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Summary of talk:
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Why amplitudes?

@ Problem with quantum field theory: standard approach is too
complicated

@ eg 5-point tree-level gluon scattering amplitude

Described by following Feynman diagrams:
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If you evaluate these using textbook methods you will only discover that
this is a very disgusting mess.



5-point tree-level amplitude

(courtesy of Zwi Bern - see also new edition of Zee QFT text book)

Result of a brute force calculation (actually only a small part of it):
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Perhaps this is just the way it is?



Simplifying scattering amplitudes

(see Zee text book)

@ Colour-stripped gluon amplitudes
@ spinor helicity
@ Gluon amplitudes with all positive (negative) helicities vanish

@ Similarly for the “1 negative’ (‘1 positive’) helicity amplitudes

@ 2 negative helicities only called ‘maximally helicity violating’ or
MHV amplitudes (simplest)

@ (3 negative helicities = NMHV etc.)



MHYV amplitudes remarkably simple

@ Colour-stripped planar tree-level MHV amplitudes
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» 5 gluon amplitude requires 25 diagrams (mess shown earlier)
entirely given by this result
» 10 gluon amplitude requires 10525900 diagrams!

Huge simplification
» Simplest example of unexpected hidden structure in amplitudes

%ﬁ New way to do QFT



The other motivation for amplitudes...
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Motivation for A/ = 4 SYM. Prototype gauge theory
SU(N) 4d gauge theory, 't Hooft coupling ‘@’
@ Gauge field

@ 6 massless scalar fields (adjoint rep) ¢as
@ 4 massless fermions (adjoint rep)

@ Finite, conformally invariant (“a” a freely tunable parameter)
@ Despite apparent complication, amplitudes are the simplest.

The “hydrogen atom” of d = 4 quantum field theory.
Starting point in our quest to properly understand 4d QFT.

@ Interests people from wide backgrounds, from string theory to
pheno (breeding ground for new practical techniques)

@ many simplifications and hidden structures, both for amplitudes
and correlators: solvable?

@ AdS/CFT correspondence



Scattering amplitudes from QCD to N'=4 SYM

@ major area of research for many years
@ many new structures/ insights including...

tree-level:

@ onshell recursion (any gauge theory - but first proved using
N = 4) amplitudes in terms of amplitudes
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[Britto Cachazo Feng Witten 2005]

@ dual superconformal symmetry (NV'=4) — Yangian symmetry,
momentum tWIStOFS, Grassmanlan, [Drummond Henn Korchemsky Sokatchev,

Brandhuber Travaglini PH, Drummond Henn, Hodges, Arkani-Hamed Cachazo Kaplan, ]




loop-level analytic amplitude
@ Wilson loop/amplitude duality

[Alday Maldacena 2007, Drummond Henn Korchemsky Sokatchev, Brandhuber Travaglini PH]
o Symb0| [Goncharov Spradlin Vergu Volovich]
o OPE [Alday Gaiotto Maldacena Sever Vieira]

@ (last week) differential equations for all loop
amp|l'[udeS [Caroanuot Song He, Bullimore skinner]

Later | will discuss developments in understanding integrand of the
amplitude



MHV Amplitude/Wilson loop duality

[Alday Maldacena 2007, Drummond Korchemsky Sokatchev, Brandhuber Travaglini PH]
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MHV Amplitude/Wilson loop duality

[Alday Maldacena 2007, Drummond Korchemsky Sokatchev, Brandhuber Travaglini PH]
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MHV Amplitude/Wilson loop duality

[Alday Maldacena 2007, Drummond Korchemsky Sokatchev, Brandhuber Travaglini PH]
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planar MHV amplitude M, (W[Cn])
(D=4-2¢) (D =4+ 2¢)

@ Wilson loop over the polygonal contour Cp,



MHV Amplitude/Wilson loop duality

[Alday Maldacena 2007, Drummond Korchemsky Sokatchev, Brandhuber Travaglini PH]
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@ Wilson loop over the polygonal contour Cp,



MHV Amplitude/Wilson loop duality

[Alday Maldacena 2007, Drummond Korchemsky Sokatchev, Brandhuber Travaglini PH]

I s
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planar MHV amplitude M, — (WICn])
(D=14-2¢) (D =4+ 2

@ Wilson loop over the polygonal contour Cp,
@ new variables: vertices, region momenta p; = Xjj1 = X; — Xj11



