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High energy scattering processes very complicated

Particularly in reality Varelas EPS-2011
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Need to consider piece-by-piece. Start with Parton Distributions

e e

γ? Q2

x

P

perturbative
calculable

coefficient function

CP
i (x, αs(Q

2))

nonperturbative
incalculable

parton distribution

fi(x, Q2, αs(Q
2))

Strong force makes it difficult to
perform analytic calculations for
initial state.

The weakening of αS(µ2) at
higher scales → the Factorization

Theorem.

Hadron scattering with an
electron factorizes.

F (x, Q2) =
∑

i Ci(x)⊗fi(x,Q2).

Q2 – Scale of hard scattering

x = Q2

2mν
– Momentum fraction of

Parton (ν=energy transfer)
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P

P

fi(xi, Q
2, αs(Q

2))

CP
ij(xi, xj, αs(Q

2))

fj(xj, Q
2, αs(Q

2))

The coefficient functions
CP

i (x, αs(Q
2)) are process

dependent but are calculable
as a power-series in αs(Q

2).

The parton distributions fi(x,Q2, αs(Q
2))

are process-independent, i.e.
universal, and evolution with
scale is calculable.

dfi(x, Q2)

d ln Q2
=

∑

j

Pij(x, αs(Q
2))⊗fj(x, Q2)

Pij used at LO, NLO or
increasingly NNLO accuracy.
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Structure Functions

The single most important input to determining these PDFs is the combined ZEUS
and H1 total HERA structure function data.
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Precision comparable to 1% over a wide range of x and Q2
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Fits to all relevant data results in partons of the form shown.
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Various choices of PDF – MSTW, CTEQ, NNPDF, AB(K)M, HERA, Jimenez-Delgado
et al etc.. All LHC cross-sections rely on our understanding of these partons.
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Parton Luminosities
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Parton distributions determine all
production rates at the LHC.

The LHC is currently running at 7
TeV rather than the full 14 TeV.

Roughly 30 − 50% the full cross-
sections for most standard model
(including light Higgs) processes.
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Perturbative Calculations

Although structure functions
very directly related to quark
distributions, there are perturbative
corrections to evolution and cross-
sections.

Default has long been NLO.
Essentially well understood. Now
starting to go further use NNLO
frequently.

Improve consistency of fit very
slightly (MSTW), and reduces αS.

Fit to F2(x,Q2) data. Slope poor
(too flat) at LO, ok at NLO and
better at NNLO.
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Status of NLO and NNLO calculations

Start with fully inclusive
quantities.

In general excellent agreement
with cross sections measured
at LHC.
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Enormous number of processes
calculated at NLO.

For example MCFM includes
a wide variety in one overall
framework (Ellis, Campbell
and others).

Dramatic improvement in automated calculation
of NLO cross sections (Hirschi et al).
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Enormous improvement in calculation of processes with many legs at NLO recently,
e.g. W+W− + jj, Melia, et al.
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Huge improvement in scale uncertainty, which implies the same for theory uncertainty.

And with even more final state particles Z + jjjj, Ita et al, (W = jjjj also known).
Background to gluino pair production.

Z
q

g g

g
g
q

e−

e+

Q̄′

Q′

e−Z

e+

q

q

Q̄ Q̄

p p

LSP

LSP

g~

g~

RAL – November 2011 10



Another example, tt̄ + jj, Bevilacqua et al
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Sometimes at NLO little improvement in uncertainty, essentially because part of NLO
is really LO.
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Progress at NNLO. Some final states known for LHC – W, Z, Higgs, ..
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NNLO calculations in good agreement with LHC data. Theory (Anastasiou et al)
uncertainty now tiny. Noticeable differences from PDF versions.
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More complicated Final States.

Glover St Andrews 2011.
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More Inclusive – Monte Carlos

Enormous recent progress in merging fixed order calculations with Monte Carlo
generators.

Schönherr St Andrews 2011.
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NLO ME Monte Carlos – MC@NLO and POWHEG

Richardson Cosener’s House 2011
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Developments in Perturbative QCD - Jets.

Long known that initial cone-based jet algorithms are generally infrared unsafe

with quantitative finite consequences. “anti-kt algorithm” combines all soft partons
within “cone” with hard parton to produce cone-like jet definition.
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Jet production – Inclusive, Dijets and Three-Jets.
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uncertainties
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 = 56 for 76 pts.2χCDF Run II inclusive jet data, 

Easy to get excellent agreement with Tevatron inclusive jets.

