### The search for the Higgs Boson

### Is the LHC closing in?

McCubbinFest 8<sup>th</sup> November 2011

Is there a Higgs boson?Where is it?





## Why do we need the Higgs?







# What is Higgs' mechanism?

 Doublet of SU(2)<sub>L</sub>, Φ=(Φ<sub>1</sub>,Φ<sub>2</sub>)
 Potential respects SU(2)<sub>L</sub> But Vacuum does not!

#### **Fermions:**

Interact with Higgs field slows them down  $\rightarrow$  generates mass

#### **Bosons:**

SU(2)<sub>L</sub> interact, gain mass U(1)<sub>γ</sub> and SU(3)<sub>c</sub> do not, massless

 $V(\Phi) = \frac{\lambda}{3!} \left\{ \overline{\Phi} \Phi - v^2 / 2 \right\}^2$ 



3 degrees of freedom in Boson masses 4<sup>th</sup> becomes fundamental scalar





## Norman – in typical pose







## **The W mass prediction**







# **Hunting the Higgs Boson**





## **Search at LEP I: E=91GeV**

Great effort - which I have no time to describe
Many modes:

Stable,γγ,ee,μμ,ππ,ττ,bb

- •Clean Z decays (II, vv) used
- •Prior to LEP only some patchy constraints
- The mass range from 0 to ~65 excluded, no holes.







# LEP II - high energy

- LEP at CERN ran until 2000
  - collided electron–positrons at up to 207GeV
  - It found a few possible Higgs candidates
- What is this?
- Four 'jets'
  - From 4 quarks
  - Could be ZH
  - Or ZZ
- No one knows
- Hint at 115GeV
   Lower limit: m<sub>H</sub>> 114.4GeV





## **The Tevatron**

- 6km round
- Collided protons and antiprotons
  - Hard to get enough antiprotons
- Closed end of September
- ~10fb<sup>-1</sup>
   delivered to
   experiments
  - Not all analysed yet
  - Results overleaf



Willing OII GITTED





## **Tevatron Higgs Combination**

#### Tevatron Run II Preliminary, $L \le 8.6 \text{ fb}^{-1}$









## **The Large Parton Collider**

 Total cross-section 10<sup>11</sup>pb
 Higgs cross-section 10pb
 Every event at a lepton collider is physics; every event at a hadron collider is background Sam Ting









# **Higgs production**







# Luminosity this year

W.Murrav STF

- 2010 was commissioning year
- 2011 devoted to physics
- We ran pp until the 29<sup>th</sup> of October
  - 5.6fb<sup>-1</sup> delivered
  - Finally ~0.4fb<sup>-1</sup> per week
- 1fb<sup>-1</sup> gave major Higgs sensitivity by summer
- Luminosity in 2011 rising smoothly
  - Expect 10fb<sup>-1</sup> in 2012
- Great effort by LHC team!







### **Pileup: 13 vertices**



CMS Experiment at LHC, CERN Data recorded: Mon Mar 14-06:44:11-2011 CEST Run/Event: 160432//212419 Lumi section: 4 Orbit/Crossing: 787815 / 1886



Rho Z

A manageable nuisance affecting Jet, MET, and Isolation Observables





### 2011: 7 TeV or 8TeV?







# **Higgs branching ratios**

### • $H \rightarrow ZZ$

- ZZ → IIII: Golden mode
- $ZZ \rightarrow IIvv$ : Good High mass
- $ZZ \rightarrow IIbb$ : Also high-mass

### • $H \rightarrow WW$

- WW  $\rightarrow$  lvlv: Most sensitive
- WW  $\rightarrow$  lvqq: highest rate
- $H \rightarrow \gamma \gamma$ 
  - Best for low mass
- Η → ττ
  - Decent s/b in VBF, low mass
- H→bb
  - ttH, WH, ZH useful but hard