Consequences/uses of the duality

New hidden symmetry of amplitudes

[Drum.mond Henn Korchemsky Sokatchev, Brandhuber Travaglini PH]

@ Wilson loops conformally invariant — amplitudes have dual
conformal symmetry

New results for perturbative amplitudes
@ dual conformal sym =- 4,5 point MHV (log of) amplitude “trivial”

() BDS [Bern Dixon Smirnov 2005, Drummond Henn Korchemsky Sokatchev]

@ Wilson loop at two loops yields n-point integrands (completely
different - easier - than the amplitude integrands)

2 loop n-point integrals written down and done

numer'ca”y[Anastasiou Brandhuber Khoze Spence Travaglini PH]




Analytic results (6-points 2-loops)

[Del Duca Duhr Smirnov]

Wilson loop integrals are easier, but still not easy!
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Analytic results simplified (6-points 2-loops)

[Goncharov Spradlin Vergu 'v'clovich]

3
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@ 2 line result simplified down from 15 pages of Goncharov polylogs
using the “Symbol”

@ remarkable algebraic method, developed by pure mathematicians
for trivialising polylog identities...



Polylogs and the symbol

[Goncharov Spradlin Vergu 'v'clovich]

Polylogarithms: iterated integrals

Lis (x) = — log(1 — x) :/ 1—_tdt / dlog(1 — 1)
Lip(x / /t1 /tn 1 dlog(1 — tp)dlog(tnh_1) ... dlog(t)

Symbol maps weight n polylog to an n-tensor of rational functions.

s[un(x)] = —dlog(1 — x) @ dlogx ® - - ® dlog x,
- —(1-Xx)®x® - ®x

Nice interpretation in terms of cuts: discontinuity across branch cut
indicated by first entry is given by the remaining entries



Properties of the symbol
Symbol of products = shuffle product of symbols

Example
S[log(x)]| = x S[log(y)| =¥
S[Iog(x) Iog(y)} =XQYy+yex
S [ log(x) log(y) Iog(z)] =X®y®Zz+...(permutations)etc.

Linearity of the symbol:
Xy =n( X0 )+ (- RY®...)

v

(Recall x — dlog x: this is just standard linearity of the tensor product)

Integrability constraint
@ Not all tensors arise as symbols of a function
@ Must satisfy a constraint: integrability constraint




Why the symbol?

Symbol trivialialises polylog identities (up to lower weight functions):

Example

Li(x) + Lix(1 — x) = —log(1 — x)log(x) + 2/6
!
—(1-x)x—x0(1-x)=—(1-x)0x—x® (1 —Xx)

However, inverting the symbol to obtain the function is extremely
difficult in general.

@ “symbolising” the 15 page formula, produced a long tensor
@ this is the symbol of the much simpler 2 line expression

symbol is a purely mathematical technique for dealing with polylogs
(nested integrals) (nothing specifically to do with A/ = 4) J

@ useful for dealing with integrals in any (massless) quantum field
theory



@ open problems:

» obtaining the symbol directly from a Feynman-type integral?
» inverting the symbol to obtain the function (see [bunr cang1])

@ symbol useful for simplifying complicated expressions, but

@ also useful for constructing analytic results

@ write ansatz for the symbol and use properties (collinear/soft limits
etc) to constrain it



Example: 8 point special kinematics

@ special kinematics, external momenta lying in 1 4+ 1 dimensions

+_
%71 %20

X =0

+ -
XS sy S X.=U

@ depends on only two parameters (up to conformal
transformations)

® Uis, Ugg With U7 =1 — Uys, Usg = 1 — Uzg

@ Simplifies kinematics considerably, but leaves non-trivial results.
Good place to examine integrability questions etc.



Weak coupling

@ The corresponding weak coupling result was obtained by
[Del Duca Duhr Smirnov]

@ It has the amazingly simple form (simplified from longer
expression than 6-points):

1 4
DDS
Rg™ = —é|09(U15)|09(U26)|09(U37)|09(U48) ~ 18
X P Xirq
>
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L N 4 Xij Xii1j41
I A
Xjiq p X

@ Can we generalise this result for more points and/or loops?



Using the symbol in N = 4: ansatz for amplitudes in
special kinematics

[Khoze PII]

Assume the entries of the symbol are all u’s

Consistent with all known results so far. Complicated momentum
twistor expressions all reduce to u’s in 2d

With this single simple assumption we can:
@ Derive the 8-point 2-loop result a(log uq log us log uz log ug) + b

(Here to simplify notation at 8-points we define u; := ujj 4)



8-point 2-loops derivation

Collinear limits uy — 1, uz — 0.