A bit harder with dijets. Problems with theory at high MJJ and y. Related to choice
of scale of function of pT?

Recent results from D0 on three jets cross sections discriminate between PDFs. See
backup.
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Jets at LHC Starting to discriminate between PDFs and test QCD, but size of
correlated errors makes comparison to the PDFs by eye very difficult.

Possible problems with NLO calculations at high pT and y even for inclusive jets. Full
NNLO desirable.
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Dasgupta

Different considerations require different values of R for jets. However, currently
ATLAS and CMS use R = 0.4, 0.6 and R = 0.5, 0.7 respectively. A common value
would be nice.
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HERA Jets

Measurement of jets at HERA leads to many measurements of αS. All in agreement
with world average. Limited by theory uncertainty due to NLO calculation.
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Values of αS(M2
Z) from PDF fits.

Converging on general agreement that the NNLO values of αS are 0.0002 − 0.0003
smaller than the NLO values of αS?

MSTW08 – αS(M2
Z) = 0.1202 → 0.1171.

ABKM09 – αS(M2
Z) = 0.1179 → 0.1135.

GJR/JR – αS(M2
Z) = 0.1145 → 0.1124.

NNPDF2.1 – αS(M2
Z) = 0.1191 → 0.1174.

CT10.1 – αS(M2
Z) = 0.1196 → 0.1180(both prelim – PDF4LHC, DESY July).

HERAPDF1.6 – αS(M2
Z) = 0.1202 at NLO and general preference for ∼ 0.1176 at

NNLO.

Central values differ far more than NLO → NNLO trend.
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Potential Improvements Using LHeC

Klein/Radescu

Can get enormous improvement in experimental error on αS(M2
Z) from evolution of

structure functions and other processes, including jets.

However, must remember that there is always a theory uncertainty, and it will be
a great challenge to QCD theory to make the most of such results. Some current
limitations, e.g. charm mass uncertainty, would be automatically improved by LHeC
itself.
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Prompt Photons
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Ichou, d’Enterria

Much better sensitivity to gluons at the LHC than Tevatron from prompt photon
production, and much safer than fixed target experiments where nonperturbative
corrections very large. Important discriminator in principle. Photon isolation necessary.
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Top-antitop Cross-section Inclusive cross-section known approximately to NNLO

Intrinsic theory uncertainty not very
large – for example, recent NNLL
calculation by Beneke et al.

Data getting precise. Main uncertainty
in choice of PDFs, not in individual
uncertainty but choice of set.
Correlated to Higgs predictions.

Plots by G. Watt – modified by RST ATLAS preliminary combined σtt̄ = 176+16
−13pb.
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Differences between groups significant at NLO, and at NNLO.
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Multiparton Interactions

If the interactions occur independently they should follow Poissonian statistics.

Pn = 〈n〉n
n

exp−〈n〉

But we must also consider energy-momentum conservation, which suppresses large
numbers of scatterings.

Also need to model the spatial distribution on partons.

The cross-section can then be regulated either by a cut-off pT,min or smoothing

parameter pT0, e.g. dσ

dp2
T

∝
α2

S(p2
T+p2

T0)

(p2
T
+p2

T0
)2

, either usually about 2GeV for the best tune.

Typically about 2-3 interactions per event at the Tevatron and 4-5 at the LHC.
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Buckley SM@LHC
Comparison to CMS data after retuning

Knutson DIS2011
Large contribution from multiple interactions. Improved theory important here. There
have been some recent developments
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Diffraction at the LHC

Potentially either single or double diffraction can occur (and central exclusive
production). Accompanied by large rapidity gaps.

also

However, not so easy to define experimentally. ATLAS use a large forward rapidity
gap definition and CMS base the definition on energy in forward detectors and/or
ΣE − pz ∝ Pomeron energy (with option of additional ∆η ∼ 2).
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Similar (in some senses) process – production of one central jet and one forward jet.

Guaranteed imbalance of partons, one at small x.

RAL – November 2011 29



LHC and Parton x
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x1,2=x0 exp(±y), x0= M√
s
.

Smallish x ∼ 0.001 − 0.01
parton distributions therefore
vital for understanding the
standard production processes
at the LHC, and must trust
QCD evolution from lower
scales.

However, even smaller (and
higher) x required when one
moves away from zero rapidity,
e.g. when calculating total
cross-sections.
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Some fits to new combined HERA structure function data using saturation inspired
models. Seems fairly successful. But not necessary.
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Agreed among all groups that full resummation of small-x logarithms leads to dip in
splitting functions at fairly small x before rise at very small x.

