

The Electron Muon Ranger

Davide Bolognini, on behalf of the EMR group

TA Meeting Dec. 9th, 2011

All and a second s

Outline

- EMR: how, why & where
 - Mechanical assembly
 - Electronics
- Tests at UNIGE
- Installation at RAL
- Conclusions & Outlooks

Electron Muon Ranger: where and why

beam

EMR is a fully active detector (tracker+calorimeter) whose aim is (together with TOF and KL) to distinguish electrons from muons

Electron Muon Ranger: how?

EMR: mechanical construction

Bars (3-4 m long from FNAL) have been cut, drilled and painted (the edge in white, to increase the light yield)

One 1.2 mm WLS fiber inserted and glued in each bar

In original design a single WLS fiber carried out on both edges the scintillating light to the PMTs

5

BUT...

EMR: mechanical construction

Optical test:

"Connector system"

Clear fiber to PMTs

EMR: mechanical construction

Two readouts:

64 channels multi-anode PMT (MAPMT) to track the particles

Single PMT to measure the whole plane charge

The EMR electronics

Davide Bolognini - TA Meeting Dec. 9th, 2011

9

Single PMT readout system

 a test bench is set up to study fADC behaviour
light pulses are created by a LED and are similar to the ones generated by a MIP particle in triangular scintillating bars
this setup is identical to the final readout of the PHILIPS 1-ch. PMT in EMR (provided by P.Hanlet,

D0 experiment, Fermilab, US)

Flash ADC CAEN V1731 500MS/s, 8 channels

Because of the experimental duty cycle (1 ev/5 μ s in a spill of 1 ms per sec), the **analog** readout (which requires 12.8 us) is used for tests and for the commissioning phase. The final readout will be a digital one.

The FrontEnd Board (FEB)

SOCKET: MAPMT is connected by a flex cable

MAROC: MAROC-3

FPGA: to control the MAROC configuration (gain, DAC,...) and the readout sequence

EXTERNAL ADC: for the analog readout.

DIGITAL CONNECTORS: to address digital signals to the buffer boards

ANALOG CONNECTORS: to configure the MAROC ASIC and for the analog readout

The Digitizer and Buffer Board (DBB)

The DBB samples the 64 digital outputs in parallel from FEB
FPGA performs the sampling (400 MHz), data buffering, and data-flow control functions

DBB transmits the event data upon request of the acquisition system via a gigabit link (TLK 1511)

six DBBs are daisy-chained (8 VRB boards in total)

Data

	Header																													
31 30 29 28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	3 (3	7	6	5	4		3	2	1	0
Header type 0 0 0 0 0 0 0 Bo									Boai	rd I	D		Spill Number																	
0 0 0 0	0	0	Trigger count										0	0	0	Hit count														
2 2	Data Word																													
31 30 29 28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	9 8	3	7	6	5	4	Τ	3	2	1	0
Data type	Data type Channel ID								Hit time																					
5 5	Trailer																													
31 30 29 28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9) 8	3	7	6	5	4		3	2	1	0
Trailer type	Trailer type Status							Board ID						Spill Number																

Command (to configure and to check)

	Command																															
I	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
I	С	md	typ	e	Command							Board ID						Arguments														

13

FEB + DBB

14

UNIGE tests

Tests on the UNIGE setup

Tracking:

- 2 Si detectors
- ~ 30 um of spatial resolution
- ~ 9.5x9.5 cm²

Goal:

Test of the MAROC ASIC prototype board with a final module: longterm tests and final performances

Tests on the UNIGE setup: DAQ

- BIT3 system for PC-VME data transmission
- MAROC control: configuration and readout of the FEBs and Si detector readout boards
- Shift register: I/O boards to simulate the digital readout (sampling clock 200 MHz)

Digital efficiency

Analog pulse height

18

Davide Bolognini – TA Meeting Dec. 9th, 2011

Residual all clusters²¹

Single cluster residual RMS: ~6.5 mm

Efficiency

EMR at RAL

· 11 2 m

Six planes at RAL

Six planes installed on the MICE line for the July data taking period

Six planes at RAL

GOALS:

- Implementation of EMR in DATE
- Preliminary test with cosmic rays and beam

Two DAQ systems: ◆ DATE ◆ UNIGE-like

Trigger: 1-6 **Test:** 3-4

Digital efficiency ²⁶

Analog PH

Analog-digital PH ²⁷

Digital PH

Bar/cluster

Cosmic profile ²⁹

Results with DATE

Time distribution of the EMR hits (blue) inside the spill window. Spill width in red

the spill width is measured by DBB boards

all hits within spill gate are recorded together with particle trigger signals

30

Results with DATE

EMR Hits MICE Particle Trigger

Particle triggers should be associated to EMR hits

Conclusions & Outlooks

- EMR is a fully active scintillator detector used to discriminate muons from electrons
- It is made of 48 planes of 1m scintillating bars whose light is readout on both sides by single PMTs and MAPMTs
- The final procedure for the bar assembly has been fixed and the production is ongoing
- Cosmic rays tests (at UNIGE) are used to verify the assembly procedure
- The 48 layers will be produced and tested in the first half of 2012
- In the meanwhile all the electronics boards are produced and tested
- EMR will be installed at RAL in May-June

33

The Electron Muon Ranger

Thank you

Backup

0.3

Davide Bolognini - TA Meeting Dec. 9th, 2011

34

Tests on bench

Characterization of the MAROC-2 ASIC

Calibration signal (socket not used):

- shape
- frequency
- amplitude
- delay

ASIC channel

Embedded ADC works in MAROC-3 It doesn't work in MAROC-2 => need of an external ADC for the analog readout

36

Tests on bench (analog): results

Tests on bench (analog): results

Linearity: up to 1V with different gains

38

Tests on bench (digital): results

Tests on bench (digital): results

Tests on bench (digital): Time Over Threshold

The MAROC ASIC allows the ToT measurement: DIGITAL <=> ANALOG

Amplitude signal vs TOT (ns)