Three independent symbols (¢ loops = weight 2/ polylogs)

B = el ) - em) o
S(Rg ) = U1 QU ® U3 ® Uy + 7 terms related by cyclic symmetry
(

)
a
S(Rsi))) =U1 ® U ® Uy ® U3 + 7 terms related by cyclic symmetry
)
Cc

S(Rg ) = U1 ®U3® U ® Uy + 7 terms related by cyclic symmetry .

V.

(Collinear vanishing function needs all four u’s.)

@ Requiring this to be the symbol of a function (integrability
constraint) puts a = b = ¢ giving the two loop result.



2 loops n-point MHV amplitudes in 1+1 kinematics

[Khoze PH]

1 t
Rn = —§<Z log(ui,is) 109(Uiis) 109( U3, ) IOQ(Ui4i3)> —5(n=4),
5

S:{i1,...i8:1§i1<i2<---<i8§n, ik—ik_1:0dd}




8'p0|nt 3-|00p [Khoze PH]

Similar procedure for 3-loops:
Ansatz for symbol at 3-loops

Z const;, _j, - Uiy @ Uj, @ Uj, @ Uj, @ Ujg @ Ujs .

it i

@ Symbol must vanish in the collinear limit
@ Symbol should respect cyclic and parity symmetry
@ Leads to 195 free constants!

@ Next impose that the symbol must be the symbol of a function
(integrability constraint)

@ remarkably this fixes 182 of these, leaving only 13
o FlX 6 more USIng OPE [Alday Gaiotto Maldacena Sever Vlelra]



Summary: integrals

State of the art for analytic results:
@ special kinematics:
» 8-points 3 loops (10-points also) [xnoze ex]
@ related work for general kinematics

» 2 loop n-point (symbol only) [caron-ruot]
» 3 loop MHYV 6-point (symbol only) [pixon prummond senn]
» 2-loop 6-point NMHYV using similar techniques [pixon prummona menn]



Integrands

For rest of the talk we now mainly consider integrands of
amplitudes/correlation functions

A big recent focus of interest in amplitudes involves the 4 dim
integrand of loop level amplitudes

[Arkani—Hamed Bourjaily Cachazo Trnka + Caron—Huot]

Physical object in planar limit?? (Unique in dual momenta)
bcfw-like recursion for the integrand, integrands in terms of

|ntegl’andS [Arkanifl-lamed Bourjaily Cachazo Trnka + Caroanuot]

Results for integrands go much further: but the integrals
themselves are hard to evaluate

Dualities/trialities simply phrased in terms of integrands...



Correlation functions of gauge invariant operators

AdS/CFT

Supergravity/String theory on AdSs x S° = A'=4 super Yang-Mills J

@ Correlation functions of gauge invariant operators in SYM <
string scattering in AdS

[5 @(® O@)y
)

{f" CFT = z-&.’r'iu_r;[\;—?{:- -f'.Jlg = -;II{-I:}]

Centre for

Particle Theory




Triality

Amplitudes
Mn(p1, - -pn) \ (MHV)
<
Correlation functions Wilson loops
W(zy,...,on)

Planar



Triality

Amplitudes
2 A3
(MHV) Mn(py;- - pn) (MHV)
' RN
Correlation functions Wilson loops
11111:%2'1'“%0(0@1) ...O(zn)) W(at,...,2n)

o PreVIOUS Summer, [Eden Korchemsky Sokatchev].
@ Integrand identity.
@ Planar



Triality

Amplitudes
2 A}
(MHV) Mulpr-pn) = (MHV)

/&' \\‘\
Correlation functions —<---> Wilson loops
 lim 0<O(I1>4..0(I71)> W(xy,...,on)

Liit1™

[Alday Eden Korchemsky Maldacena Sokatchev]

Non-planar



Triality

Super Amplitudes

Full An(l’l-’ll'-».l’n,ﬁ)\\ (MHV)
AN
Super Correlation functions —<---= Wilson loops
) lim (7 (x1,01,0)...7 (zn,0n,0)) Wiz, ... 2n)

7,

it+1

(super) correlation function/ (super) amplitude duality

[Eden Korchemsky Sokatchev PH]



Triality

@ Correlator integrands = Tree level correlators

@ Entire planar N = 4 S-matrix (integrand) as tree-level correlators

of energy-momentum multiplets

Many amplitudes from a single tree-level correlator eg:

o o

oy = o\

Qe

MHV

NNMHVE

ro




Triality

Super Amplitudes

Full/A"(p]’ m---Pns W)\;ull?
Full?