Actually delays saturation compared to more naive calculations Avsar et al. Full
resummation perhaps important before saturation for nucleon colliders.
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approach, suggests resummations may be important.

Could possibly give a few percent effect on Higgs cross sections.
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However, quite a large PDF uncertainty (in general) and even larger spread, at fixed
order (though differences in definition of order).
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Small-x effects could be seen
in low-mass Drell-Yan at LHC.

Good agreement with NNLO
from CMS

Probably want lowest mass
and high rapidity → LHCb.
Investigate in detail here.
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Perfect place to investigate this would be LHeC – (Klein CERN)

Hera limit
with much
larger errors

Likely to see evidence of resummation and/or saturation (even in proton collisions).
Might be difficult to disentangle the two.
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Summary

Over the past couple of decades our understanding of hard scattering at particle
colliders has improved enormously.

We have recently (very in one case) lost two high-energy colliders, HERA and the
Tevatron, but both have provided a wealth of data making strong interaction physics
a truly precision study. There are many final results to come out still, from both.

This has driven and been accompanied by a vast improvement in theory. We are
obtaining a very complete set of processes calculated at NLO, and there is a move to
automation. A few of the most standard processes are known at NNLO along with
distributions. Threshold resummations often provide approximations to full NNLO.
Full NNLO for hadronic jet rate and top cross section a priority.

Many interesting results appearing at the LHC, extending the kinematic range and
starting to distinguish between PDFs, and test QCD. Generally need at least NLO.
Monte Carlos interfaced to NLO or large multiplicity matrix elements much more.
Differences to be understood better.

The LHC may address long-standing issues in perturbative QCD, like small-x
resummation, saturation, and improve determinations of αS(M2

Z). A study which is
essential for all the other physics being studied and discoveries to be made.
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NLO Corrections.

And with even more final state particles Z + jjjj, Ita et al, (W = jjjj also known).

Scale uncertainty much reduced.
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Progress at NNLO.

Glover St Andrews 2011.
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Glover St Andrews 2011
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NLO Monte Carlos

Schönherr St Andrews 2011.

RAL – November 2011 41



Richardson Cosener’s House 2011
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From personal experience, fitting to Run II Tevatron high-ET jet data, with improved
jet algorithms (kT algorithm for CDF) results in a significant change in the gluon.

x
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

R
at

io
 t

o
 M

S
T

W
 2

00
8 

N
L

O

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

2 GeV4 = 102Gluon distribution at Q

MSTW 2008 NLO (90% C.L.)

MRST 2004 NLO

CTEQ6.6 NLO

x
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

R
at

io
 t

o
 M

S
T

W
 2

00
8 

N
L

O

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

Due to improvements in algorithms?

RAL – November 2011 43



  (GeV)JET

T
p

210

T
 =

 p
µ

 w
ith

 
σ

R
at

io
 w

.r
.t 

N
LO

 

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3
1.4

| < 0.4JET0.0 < |y

T
p× = 0.5Fµ = Rµ

T
p× = 1.0Fµ = Rµ

T
p× = 2.0Fµ = Rµ

  (GeV)JET

T
p

210

T
 =

 p
µ

 w
ith

 
σ

R
at

io
 w

.r
.t 

N
LO

 

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3
1.4

 + 2-loop thresholdσDashed lines: NLO 
σSolid lines: NLO 

| < 0.8JET0.4 < |y

  (GeV)JET

T
p

210

T
 =

 p
µ

 w
ith

 
σ

R
at

io
 w

.r
.t 

N
LO

 

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

| < 1.2JET0.8 < |y

  (GeV)JET

T
p

210

T
 =

 p
µ

 w
ith

 
σ

R
at

io
 w

.r
.t 

N
LO

 

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

| < 1.6JET1.2 < |y

  (GeV)JET

T
p

210

T
 =

 p
µ

 w
ith

 
σ

R
at

io
 w

.r
.t 

N
LO

 

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

| < 2.0JET1.6 < |y

  (GeV)JET

T
p

210

T
 =

 p
µ

 w
ith

 
σ

R
at

io
 w

.r
.t 

N
LO

 

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

| < 2.4JET2.0 < |y

 Run II inclusive jet data (cone, R = 0.7)∅D
 using MSTW08 NNLO PDFs)

