Lepton Number Violation (Experiment)

> 15th September 2011 Mitesh Patel (Imperial College London)

Introduction

Lepton number violating processes can occur in a number of NP models

e.g. 4th generation⁽¹⁾, left-right symmetric models⁽²⁾, SO(10) SUSY GUT⁽³⁾, other GUTs⁽⁴⁾, models with exotic Higgs⁽⁵⁾, Extra Dimensions⁽⁶⁾...

- Involve Majorana mass terms classic way of searching for Majorana ν, 0νββ decay (Prof. Biller, next talk)
- An alternative, processes such as $M_1^+ \rightarrow M_2^- I_1^+ I_2^+$

(1) arXiv:hep-ph/1106.0343
(2) J. C. Pati and A. Salam, Phys. Rev. D10, 275 (1974)
(3) arXiv:hep-ph/9501298
(4) arXiv:hep-ph/0504276
(5) A. Zee, Phys. Lett. B93, 389 (1980)
(6) arXiv:hep-ph/981144

$M_1^+ \rightarrow M_2^- I_1^+ I_2^+$ as a probe of LNV

- Processes $M_1^+ \rightarrow M_2^- I_1^+ I_2^+$
 - as for $0\nu\beta\beta$ decay, absent in SM, Δ L=2, lepton number violating processes
 - get resonant production in presence of Majorana ${\bf v}$ with mass in kinematically accessible range
 - Rates depend on Majorana Neutrino-lepton coupling V_{I4} see e.g. [Pascoli *et al.*, arXiv:0901.3589v2]

$$M_1^+(q_1) \to \ell^+(p_1) \ \ell^+(p_2) \ M_2^-(q_2).$$

$$\begin{split} i\mathcal{M}^{P} &= 2G_{F}^{2}V_{M_{1}}^{CKM}V_{M_{2}}^{CKM}f_{M_{1}}f_{M_{2}}V_{\ell_{1}4}V_{\ell_{2}4} \ m_{4} \\ &\times \left[\frac{\overline{u_{\ell_{1}}} \ q_{1}' \ q_{2}'P_{R}v_{\ell_{2}}}{(q_{1}-p_{1})^{2}-m_{4}^{2}+i\Gamma_{N_{4}}m_{4}}\right] + (p_{1}\leftrightarrow p_{2}), \\ i\mathcal{M}^{V} &= 2G_{F}^{2}V_{M_{1}}^{CKM}V_{M_{2}}^{CKM}f_{M_{1}}f_{M_{2}}V_{\ell_{1}4}V_{\ell_{2}4} \ m_{4} \ m_{M_{2}} \\ &\times \left[\frac{\overline{u_{\ell_{1}}} \ q_{1}' \ \ell^{\lambda}(q_{2})P_{R}v_{\ell_{2}}}{(q_{1}-p_{1})^{2}-m_{4}^{2}+i\Gamma_{N_{4}}m_{4}}\right] + (p_{1}\leftrightarrow p_{2}), \end{split}$$
 Vector case

• Decays $B \rightarrow DII\pi$ also recently studied [N. Quintero *et al.*, arXiv:1108.6009v1]

Experimental Status

• Strong constraints from π , K decays, less so from D and B decays

- In region where D,B decays can have resonant enhancement, $|V_{e4}|^2$ probed at 10⁻⁷ level, $|V_{\mu4}|^2$ probed at 10⁻⁷ \rightarrow 10⁻⁴ level
- However, region accessible to B, D processes may still be of interest...

The nuMSM

- The nuMSM [Shaposhnikov et al., Phys.Lett.B631:151-156,2005
 - "minimal" addition to SM which is consistent with cosmological observations (BAU, BBN, seesaw)
 - Adds three sterile Majorana neutrinos
 - Lightest is dark matter candidate ~10 keV
 - Heavier two involved in generating baryon asymmetry \rightarrow masses O(0.1-10) GeV
 - Doesn't solve fine-tuning or hierarchy problem

 $Br(K) \sim |V_{M_1}^{CKM} V_{M_2}^{CKM}|^2 |V_{\ell_1 4} V_{\ell_2 4}|,$ Br(D, B) ~ 10^{-4} $|V_{M_1}^{CKM}V_{M_2}^{CKM}|^2 |V_{\ell_14}V_{\ell_24}|,$ $\operatorname{Br}(D_s) \sim 10^{-5} |V_{M_1}^{CKM} V_{M_2}^{CKM}|^2 |V_{\ell_1 4} V_{\ell_2 4}|.$ assumptions RE: m_4 , decay constants, Γ_4