Super Correlation functions —<—s Super Wilson loops?
lim o (T (21,61,0)...7 (zn, 0n,0)
200

2. —l I/V(-’l'l‘ X1s--++%n, Xn)
i+l

Super WI|SOﬂ |00p, [Mason Skinner, Caroanuot]



@ The simplest non-trivial correlation function is

Gy = <O(X1)@(X2)O(X3)@(X4)> O = Tr(d12¢12)

)

@ O € energy momentum multiplet

@ strong coupling (“a’— o) correlator computed from supergravity

aCtIOﬂ [’d Hoker Freedman, Arutyunov Frolov]

@ much studied at weak coupling (a — 0) (1- and 2-loops). Many
attempts at 3-loops, abandoned until recently...



Amplitude/correlator duality (simplest case)

Conjectured amplitude/correlator duality

Jim (Ga/G) = (A/AD)

Xiip1—0

2
= Mj

@ View as an integrand identity (everything is then finite,
well-defined and rational even in the light-like limit)



4-point 1 loop amplitude [cecen scruare srin

° AS)/AgO) = x23x3, Box(py, P2, P3, Pa)

Box(p1, P2, Ps, Pa) 1= /de 1
preE C(E+ PR+ pr + P2)(E— pa)?
1
=9(X1, X2, X3, Xa) = /dDXo—
XGy X5pXGa XG4

where x; — x; 1 = pj and { = xp — x1 (dual momenta) .




4‘p0int 1 Ioop Correlator[Eden Howe Schubert Sokatchev West]

2 2
1 Xz X
G = (0000) ~ 3724 _ (1 _y - v)g(1,2,3,4)
X5o X5 X534 X,
12723734741
2 2 2 .2
_ Xi2X34 _ XaXo3
= By o Kok

2 2
imi _xEx0(1,2,3,4) )
o limit: lim G~ 22492( 7 2 ) im G§**~ s
KO X12X23X34Xa1 X4 — 0 X12X23X34 %41
G(1)
le'”L Gtree = 2x§3%5,9(1,2,3,4)
iyi+1
9(1,2,3,4) =1 loop box = /d4XO %= ----- 1T
01 02 03 04 9 \

1 | 4

Finite for generic x; but divergent in the limit = consider integrand



Lots of checks...

@ All n-point 1 loop (reproduce 2me box functions, but also parity
odd part

@ 4,5,6 point 2 loop

@ beyond MHYV agrees precisely with the integrand amplitude results
derived in [Arkani—Hamed Bourjaily Cachazo Trnka + Caron—Huot]
eg 6 point 1 loop NMHV (including highly complicated parity odd
sector - numerical check) [saen xorchensky sokatchey eu]



Simple derivation of 3-, 4-, 5-, 6-loop 4-point
correlator/amplitude

[Eden Korchemsky Sokatchev PH+ Smlrnov]

Original motivation:
@ More is known about amplitudes than correlators.

@ Can we use the duality to obtain new results about correlators
from amplitudes?

In fact: we derive high loop correlators without using the duality

New input is the discovery of a new integrand symmetry for four-point
correlators = new insight into amplitude structure




1- and 2- loop integrands: discovered symmetry
We can write (new form)

(/G0 _ 2.2 2 2 2 1
Gy /Gy = C x XipX{aX5yXbaXeaXan T 2l
H1<i<j<5 i

2 2
2 2 [48 20686 o1 02X0304X0506]

(2) 130 _ 2 2 2
Gy /Gy = C x XipX{aX5yXbaXeaXan

H1§/</§6 i

@ notice: terms in brackets, f) are S, , symmetric
@ We prove this is true in general: long story!



