoving 10-18 10-14 10-16 10-10 N_{EQ} 10-17 10-18 10-10 10-8 10 1000 x=m/T (time \rightarrow)

Dark Matter Annihilation (Fermion Exchange)

$$\delta_{i} - \cdots - \underbrace{\ell_{\alpha}^{-}, \nu_{\alpha}}_{F_{k}} \delta_{j} - \cdots - \underbrace{\ell_{\beta}^{+}, \bar{\nu}_{\beta}}_{F_{\beta}}$$

$$\left\langle \sigma(\delta_i \delta_j o \ell_{\alpha}^- \ell_{\beta}^+,
u_{lpha} ar{
u}_{eta}) v
ight
angle \simeq rac{|g_{lpha} g_{eta}|^2}{32\pi} rac{(m_{lpha}^2 + m_{eta}^2)}{(M_i M_j + m_F^2)^2} rac{(M_i + M_j)^2}{M_i M_j}$$

- $g_{\alpha,\beta}$ Yukawa couplings
- *m*_{α,β} final state fermion masses
- Dominant annihilation into $au^+ au^-$ pair (for similar Yukawa couplings)
- One possibility to obtain a dominant annihilation into leptons (PAMELA, FERMI, ...)

Detection of WIMP Dark Matter

Constraints from Isotropic Diffuse γ-ray Background_[Abazajian, Agrawal, Chacko, Kilic (2010)]

Elastic SI Scattering – CoGeNT/DAMA claim

• 7 GeV $\lesssim M_1 \lesssim 11$ GeV with $\sigma_n \sim 10^{-41}$ cm²-10⁻⁴⁰ cm² $\sigma_n \approx 1.3 \times 10^{-40} \left(\frac{f}{0.3}\right)^2 \left(\frac{8 \text{ GeV}}{M_1}\right)^2 \text{ cm}^2$

Might also explain DAMA for intermediate channelling

Disclaimer: A proper analysis is required to make definite statements!

Light WIMPs – Neutrinos From Sun

- Number of WIMPs: $\dot{N} = C AN^2 EN$
- Capture rate
 - $C(
 ho_{DM}, \, ar{v}, \, m_{DM}, \, \sigma) \simeq 1.3 \cdot 10^{25} {
 m sec}^{-1} \, \propto
 ho_{DM} \sigma \, ar{v}^{-1} \, m_{DM}^{-1} \, m^{-1}$
- Annihilation Rate $A = \langle \sigma v \rangle / V_{eff}$
- Evaporation rate $E \approx 10^{-(\frac{7}{2}(m_{DM}/\text{ GeV})+4)} \left(\frac{\sigma_H}{5 \cdot 10^{39} \text{cm}^2}\right) \text{sec}^{-1}$

Bounds

[SuperKamiokande (2004)]

[Hooper, Petriello, Zurek, Kamionkowski (2008)]

34

Particle Content and Symmetries

	$SU(3)_c$	$SU(2)_L$	$U(1)_Y$	$\mathrm{U}(1)_X[\mathbb{Z}_2]$	$U(1)_{L1}$	$U(1)_{L2}$	$U(1)_{L3}$
$Q_L^{(i)}$	3	2	1/6				
$u_R^{(i)}$	3	1	2/3				
$d_R^{(i)}$	3	1	-1/3				
$\ell_L^{(i)}$	1	2	-1/2	0[+]	+1	-1	+1
$e_R^{(i)}$	1	1	-1	0[+]	-1	+1	-1
Н	1	2	1/2				
R _R	1	2	-1/2	1[-]	+1	+1	+1
R'_R	1	2	1/2	-1[-]	-1	-1	-1
Δ	1	3	1	1[-]	0	0	-2
ϕ	1	1	0	-1[-]	0	0	0

Yukawa Couplings

Particle Content							
		$\mathrm{U}(1)_X$	\mathbb{Z}_2	$U(1)_{L1}$	$U(1)_{L2}$	$U(1)_{L3}$	
	$\ell_L^{(i)}$	0	+	+1	-1	+1	
	R_R	1		+1	+1	+1	
	R'_R	-1		-1	-1	-1	
	Δ	1	-	0	0	-2	
	ϕ	-1		0	0	0	