## **Higgs cross-sections**

#### • $H \rightarrow ZZ$

- $ZZ \rightarrow IIII$ : Golden mode
- $ZZ \rightarrow IIvv$ : Good High mass
- $ZZ \rightarrow IIbb$ : Also high-mass

### • $H \rightarrow WW$

- WW  $\rightarrow$  lvlv: Most sensitive
- WW  $\rightarrow$  lvqq: highest rate
- $H \rightarrow \gamma \gamma$ 
  - Best for low mass
- $H \rightarrow \tau \tau$ 
  - Decent s/b in VBF, low mass
- H→bb
  - ttH, WH, ZH useful but hard



M<sub>H</sub> [GeV]





### **Impact by channel**



W.Murray STFC/RAL 18





### Low mass searches







## WH & ZH, H → bb

- Very different optimisations in ATLAS & CMS
  - Sensitivity is ~ 15xSM in ATLAS
  - 6xSM in CM

Difference is due to inclusive/boosted







## ATLAS $H \rightarrow \tau \tau$

- Inclusive H → ττ → lh
  Also use II+jet
  - Sensitive to VBF process
  - Jet boosts ττ
  - Collinear mass





- Combined result shown to left
   Two sigma deficit at low m<sub>н</sub>
- Sensitivity 15xSM, obs 10x





## $CMS H \rightarrow \tau\tau$

CMS have SM results Including VBF search With a beautiful picture μ-τ candidate Two forward jets - Mass 580GeV Little central activity Looks just as advertised e-μ, μ-μ, μ-τ, e-τ channels studied Details are here:



W.Murrav

CMS Experiment at LHC, CERN Data recorded: Fri May 20 01:10:36 2011 CEST Run/Event: 165364 / 356120525 Lumi section: 285





### $H \rightarrow \tau \tau$ results



- Sensitivity around 6xSM
   At 115-125 (where we need)
  - At 115-125 (where we need this most)

- CMS' µ-h VBF channel (left) is among best
  - e-µ, e-h VBF and all inclusive channels contribute





- Invariant mass spectra similar
  - Real yy events dominant for both experiments
- Fit to this spectrum, looking for sharp peak
  - Both divide events into quality categories





# H -> yy limits



ATLAS (left) and CMS (right) sensitivity similar per fb<sup>-1</sup>

- CMS have used more luminosity
- Expected limits 2.5-4 x SM strength
  - Observed fluctuates down to1.5





### **Intermediate searches**







## $H \rightarrow WW \rightarrow IvIv$







## **WW selection**

### • WW $\rightarrow$ lvlv many nice features

- High branching ratio
- Dilepton give clear separation from multijet
- Good trigger
- Missing energy makes events more distnctive

#### • But.....

- Large non-resonant WW background
- 2 neutrinos means mass not fully reconstructable
- How do we distinguish it?
- RAL theory dept. to the rescue!
  - M. Dittmar and H. Dreiner, Phys. Rev. D55 (1997) 167.
  - Spin 0 Higgs means Ws aligned, so leptons aligned





## **CMS WW sample**

The separation in  $\Delta \Phi_{\parallel}$  is clear Correlated to mass though Some excess in regions where signal expected Several backgrounds had to be understood in detail







### ATLAS WW m<sub>T</sub>

- 1fb<sup>-1</sup> (EPS) looked very exciting
- 1.7fb<sup>-1</sup> excess much less pronounced
- 150GeV excluded...
  - But maybe a lower mass?