Four-point correlator at arbitrary loops

General expression for 4-pnt function at any loop order ¢

(€)
() /50 _ 2.2 .2 .2 2 2 PUX,... Xe)
G, /Gy = C X X1pX13X14X93X54 X34 X

2
[i<icj<ate Xji

P“) is invariant under interchange of any of the 4 + ¢ points

PO Xy Xy ) =POC XX,

P(1)(x1,...,x5) =1,

1 2 2
PO(x1,..., %) = 18 > X102 3)0 @) 2 (5)0(6)
c€S;
P(S)(X1 ,...,X7) = symmetric polynomial, weight 2 at each point



3 loops

@ Analyse possible numerators P®) at 3 loops:
@ 7 point multigraphs of degree 2

i i5 i5
,/“ < /“ /”.\\ SN
" ,’/ e ° " .,’/ " B . ,:\'/6 .:/_4_\_\
’/ \‘ \ / Ryt 7o .
/3“\ A7 YT B A P ‘\—‘\’.’3
RN < AN <
i2 i1 i2 i1 i2 i1 i2 i1
a b c d
Only 4 possibilities:
(a) heptagon: X2y X323 X2, X2 Xos X2, X2, + S7 perms
(b) 2-gon x pentagon: (X12) (XGuxGs X X6 X55) + S7 perms
(c) triangle x square: (X2 X33X2, ) (XG5 X2s XE7X2,) + S7 perm

(d) 2-gon x 2-gon x triangle: (xib)(Xa4)(X2sXerX25) + S7 perms



Integrand graphs

From numerator graphs to f-graphs (graph complement)
_ PO, x7)

5
H1§i<j§7 Xji

f(xi,...,x7)

)

O & & fx

@ (S7 symmetric: graph theory, non-isomorphic graphs)
@ Solid lines: propagators 1/x5

@ Dashed lines: remaining terms in numerator x,-lz-



Determining the coefficients

3 loop correlator

Above simple arguments determine the 3 loop correlator (for any
gauge group / any N) as a linear combination of just four terms, with
to-be-determined coefficients.

@ How to determine the coefficients?

@ Method 1: (In the planar theory only) we can use the
correlator/amplitude duality. Very straightforward.

@ Method 2: Even better: by analysing divergences at the integrand
level we can fix it without direct reference to amplitudes (planar
and non-planar)!

We find: only topology b contributes (no non-planar corrections at 3
loops)



Four-loops too (and five- and six-)

@ Amplitude duality with four loop amplitude
I’eSUH [Bern Czakon Dixon Kosower Smirnov 2006] gIVGS the fOIIOW|ng three
terms:

1 2

@ Counting numerator multigraphs, there were 32 possibilities:
these are the only planar f-topologies.

@ Topologies 1 and 2 are generated by gluing lower loop graphs
together. 3 is a new one (and comes with coefficient —1).



Planar limit = planar f-graphs
@ It seems that in the large N limit all the f-graphs (except at

one-loop) are planar graphs (indeed they can be thought of as
edges and vertices of polyhedra.)

@ This is true at 4-, 5- and 6-loops and seems to be true in general.

@ gluing tetrahedra together to obtain higher loop f-graphs = rung
rule. Derived using amplitude/correlator duality

Aa%%@g



Five-loop planar correlator

P B B
p

All planar graphs




Six-loop correlator

Induced by rung rule

0 ©
0 9



Six-loop graphs continued

+ 3 extra

(6) 6 ©)
15 [(39) LY

@ Graph 29 has coefficient 2 (all the rest have coefficient +1)
@ Simple rule (topology of planar graph) which gives the coefficient?

@ Check: in the light-like limit this agrees with the amplitude found
independently (unpublished) by

[Bourjailly, Dike, Shaikh, Spradlin, Volovich, Carrasco Johannson]

@ ~ 230 amplitude graphs, >1000 correlator graphs



More on four-point correlators: integrability

(OOOO) contains all info about the OPE
O(x1)O(x2) ~ ¢(x12)O(X2)

@ eg O= Konishi operator Tr(¢45¢”?) (dual to first massive “string
state”)

@ cusp anomalous dimension solved for all “@” [seisert sden staudacner]

@ conjectures for anomalous dimensions of Konishi and other finite
spin operators

@ 5 loop Konishi interesting since there are new aspects for
integrability “dressing factor”

@ Correlators contain the amplitude + much more!



Exciting by-products

@ four-point correlator — anomalous dimensions etc. (integrability)
@ compute integrals in limit x; — xo, X3 — X4, We obtain 3-, 4-, 5-
loop Konishi anomalous dimensions
(also first two 3 loop higher twist ops using conformal partial wave
techniques developed by [vo1an osvorn] @and 4 loop non-planar Konishi (up
to an integer constant))

First derivation of 5 loop Konishi anomalous dimension obtained using
integrability + string theory by [sajnox siegeaus sanix tuxowski] (dressing factor)

(@ + 1152((3) - %[c(x)]2 — 288¢(5) + 1008((7)) x %

5 5




Conclusion:

@ Fun, beautiful, but with practical offshoots

@ Lots achieved recently for high loop amplitudes and correlators,
both analytically and at the integrand level.
» Obtaining high loop results without Feynman diagrams
» Apply symbol in QCD?
» Correlation functions as regulated amplitudes?
» symmetry beyond 4-points?