T
 = pµ with σ(Ratio w.r.t. NLO 

  (TeV)JJM
0.2 0.3 0.4 0.5 1

T
 =

 p
µ

 w
it

h
 

σ
R

at
io

 w
.r

.t
 N

L
O

 

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3
1.4

 < 0.4
max

0.0 < |y|

T
p× = 0.5Fµ = Rµ

T
p× = 1.0Fµ = Rµ

T
p× = 2.0Fµ = Rµ

  (TeV)JJM
0.2 0.3 0.4 0.5 1

T
 =

 p
µ

 w
it

h
 

σ
R

at
io

 w
.r

.t
 N

L
O

 

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3
1.4

)/2
T2

+p
T1

 (p≡ 
T

p
σSolid lines: NLO 

 < 0.8
max

0.4 < |y|

  (TeV)JJM
0.2 0.3 0.4 0.5 1

T
 =

 p
µ

 w
it

h
 

σ
R

at
io

 w
.r

.t
 N

L
O

 

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

 < 1.2
max

0.8 < |y|

  (TeV)JJM
0.2 0.3 0.4 0.5 1

T
 =

 p
µ

 w
it

h
 

σ
R

at
io

 w
.r

.t
 N

L
O

 

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

 < 1.6
max

1.2 < |y|

  (TeV)JJM
0.2 0.3 0.4 0.5 1

T
 =

 p
µ

 w
it

h
 

σ
R

at
io

 w
.r

.t
 N

L
O

 

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

 < 2.0
max

1.6 < |y|

  (TeV)JJM
0.2 0.3 0.4 0.5 1

T
 =

 p
µ

 w
it

h
 

σ
R

at
io

 w
.r

.t
 N

L
O

 

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

 < 2.4
max

2.0 < |y|

 Run II dijet data (cone, R = 0.7)∅D
 using MSTW08 NNLO PDFs)

T
 = pµ with σ(Ratio w.r.t. NLO 

Shape of corrections as function of pT at NLO and also at approx. NNLO in inclusive
case. Problem at highest pT and rapidity even for inclusive jets.

NNLO uses threshold (Kidonakis and Owens) approx. for Tevatron jets (see also de
Florian and Vogelsang).

NNLO approximation aids stability – always worst at high-pT i.e. high-x. Includes
large ln(pT/µ) terms predicted by renormalisation group.
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Consider two dijet processes with similar energy jets, but with one at much smaller
angle to beam.

p

pT1

p

J1

J2

p

pT2

p
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Generally use scale based entirely on pT . Is the second event really that much less
hard than the first?

Highest pT

p p

J1

J2

Highest mJJ

p p

J1

J2

In first case one x very large other quite small, in second both x values very large. In
both cases pT not too large.
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Recent results from D0 on three jets cross sections.

Seems like an excellent way to present
significance of results. Groups can
then study effects on central values
uncertainties (consistency) etc..
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However, use of POWHEG leads to a big variation compared to standard NLO, and a
big variation depending on Monte Carlo tune.

Implications for PDFs.
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NNPDF NNLO prediction slightly bigger than MSTW, but use αS = 0.119 – not
preferred value? General very good agreement
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However, to be more theoretically correct multi-parton distribution functions should
be used.

Gaunt St Andrews 2011
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Gaunt St Andrews 2011

RAL – November 2011 52



patata

−5
10 −410

−3
10 −210

0.5

1

1.5 Data
Theory

rσ

2=0.85 GeV2Q

−5
10 −410

−3
10 −210

0.5

1

1.5

rσ

2=4.5 GeV2Q

−5
10 −410

−3
10 −210

0.5

1

1.5

rσ

2=10.0 GeV2Q

−5
10 −410

−3
10 −210

0.5

1

1.5

rσ

2=15.0 GeV2Q

−510 −410 −310 −210

0.5

1

1.5

rσ

2=35 GeV2Q

x

−5
10 −410

−3
10 −210

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6 2=2.0 GeV2Q

−5
10 −410

−3
10 −210

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6 2=8.5 GeV2Q

−5
10 −410

−3
10 −210

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6 2=12.0 GeV2Q

−5
10 −410

−3
10 −210

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6 2=28.0 GeV2Q

−410 −310 −210

0.2
0.4
0.6
0.8

1
1.2
1.4
1.6 2=45 GeV2Q

x
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Some fits to new combined
HERA structure function
data using saturation inspired
models Albacete et al.

Seems fairly successful, as
before. But not necessary.
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