### $WW \to I \nu I \nu$



ATLAS (left) exclude m<sub>H</sub> 154-186 (exp: 135-196)
 CMS (right) exclude: m<sub>H</sub> 147-194 (exp: 136-200)





### **High mass searches**







## WW → lvqq

- Large Higgs BR for high mass
- Presence of charged lepton gives good QCD rejection
- But, like in tt, semileptonic mode allows mass reconstruction
- Suffers from LARGE background from W+jets
  - But smooth background
  - Signal is a bump
  - Analysis is relatively straightforward







## WW → lvqq









### The H to Ilvv search







 $ZZ \to II\nu\nu$ 





ATLAS (left) and CMS (right)
 Harder E<sub>τ</sub><sup>miss</sup> and δφ cuts at

#### high mass

 Each of these excludes the mass shown




 $ZZ \to II\nu\nu$ 



#### ATLAS (left) and CMS (right)

- ATLAS search excludes 150GeV wide region
- This result is not in ATLAS combination (1fb<sup>-1</sup> only)
- Both searches best sensitivity ~1xSM
  - Both got lucky





### $\boldsymbol{Z}\boldsymbol{Z} \rightarrow \boldsymbol{I}\boldsymbol{I}\boldsymbol{q}\boldsymbol{q}$

- Highest rate for a ZZ process
  - Good for Higgs boson mass over 200GeV
- Use 2 or 3 subchannels:
  - Z to light quarks (inclusively)
    - CMS use quark/gluon tagging to enhance signal
  - Z to b quarks
- CMS use decay angles explicitly









CMS sensitivity 2xSM, ATLAS 3xSM at 350-400
 Fluctuations never up to 2σ





 $ZZ^{(*)} \rightarrow \parallel \parallel$ 



Both experiments have local excesses

But all 6 candidates below 150GeV were in first fb<sup>-1</sup>





#### ZZ<sup>\*</sup> → µµµµ candidate

M<sub>12</sub> = 90.6GeV M<sub>34</sub> = 47.4GeV M<sub>34</sub> = 143GeV

#### **ATLAS** EXPERIMENT

Run Number: 183081, Event Number: 10108572

Date: 2011-06-05 17:08:03 CEST





 $\mathsf{ZZ}^{(*)} \to \mathsf{III}$ 



- Both experiments have small exclusions
- Soon this channel will have large ones
  - Some small differences in detailed comparison





### **ATLAS / CMS combinations**

- The SM Higgs is a very well-defined thing
  Tell us the mass and we know the rest
  So we know what to expect in all these channels
  - We put them together for optimal sensitivity.
- Needs precise understanding of the theory
  - LHC cross-section working group did a great job
  - We have an agreed set of rates to work with
    - There is .... discussion about systematics
- So what do the combinations look like?





#### **The Combined Results**





#### **The Standard Model**



- ATLAS and CMS exclude 145 to 460GeV together
   Islands (e.g. 300) not formally excluded, but are close
- Focus on 114-145GeV





#### How well excluded?



All m<sub>H</sub> 140-500 disfavoured by both experiments

- Need a combination to know how strongly HCP meeting
- But the 'islands' seem to be in trouble
- Much is excluded at 99% or better
  - Soon, I guess, this will apply to a very wide region





### **High mass Higgs?**

- Exclusion goes up to 460GeV
  - There is in fact an excess beyond this in ATLAS
- This could be where the Higgs boson lies
  - Somewhat easier to get to 600GeV than to 114GeV
  - Doable with 5fb<sup>-1</sup>, combining two experiments probably needed
- But theory is becoming tricky
  - Lineshape become badly predicted
  - Four-fermion interference is not properly treated
  - The electroweak fits of course raise problems





#### Low Mass

- The focus is now on the region below 145GeV
   i.e. 114-145GeV
- The lower the mass the harder it is at LHC







2σ

3σ

4σ

5σ

#### Where might it be?



200 220 240 m<sub>H</sub> [GeV]

Ldt = 1.0-2.3 fb

 $\sqrt{s} = 7 \text{ TeV}$ 

160

180







### Where is Higgs hiding?

• CMS have significance below expected for  $m_{\mu}$ >125







### Where is Higgs hiding?

ATLAS has a deficit c/f SM Higgs for almost all masses
 Not a lot, but 'unlucky'







### Where might it be?

 What about the Tevatron?
 Also less signal than would be expected at all masses







#### So where is the boson?

- The first fb<sup>-1</sup> showed big excess over background
   The second fb<sup>-1</sup> had little sign of anything
   The 3<sup>rd,</sup> 4<sup>th</sup> and 5<sup>th</sup> are keenly awaited
- We have a lot of possibilities, and we should take nothing for granted.