• Dirac mass $m_{RR}\gtrsim 100\,{
m GeV}$

$$- \frac{m_{RR}(R'^{C})^{\dagger} \cdot R}{k_{2}} - \frac{g_{\alpha}\phi^{\dagger}R^{\dagger}\ell_{L\alpha}}{g_{\alpha}\phi R^{\dagger}\ell_{L\alpha}} - \frac{(\tilde{g}_{\Delta})_{\alpha}R'^{\dagger} \cdot \Delta \cdot \ell_{L\alpha}}{(\tilde{g}_{\Delta})_{\alpha}R'^{\dagger} \cdot \Delta \cdot \ell_{L\alpha}} + h.c.$$

$$\frac{1}{k_{2}}$$

$$\frac{1}{k_{2}}$$

$$\frac{1}{k_{1}}, U(1)_{X} \text{ breaking}$$

Higgs Potential

DM coannihilation into SM Higgs boson h
 Direct mass terms

$$\mathscr{V} \supset m_{\Delta}^2 \operatorname{Tr} \Delta^{\dagger} \Delta + m_{\phi}^2 \phi^{\dagger} \phi +$$

$$+ \frac{2m_{\phi\Delta}^2}{v_H^2} H^T \,\mathrm{i}\,\sigma_2 \Delta^\dagger H \phi^\dagger$$

$$\frac{2\tilde{m}_{\phi\Delta}^2}{v_H^2}H^T\,\mathrm{i}\,\sigma_2\Delta^\dagger H_0$$

 $\lambda_L \frac{v_H}{\sqrt{2}} h \left(\delta_1^2 + \delta_2^2\right)$

 $\tilde{m}_{\phi}^2 \phi^2 + \mathbf{h. c.}$

• $\mathcal{V}_3, \ U(1)_\phi imes U(1)_\Delta o U(1)_X$

• $U(1)_X o \mathbb{Z}_2$, mass splitting of $\operatorname{Re}(\phi)$ and $\operatorname{Im}(\phi)$

Neutral Scalar Masses

 $\phi = (\phi_1 + i \phi_2)/\sqrt{2}$ $\Delta^0 = (\Delta_1 + i \Delta_2)/\sqrt{2}$ $\begin{pmatrix} \delta_1 \\ \delta_2 \\ \delta_3 \\ \delta_4 \end{pmatrix} = \begin{pmatrix} \cos \alpha_1 & 0 & \sin \alpha_1 & 0 \\ 0 & \cos \alpha_2 & 0 & \sin \alpha_2 \\ -\sin \alpha_1 & 0 & \cos \alpha_1 & 0 \\ 0 & -\sin \alpha_2 & 0 & \cos \alpha_2 \end{pmatrix} \begin{pmatrix} \phi_1 \\ \phi_2 \\ \Delta_1 \\ \Delta_2 \end{pmatrix}$ $M_1^2 \simeq m_\phi^2 - rac{m_{\phi\Delta}^4}{m_\Delta^2 - m_A^2} - \widetilde{m}_\phi^2 - 2rac{m_{\phi\Delta}^2}{m_\Delta^2 - m_A^2} \widetilde{m}_{\phi\Delta}^2$ $M_2^2\simeq m_\phi^2-rac{m_{\phi\Delta}^4}{m_\Delta^2-m_\phi^2}+ ilde{m}_\phi^2+2rac{m_{\phi\Delta}^2}{m_\Delta^2-m_\phi^2} ilde{m}_{\phi\Delta}^2$ $M_3^2 \simeq m_\Delta^2 + 2 rac{m_{\phi\Delta}^2}{m_\Delta^2 - m_\phi^2} \widetilde{m}_{\phi\Delta}^2$

$$M_4^2 \simeq m_\Delta^2 - 2 rac{m_{\phi\Delta}^2}{m_\Delta^2 - m_\phi^2} ilde{m}_{\phi\Delta}^2$$

mixing angles: $|\tan 2\alpha_1| \simeq |\tan 2\alpha_2| \simeq 2m_{\phi\Delta}^2/(m_{\Delta}^2 - m_{\phi}^2)$

Neutrino Masses (Technical Details)

One Loop Diagram Generating Neutrino Masses

- neutral scalar mass
 eigenstates δ_i
- with scalar masses M_i
- α_1 mixing between $\delta_{1,3}$
- α_2 mixing between $\delta_{2,4}$

back

 $(m_
u)_{lphaeta}=g_lpha(ilde{g}_\Delta)_eta ilde{\eta}+ ilde{g}_lpha(ilde{g}_\Delta)_eta\eta+(lpha\leftrightarroweta)$