Branching Ratio Limits

• In K decays limits from NA62 experiment now at 10⁻⁹ level

 \rightarrow BR(K[±] $\rightarrow \pi^{\mp}\mu^{\pm}\mu^{\pm}) < 1.1 \times 10^{-9}$ at 90% CL

Branching Ratio Limits

• In D decays limits from BaBar at 10⁻⁶ level (384fb⁻¹) [arXiv:1107.4465v1]

			BR UL	BF UL
	Yield	Eff.	90% CL	90% CL
Decay mode	(events)	(%)	(10^{-4})	(10^{-6})
$D^+ \rightarrow \pi^- e^+ e^+$	$4.7 \pm 4.7 \pm 0.5$	3.16	6.8	1.9
$D^+ ightarrow \pi^- \mu^+ \mu^+$	$-3.1 \pm 1.2 \pm 0.5$	0.70	7.5	2.0
$D^+ ightarrow \pi^- \mu^+ e^+$	$-5.1 \pm 4.2 \pm 2.0$	1.72	7.4	2.0
$D_s^+ ightarrow \pi^- e^+ e^+$	$-5.7 \pm 14. \pm 3.4$	6.84	1.8	4.1
$D_s^+ ightarrow \pi^- \mu^+ \mu^+$	$0.6 \pm 5.1 \pm 2.7$	1.05	6.2	14
$D_s^+ ightarrow \pi^- \mu^+ e^+$	$-0.2 \pm 7.9 \pm 0.6$	2.23	3.6	8.4
$D^+ ightarrow K^- e^+ e^+$	$-2.8 \pm 2.4 \pm 0.2$	2.67	3.1	0.9
$D^+ \rightarrow K^- \mu^+ \mu^+$	$7.2 \pm 5.4 \pm 1.6$	0.80	37	10
$D^+ \rightarrow K^- \mu^+ e^+$	$-11.6 \pm 4.0 \pm 3.1$	1.52	6.8	1.9
$D_s^+ \rightarrow K^- e^+ e^+$	$2.3 \pm 7.9 \pm 3.3$	4.10	2.1	5.2
$D_s^+ \rightarrow K^- \mu^+ \mu^+$	$-2.3 \pm 5.0 \pm 2.8$	0.98	5.3	13
$D_s^+ \rightarrow K^- \mu^+ e^+$	$-14.0 \pm 8.4 \pm 2.0$	2.26	2.4	6.1
$\Lambda_c^+ \rightarrow \overline{p}e^+e^+$	$-1.5 \pm 4.2 \pm 1.5$	5.14	0.4	2.7
$\Lambda_c^+ \rightarrow \overline{p} \mu^+ \mu^+$	$-0.0 \pm 2.1 \pm 0.6$	0.94	1.4	9.4
$\Lambda_c^+ ightarrow \overline{p} \mu^+ e^+$	$10.1 \pm 5.8 \pm 3.5$	2.50	2.3	16

Branching Ratio Limits

• Limits from CLEO (BaBar) with 9.6 (230)×10⁶ BB decays

CLEO	PRD 65, 111102(R) (2002)						~							
Decay mode	Significance	Upp	er Li	mit										
	of Signal	(1	10^{-6})		ĺ			PRD 73.						
$B \to K e^{\pm} \mu^{\mp}$	0.0σ		1.6		⇒	5.1×10)-7	092001						
$K^* e^\pm \mu^\mp$	2.0σ		6.2		►	3.8×10)-8	(2006)						
$\pi e^{\pm} \mu^{\mp}$	0.0σ		1.6			9.2×10)-8	PRL 99,						
$ ho e^{\pm} \mu^{\mp}$	0.6σ		3.2		ľ			051801						
$B^+ \to K^- e^+ e^+$	0.0σ		1.0					(2007)						
$K^{*-}e^{+}e^{+}$	0.0σ		2.8											
$\pi^-e^+e^+$	0.0σ		1.6											
$\rho^- e^+ e^+$	1.1σ		2.6											
$B^+ \to K^- e^+ \mu^+$	0.0σ		2.0											
$K^{*-}e^+\mu^+$	0.0σ		4.4											
$\pi^- e^+ \mu^+$	0.0σ		1.3											
$\rho^- e^+ \mu^+$	0.3σ		3.3			Even the first LUC								
$B^+ \rightarrow K^- \mu^+ \mu^+$	0.0σ		1.8											
$K^{*-}\mu^+\mu^+$	0.5σ		8.3		data should allow extension of these									
$\pi^-\mu^+\mu^+$	0.0σ		1.4											
$ ho^-\mu^+\mu^+$	1.0σ		5.0		searches									