@ Much still to explore....



Method 1: determining the coeffs using the duality
Recall the duality:

Jim (Ga/GY) = M§.
X£

i1

Expanding out to 3rd order:

Jim (G (x)/GP(x) = 2MP) +2MPMP.

i1

Remarkably: 1 topology, b, — amplitude graphs [sern pixon smirnov 2005]:

| VARV

AV N Y







@ Going backwards. If one knows the amplitude integrand graphs it
is straightforward to obtain the f-graph. Simply add all “external
lines”. You will clearly get the same f-graph more than once.

@ At 3 loops anyhow, this fixes the planar correlator to be given by
the single term (topology b) with the precise coefficient.



Crucial insight: hidden symmetry

Eg. 2- loop correlator integrand [eaen schubert sokatchev]
Rewrite over common denominator:

1
E(X$2X§4 + X3gX54 + X24x53)(9(1,2,3,4))?

+x%,h(1,2,3;1,2,4) + x53h(1,2,3;2,3,4) + x5,h(1,3,4;2,3,4)
+x2,h(1,2,4;1,3,4) + x3h(1,2,3;1,3,4) + x3,h(1,2,4;2,3,4)

2 2 2
2 2 [48 ZUGSB 0'10'2X0'30'4X0'50'6

L2 2 2 2
=X12X13X14X23X24 X34

H1§/</§6 ij

@ g(1,2,3,4)% = (1 loop box)?

@ h(1,2,3;1,2,4)=2 loop ladder

@ Bit in brackets is Sg invariant, mixing external variables
{X1, X2, X3, X4} with integration variables {xs, xg }



2-loops graphically

We can represent the symmetric integrand via a graph (f-graph)

1 2 2 2
48 Zae Ss XO’1 o2 XO’3O’4 X0506 _ Z

H .. x?
1<i<j<6 7 vertex labellings

@ We can exctract the different integrals from this single object:
@ Choose 4-points as external points xy, ... X
@ Remove all external propagators (ie remove the square.)



First line is g(1, 2,3,4)2 secons line is h(1,2,3;1,3,4). Summing over
all different inequivalent choices of vertex gives the result.



@ integrand defined using Lagrangian insertion procedure

@ = (loop integrand = tree level 4 + ¢-point correlator (with ¢ Lagrangian operators).
@ In superspace this is proportional to a unique nilpotent superconformal invariant...
@ We find a version of this invariant which is Sy, invariant

@ Together with crossing symmetry this give the afore-mentioned Ss,, symmetry



Example 2: 4-points 2 100p [reer seruser soxarcnes]

(2) Xo X
Gy (%1, X2, X3, Xa) ~ —5—5—5—(1

1,2 2 2 2 2 2 2
—u-v) {*(X12X34 + X{3Xas + X14%33)(9(1, 2, 3,4))
X12X23%X34 %41 2

+x%,h(1,2,3;1,2,4) + x3h(1,2,3;2,3,4) + x4, h(1,3,4; 2,3,4)

+x2,h(1,2,4;1,3,4) + x5h(1,2,3;1,3,4) + x3,h(1,2,4;2,3,4)

h(1,2,3;1,3,4) = 2 loop ladder =

2 42 2 2 32 42 2
X01%02%03% 00/ 10/ 30 Xaor




so in the light-like limit
Gc®
Iml G}?%e =

1
2)(123)(224 (§X123X224g(1 ) 2a 37 4)2 + )(13h(1 ) 27 3; 1 ) 37 4) + )(224h(-I 9 27 4; 27 3a 4))

2
X i1

v

Compare Wlth the amp“tUde [Bern Rozowsky Yan]
A(Q)

A(O) = x%,%2, (x13h(1 2,3;1,3,4) + x3,h(1,2,4;2,3, 4))

@ 9(1,2,3, 4)2 term comes from taking the square of the amplitude
o (1+aM' +22M® 4 )2 =1 4 2aM") + 22(2M@ + (M(1))2) +



Integrands = correlators with Lagrangian insertions

@ Loop corrections = Lagrangian insertions.