 $\eta = \eta(m_{RR}, M_i, \alpha_i)$ $\tilde{\eta} = \tilde{\eta}(m_{RR}, M_i, \alpha_i)$

 $\tilde{\eta} = \frac{m_{RR}}{64\pi^2} \left(\frac{M_3^2}{m_{\pi^-}^2 - M_1^2} \ln \frac{m_{RR}^2}{M_1^2} - \frac{M_1^2}{m_{\pi^-}^2 - M_1^2} \ln \frac{m_{RR}^2}{M_1^2} \right) \sin 2\alpha_1 + \left[(1, 3) \to (2, 4) \right]_{39}$

Neutrino Masses (Technical Details)

One Loop Diagram Generating Neutrino Masses

- neutral scalar mass
 eigenstates δ_i
- with scalar masses M_i
- α_1 mixing between $\delta_{1,3}$
- α_2 mixing between $\delta_{2,4}$

back

 $(m_
u)_{lphaeta} = g_lpha(\widetilde{g}_\Delta)_eta \widetilde{\eta} + \widetilde{g}_lpha(\widetilde{g}_\Delta)_eta \eta + (lpha \leftrightarrow eta)$

$$\begin{split} \tilde{\eta} &\simeq & \frac{m_{RR}}{16\pi^2} \left(\frac{\tilde{m}_{\phi}^2 m_{\phi\Delta}^2}{m_{RR}^2 m_{\Delta}^2} \left(\frac{m_{RR}^2}{m_{RR}^2 - m_{\Delta}^2} \ln \frac{m_{RR}^2}{m_{\Delta}^2} + 1 - \ln \frac{m_{RR}^2}{M_1^2} \right) - \frac{\tilde{m}_{\phi\Delta}^2}{m_{RR}^2 - m_{\Delta}^2} \ln \frac{m_{RR}^2}{m_{\Delta}^2} \right) \\ \eta &\simeq & - \frac{m_{RR}}{16\pi^2} \frac{m_{\phi\Delta}^2}{m_{RR}^2 - m_{\Delta}^2} \ln \frac{m_{RR}^2}{m_{\Delta}^2} \end{split}$$

Neutrino Masses (Technical Details)

One Loop Diagram Generating Neutrino Masses

- neutral scalar mass
 eigenstates δ_i
- with scalar masses M_i
- α_1 mixing between $\delta_{1,3}$
- α_2 mixing between $\delta_{2,4}$

back

 $\overline{(m_
u)}_{lphaeta} = g_lpha(\widetilde{g}_\Delta)_eta \widetilde{\eta} + \widetilde{g}_lpha(\widetilde{g}_\Delta)_eta \eta + (lpha \leftrightarrow eta)$

$$\begin{split} g\tilde{g}_{\Delta} \simeq 4.0 \times 10^{-6} \frac{m_{\nu}}{0.05 \text{ eV}} \frac{70 \text{ GeV}}{M_1} \frac{50 \text{ MeV}}{\delta} \frac{m_{RR}}{300 \text{ GeV}} \frac{0.1}{|\sin \alpha_1|} \left(\frac{m_{RR}^2}{m_{RR}^2 - m_{\Delta}^2} \dots\right)^{-1} \\ g\tilde{g}_{\Delta} \simeq 4.5 \times 10^{-6} \frac{m_{\nu}}{0.05 \text{ eV}} \frac{300 \text{ GeV}}{m_{RR}} \frac{1 \text{ GeV}^2}{\tilde{m}_{\phi\Delta}^2} \left(\frac{m_{\Delta}}{500 \text{ GeV}}\right)^2 \frac{m_{RR}^2 - m_{\Delta}^2}{m_{\Delta}^2} \left(\log \frac{m_{RR}^2}{m_{\Delta}^2}\right)^{-1} \\ \tilde{g}\tilde{g}_{\Delta} \simeq 1.8 \times 10^{-10} \frac{m_{\nu}}{0.05 \text{ eV}} \frac{300 \text{ GeV}}{m_{RR}} \frac{0.1}{\sin \alpha_1} \frac{m_{RR}^2 - m_{\Delta}^2}{m_{\Phi}^2} \left(\log \frac{m_{RR}^2}{m_{\Delta}^2}\right)^{-1} \end{split}$$