$B^+ \rightarrow h^- \mu^+ \mu^+$ at LHCb

- Analysis performed with 36pb⁻¹ of LHCb data taken during 2010
- Select $B^+{\rightarrow}h^-\mu^+\mu^+$ candidates and use $B^+{\rightarrow}K^+J/\psi$ as a normalisation mode
 - Develop selection criteria using $B^+ \rightarrow K^+ J/\psi$ as a proxy for the signal mode, events in $B^+ \rightarrow K^+ \mu^+ \mu^-$ upper mass sideband as proxy for bkgrd
 - Check sensitivity by searching for the $B^+ \rightarrow K^+ \mu^+ \mu^-$ rare decay signal

Peaking Backgrounds

- Peaking backgrounds from B decays to hadronic final states, final states with a J/ψ and semileptonic final states are considered
 - Mass shapes from simulation
 - Mis-id rates derived from control channels which provide unambiguous and pure source of particles of known type e.g. $D^* \rightarrow D^0(K\pi)\pi$

$B^+ \rightarrow h^- \mu^+ \mu^+$ Results with 36pb⁻¹

- Observed signal / background
 - <0.3 (0.1) bkgrd evts expected in $\pi\mu\mu$ (Kµµ)
 - No events observed in signal or mass sideband regions
- Observed limit @ 90% CL BR(B⁺ \rightarrow K⁻ $\mu^{+}\mu^{+}$) < 4.3×10⁻⁸ BR(B⁺ \rightarrow $\pi^{-}\mu^{+}\mu^{+}$) < 4.5×10⁻⁸
- Factor 40(30) improvement cf previous best limit (CLEO)
- Variation of efficiency with Majorana neutrino mass, m_{hµ}→

Future Results

- Present analysis with 36pb⁻¹ of data, 10× this already being analysed, expect ~1000pb⁻¹ collected by winter conferences
- Given background expectation already fraction of an event, with 10× more data limit should improve like 1/√L
- Expect analysis will be extended to other channels e.g.
 B⁺→D⁻μ⁺μ⁺, B⁺→D⁰μ⁺μ⁺π⁺, B⁺→D_s⁻μ⁺μ⁺, B⁺→D^{*-}μ⁺μ⁺

 D decays also under study, expect factor 100 improvement of present limits → probe BFs down to O(10⁻⁸)

Searches at Central Detectors

- L-R symmetric model: restores parity at higher energies by introducing new heavy charged bosons
- Central detectors at LHC searching for lepton number violating processes mediated by right-handed W-boson, W_R
- Search for two jets and two same-sign leptons
- CMS analysis of 204pb⁻¹, no excess cf bkgrd expectation [PAS EXO-11-002]

Searches at Central Detectors

• Assuming SM-like couplings and no interference with other bosons, lower bound on m_{WR} at 1.7 TeV (for m_{NI} ~500GeV)

Searches at Central Detectors

- Another LNV signature: doubly charged Higgs, Δ++ decaying leptonically
- Search performed at ATLAS with 1.6 fb⁻¹ [ATLAS-CONF-2011-127]
- No evidence for signal,

The Future

- Both direct and indirect searches at LHC will clearly improve with more data
- Super-B factories should be able to look at B-meson decay modes already mentioned as well as those involving $e^+\mu^+$ or e^+e^+
 - Assuming 50ab⁻¹, $1/\sqrt{L}$ gives factor ~15 improvement: few $10^{-8} \rightarrow 10^{-9}$

- Some questions for the theory community :
 - No attempt yet to look at Λ_B decays (also B violating) also of interest?
 - Is there any reason to pursue the neutral modes e.g. $B^0 \rightarrow D^-\pi^-\mu^+\mu^+$, or $K^-\pi^-\mu^+\mu^+$, or $\pi^-\pi^-\mu^+\mu^+$ e.g. <u>http://arxiv.org/abs/1108.6009</u> ?
 - Is τ^+l^+ of interest? (again presumably easier at Super-B factories but should also be possible at LHCb)

Conclusions

- LNV decays interesting probes of a number of models
- Existing searches constrain e.g. $(m_4, V_{\mu 4})$ plane for "low" m_4
- LHCb starting to extend these searches
- Central detectors placing increasingly stringent limits on heavy righthanded W bosons and other particles that can mediate LNV decays