1 loop correlator

213 —/d4Xo (X0)O(x1) ...0(xn )>(0)

@ so the Born-level (n+ 1)-point correlator with the (chiral part of the
on-shell) Lagrangian inserted at new point x; defines the 1 loop
integrand

@ /-loops = ¢ Lagrangian insertions



Beyond MHV: superduality

[Eden Korchemsky Sokatchev f-[]

So far, specific amplitude (MHV) < specific correlation function

@ How general is the duality?

amplitude — superamplitude

@ MHV — NAMHV

Correlation functions — supercorrelation functions



Superspaces: superamplitudes

@ Use Nair's N'=4 on-shell superspace, all particles — superparticle

super-particle

o(p,n) =G (P) + 1 + n?H(p) + n*P(p) + 1* G (p)

@ All amplitudes — superamplitudes

A(xi) — A(Xi, i)

super-amplitude structure

A(Xi, i) = [0®] Aurv + [0"2] Ay + (") Anmrsy + ..
=AWy (AMHV + [774] Anry + [?78] Annmry + >




Superspace: correlation functions

Similar expansion for correlation functions:

energy momentum supermultiplet

T(x,0,0) =0+ ... +0*L+ ... +0*L+ ...+ (00"0)(0070) T, + ...,

@ correlation function of 7's: f-expansion organised in powers of
69" with m — n = 4k (non-chiral)
@ How can we compare with the amplitude?



@ Simply set # = 0. Somewhat unnatural, but...

Similar superspace expansion to the superamplitude

Grlg_o = (T(NT(2)... T(n))
= Gn;O + [94] Gn;1 T [98] Gn;g AF oo




Dual superconformal symmetry

@ Correlation functions have full superconformal symmetry, but Q.S
is explicitly broken by setting 6 = 0

@ All amplitudes have this same symmetry “dual superconformal
Symme’[l’y" [Drummond Henn Korchemsky Sokatchev]

» proven: full symmetry at tree-level; partial symmetry at
One-_|00p [ Brandhuber Travaglini PH]
» but Q, S is broken at loop level: no contradiction

@ Predicts unexpected recovery of the full symmetry at tree-level for
the correlation functions with § = 0



Superamplitude/ supercorrelation function duality

[Eden Korchemsky Sokatchev ?H]

We conjecture that (a="tHooft coupling)
Superduality

. (T(1)...7(n)) _ - Ap 2
M Ty T (s X #46,6=0) = (Atr;fﬁHv (x.1))

ii+1 n;0

@ duality considered at the level of the integrand...

@ technical difficulty in identifying the superspaces on the two sides
solved



Lagrangian insertions are also T-correlators!

@ Defined integrands of loop level correlators via insertion of £
@ But we saw that £ is part of 7 (at O(6%))!

@ Therefore integrands of loop level correlators of 77’s are in fact
Born level correlators of 7'’s

(T(1)... T(n)) = / X, ... d*x0,(L(01) ... LONT(1). .. T(n)©

_ / dho, .. dyio)(T(01) ... T(O)T(1)... T(n)©,

@ du:= d*xd*d



All loop amplitude integrands from Born level
correlators

@ Putting all these facts together we predict that all loop amplitude
integrands can be obtained from Born level correlators

@ Same correlator gives rise to different amplitudes

o o 0.
,(0) b 4
Gy — La o Jo
. .
o o c el
(0
MuVY NMHVE?
o o o o, o
Lo /
0, . .
Cé_% — [l - o o re
L ' /
.l .'
o o c el c <)

MEV( NMHVY NNMHVE



Further checks beyond MHV

@ tree level: all n-point NMHV and 6 point NNMHV
@ 1 loop: 5,6 points NMHV

@ 6 point 1-loop NMHYV integrand in particular has a highly
non-trivial parity odd Sector [arkani-sanca sourjaily cachazo Trnka + caron-suot]
which is reproduced exactly (shown numerically)



Triality

Amplitudes

Mn(py,---pn) \\ (MHV)

N
Correlation functions Wilson loops
W(xy,...,2n)

Discovered first...more later

[Alday Maldacena 2007, Drummond Henn Korchemsky Sokatchev, Brandhuber Travaglini PH]



Triality

Amplitudes
(MHV) Mn(py;---pn) \ (MHV)
¥ X
Correlation functions Wilson loops
hmfl:fjﬂﬂdo(xl) ...O(zn)) W(zq,...,2n)

Last summer, [sden xorchensky soxaccnev]. 1€8tS, later integrand identity. Dual
conformal symmetry — conformal symmetry of correlators



Triality

Amplitudes
(MHV) Mn(p1,---pn) \ (MHV)
¥ KN
Correlation functions —<---> Wilson loops
22 lin’;o«Q(:L‘l) ...O0(zn)) Wi(zy,... an)

The Same day, [Alday Eden Korchemsky Maldacena Sokatchev]. RegU|arlsatI0n
correlators as regularised Wilson loops/amplitudes?