#### How do we progress?







## Signal significancee

- 5fb<sup>-1</sup> has large sensitivity in each experiment
   Projections slightly optimistic at 115
  - Need yy resolution!
  - Or SM cover needs combination







## Signal significancee

- 5fb<sup>-1</sup> has large sensitivity in each experiment
   Projections slightly optimistic at 115
  - Need yy resolution!
  - Or SM cover needs combination







## **Higgs Stability**

 Only small stable region left Are we heading into region where Higgs demands new physics? Know very soon!







### What happens if we find it?

Many channels contribute to low mass discovery

- $H \rightarrow \gamma \gamma$ 
  - Gluon fusion, VBF, vector boson associated
- $H \rightarrow ZZ$ 
  - Gluon fusion
- $H \rightarrow WW$ 
  - Gluon fusion, VBF
- $H \rightarrow \tau \tau$ 
  - VBF
- H → bb
  - Vector boson/top associated
- Measurements studies follow discovery fast
  - Checking the Higgs properties will be possible spin, parity, Br....





#### Summary

• In 2011 LHC has produced 5.5fb<sup>-1</sup>

- 5x the amount promised
- Record luminosity 3.6x10<sup>33</sup>cm<sup>-2</sup>s<sup>-1</sup>
- The SM Higgs range has been massively reduced
  - 145 GeV to 460GeV has only small islands

• 90% of the region explored already

 Thanks to the LHC people who made it possible
 5fb<sup>-1</sup> at 7TeV should give ATLAS/CMS over 2σ Higgs evidence COMBINED for any mass
 3σ for all bar 115

 The CERN DG has requested updates for December council





#### Summary 2012

- Running in 2012...
  - Assumed order of 15fb<sup>-1</sup>
- LHC combination will offer 5σ sensitivity to many SM Higgs
  - Unless  $m_{H} = 115$ ; then maybe only  $3.5\sigma +$
- Convincing evidence for absence?
  - In which case we have many exciting avenues to explore







#### **P-values at low mass**







### **Upper bound on M**<sub>susy</sub>

- The lighter MSSM scalar is below m<sub>z</sub>
  - Before radiative corrections
  - from m<sub>top</sub>
  - and M<sub>SUSY</sub> (≈m<sub>STOP</sub>)
- Implications for M<sub>SUSY</sub> from measuring m<sub>H</sub> are shown
- Grey band is search limit
- M<sub>H</sub>=130GeV or above does not exclude SUSY – but it makes it experimentally inaccessible







### **High mass Higgs?**

- Exclusion goes up to 460GeV
  - There is in fact an excess beyond this in ATLAS
- This could be where the Higgs boson lies
  - Somewhat easier to get to 600GeV than to 114GeV
  - Doable with 4fb<sup>-1</sup>, combining two experiments probably needed
- But theory is becoming tricky
  - Four-fermion interference is not treated
    - This gets messy...advice here?
  - The electroweak fits of course raise problems
- Will briefly discuss this option





 $ZZ \rightarrow IIvv missing E_{T}$ 



- For 150GeV ATLAS find Z with MET is minor
  - But ATLAS take this from simulation
- CMS have larger Z with MET component
  - Taken from gamma plus MET studies





L dt=1.04 fb<sup>-1</sup>

data

Top

Z.W

Total BG

ZZ,WZ,WW

 $H \rightarrow ZZ \rightarrow 2I 2v (I = e,\mu)$ 

ATLAS Preliminary

 $H \rightarrow I l \nu \nu$ 

40r

35

30

25

Events / 50 GeV

- ATLAS & CMS best channel for m<sub>H</sub>>300
- High mass almost background free

**20**E Signal (m\_=380 GeV) 95% C.L. limit on  $\sigma/\sigma_{_{SM}}$ 14 ATLAS Preliminary Observed 12 Expected Ldt=1.04fb<sup>-1</sup>,√s=7TeV ± 1σ 10 H→ZZ→llvv  $+ 2\sigma$ 300 00 500 700 400 600 8  $m_{T}$  [GeV] 6 Scaling faster than  $1/\sqrt{l}$ Should extend to 550+

450

350

400

500

550

600

'RAL 65

m<sub>µ</sub> [GeV]

by end of 2011





#### Low Mass

- The focus is now on the region below 145GeV
   i.e. 114-145GeV
- The lower the mass the harder it is at LHC
  - Will look at 114 as example





#### So where is the boson?

- The first fb<sup>-1</sup> showed big excess over background
   The second fb<sup>-1</sup> had little sign of anything
- The 3<sup>rd</sup> and 4<sup>th</sup> are an undiscovered country
- We have a lot of possibilities, and we should take nothing for granted.





Accuracy of projections



- $H \rightarrow bb$  here used non-boosted analysis
- No VBF  $H \rightarrow \tau\tau$  from ATLAS yet
- CMS predictions similarly close



#### H to gamma gamma fits

2010 slide

#### • 14TeV ATLAS study

| Fit Variables                              | Categories           | Significance |
|--------------------------------------------|----------------------|--------------|
| m <sub>yy</sub>                            | -                    | 2.31         |
| m <sub>yy</sub>                            | η                    | 2.52         |
| m <sub>γγ</sub>                            | η, conversions       | 2.58         |
| m <sub>yy</sub>                            | η, conversions, Jets | 3.46         |
| m <sub>γγ</sub> , cosθ*                    | η, conversions, Jets | 3.83         |
| m <sub>γγ</sub> , P <sub>τ,H</sub>         | η, conversions, Jets | 3.75         |
| $m_{_{\gamma\gamma}}$ , $P_{_{T,H}}$ cosθ* | η, conversions, Jets | 4.12         |



#### $\textbf{H} \rightarrow \textbf{WW}$

# CMS and ATLAS searches similar Systematics important VBF not in ATLAS Not critical for low mass

 $H \rightarrow WW \rightarrow 2I2v + 0/1/2$  jets (CLs)





STFC/RAL 70





# **Charged Higgs bosons**

- Attention mostly on
  - m<sub>H+</sub><m<sub>top</sub>
  - H<sup>+</sup> → τυ
- The first allows a large production rate via top decay
  - The second is expected in high tan-β SUSY
- Both of these should be relaxed
  - ATLAS has studied  $H^+ \rightarrow cs but$  only with 35pb<sup>-1</sup>





#### **Neutral MSSM Higgs**

 Exclusions starting to get very interesting
 Meeting the LEP bounds for low m<sub>H</sub>
 Starting to exclude two light

**Higgs doublets** 

Push to higher

mass now






## nMSSM a<sub>1</sub>

#### MSSM plus on scalar Higgs

- Allows lightest Higgs to be very light.
- 'ideal' Higgs near upsilon mass
- ATLAS analysis misses difficult upsilon region
- If SM Higgs missing, such models will gain attention...