Triality

Super Amplitudes

Full An(l’l-’ll'-».l’n,ﬁ)\\ (MHV)
AN
Super Correlation functions —<---= Wilson loops
) lim (7 (x1,01,0)...7 (zn,0n,0)) Wiz, ... 2n)

7,

it+1

(super) correlation function/ (super) amplitude duality

[Eden Korchemsky Sokatchev PH]



Super Amplitudes

Full/An pbysn1---Pns ﬂn\?\ull?

Super Correlation functions L Super Wilson loops?
2hm (T (1,01,0)...T (xp,0n,0))

—

22 Wi(x1,X1, - 2n. xn)
1,i+1

o Supel’ WlISOn |OOp On tWIStOI’ Space [Adamo Bullimore Mason Skinner]
@ Super Wilson loop on Minkowski space: [caron-suot]

@ Correlation functions on twistor space < super Wilson loop on
twistor space (finite N, adjoint rep.) [adano suitinore Mason skinner]

@ However at the moment the super Wilson loop is formal, not
regularised (even integrands are divergent).

@ Only attempt so far to regularise (dim reg) lead to an anomaly

[Belitsky Korchemsky Sokatchev]



Other Integrals

Hard integral

Ir_gﬁ)ez) f01 drdmdr3daidasdazd(1—ar—az—a3) x(a1a2a3)6%




Other Integrals

The cross integral

1
o
P2
1 1d d 01d Tzd (P1p2)
—5 fo 01 TZfo T fo o2 Tte
(*2(P1P2)U102*2P10201*2P20202*Q§)
(p1P2)

1+e
(—2(P1P2)T1 To—2p1 Qo —2P20272—Q§)



Other Integrals

The Y diagram + self-energy diagram

n

Q1 @) I Q1

n

D2

o¢(1—0)¢

T (B 2(Qipa)ra—2(Qip1)oTi —2(p1p2)oTi ) 1 H2E

oc¢(1—0)©

T (—B—2(Qop2)2—2(Qopy )T —2(p1 P2)oTi o) 2



(Multi-)collinear limits: the general case

@ As k in-coming momenta become collinear we have
Collinear factorisation
Ma(€) = r(€)Mn_k+1(€)

@ Putting this with the modified BDS formula
log M Zf’) MP(le) + C + Ry

log Mp(€) — log r(e) + Z f(l 6)/\/ln k41 (le) + C+ Rp—k+1

Zf(’ YMEY (e + i (€) + C +lim R,




o ielogrk(e) = Y ()t (le) + MRy — Rk
=1

@ putting in n = k + 3 gives log rx(e Z f() +lim Ry 3
@ putting this back in the first equation then gives

ImR, = Rn7k+1 + lim 'Rk+3




n-point 1+1 kinematics

@ number of independent cross-ratios reduces:

Ujtodd = 1
Upjq oj41 = UF
2i+1.,2j+1 — i
Ujpj = U

U]

@ vertices have zig-zag light-cone representation:

—(xyt ¥y~ (vt - .
Xoi = (X", X)), x2,-+1_(x,.,x,.+1), i=1,...
2ty
= Xai2j = Xjj X etc.
@ light-cone cross-ratios u,f:

+ ot -y

- N Xy X1 Xiny)

uj == ——— u; = ———1
I xT xt

I] — —
i Xit1j1 Xii Xit1j+1



ASide: Relation With Y_System Of [Alday Maldacena Sever Vieira]
We have the simple identity

+ + + +
(1 =1/up)(N =1/uiy ) = (1= Ui )1 = Uiy )
Ujjit1 = Uip1,i =0 Ujj = o0

Geometrically

i+l i+2 i+1 i+2

*2 j+1 i*2 j+1

Figure: LHS: black = (1 —1/u;;) and red = (1 — 1/u; ;). RHS black =

i+1 j+1
- +
1T—ujandred=1—uz,.

aSlde |nterp|’eted at Strong COUp'Ing [Alday Maldacena Sever Vieira] aS a
Y-system, amplitude is the free energy of the TBA integrable system
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