# 4<sup>th</sup> Generation model

### • Why?

- Heavy particles enhance gluon fusion loop
- Kinematics like 1/mass
- Coupling to H like mass
- Total is mass independent!
- Factor 4-9 enhancement from 4<sup>th</sup> generation
  - Allowed if m,>47GeV
  - We require  $m_{\nu} >> m_{W}$  this removes  $H \rightarrow \nu \nu$  decay
  - But photon decay is suppressed...
    - Interference and competition with gluons





# 4<sup>th</sup> Generation Dates

Production rates enhance
High mass -> minimum





- High-mass decay rates stable
- Low mass colourless decay suppressed







# **Higgs + heavy 4<sup>th</sup> Generation**



- CMS and ATLAS exclude ~120GeV to 600GeV
  - ATLAS/CMS expected 116/112 to 600
- A combination would exclude ~all
  - But 47<m,<80 is a window W.Murray STFC/RAL 77





# Fermiophobic







### **CMS FP search**



Expected CMS limit 116.5
 actual CMS limit 112 due to excess
 CDF/Do expect 111/110.5
 Actual CDF/D0 114/112.9GeV





Good for SM Higgs in the mass range mH=110-140 GeV Three classes of final states, depending on the  $\tau$ -decay:

lepton-lepton, II

lepton-hadron, Ih

hadron-hadron, hh

ATLAS has studied the *II* and *Ih* final states Most important backgrounds:

 $Z/\gamma^* \rightarrow II + jets ( \rightarrow \tau \tau is largely irreducible); W \rightarrow Iv +$ 

jets; dibosons, ttbar and single top, QCD jets Selection for II:

2e, or  $2\mu$  or  $1e1\mu$  with pTe > 15 GeV | $\eta$ e|<2.47; pT $\mu$  > 10 GeV | $\eta$  $\mu$ |<2.5; opposite charge required

At least 1 jet with  $pTj > 40 \text{ GeV } |\eta j| < 4.5$ ;

ETmiss > 30 GeV for 2e and 2 $\mu$ , > 20 for 1e1 $\mu$ *II* finale state: reconstruct the tau momentum in the  $x_{1,2}$  = collinear approximation

Apply dilepton invariant mass and topological cuts

 $\rightarrow$  Study the tau-tau invariant mass

 $p_{vis1.2}$ 

**Collinear approximation** 

 $(p_{vis1,2} + p_{mis1,2})$ 

 $m_{\tau\tau} =$ 





# **MSSM Higgs**







# **Charged Higgs bosons**

- Attention mostly on
  - m<sub>H+</sub><m<sub>top</sub>
  - H<sup>+</sup> → τυ
- The first allows a large production rate via top decay
  - The second is expected in high tan-β SUSY
- Both of these should be relaxed
  - ATLAS has studied  $H^+ \rightarrow cs^-$  but only with 35pb<sup>-1</sup>



### H<sup>+</sup> (at 14TeV)



#### ATLAS study @ 14TeV

- Good for  $m_{H} < m_{top}$
- Lags behind H/A  $\rightarrow \tau \tau$  in MSSM for  $m_{H} > m_{top}$ 
  - Pair production is relatively weak
  - ATLAS sensitivity from 1fb<sup>-1</sup> to H/A is added
- But experimentally charged Higgs very conclusive



nin z



# Charged Higgs to tv

CMS search for top to H⁺b, H⁺ to τν for 1fb⁻1
Background is mostly t→W+b









# Just out: More H+, ATLAS

Https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2011-138/

- H+ is fully hadronic mode
  - Only 1 neutrino
  - Find  $m_{T}$  distribution
- QCD from data
  - Normalised by fit to MET
- τ distributions from embedding method
   Normalised m<sub>τ</sub><40</li>
- Fit  $m_{\tau}$ >40 for signal







# H+ limits



- Most sensitive result for  $m_{H+} > 120 GeV$ 
  - Further progress will benefit form similar techniques





# ATLAS $H \rightarrow \tau \tau$ by mode

- Ih generally most sensitive
   II mode best when degenerate with Z
  - Mass resolution doesn't help
- hh importance rises with mass







### $CMS \ H/A \to \tau\tau$

- $\Phi \rightarrow \tau \tau$  2011 CMS
- eµ, μτ<sub>h</sub>, eτ<sub>h</sub>
- Inclusive, b-tag, VBF
- Very nice results

CMS Preliminary 2011 1.6 fb<sup>-1</sup>



