Southampton

School of Physics and Astronomy

LHC Phenomenology of an E₆ Inspired SUSY SM

Steve King

BSM4LHC Workshop IPPP, Durham, Wed 11th Jan 2012

MSSM at a glance

 Table 1: The MSSM Particle Spectrum

Superfield	Bosons	Fermions	
Gauge			
\widehat{G}	g	\widetilde{g}	
\widehat{V}^{a}	W^a	\widetilde{W}^a	
\widehat{V}'	В	\widetilde{B}	
Matter			
$\widehat{L} \ \widehat{E}^c$	leptons $\begin{cases} \widetilde{L} = (\widetilde{\nu}, \widetilde{e}^{-})_{L} \\ \widetilde{E} = \widetilde{e}_{R}^{+} \end{cases}$	$\begin{array}{c} (\nu, e^-)_L \\ e^c_L \end{array}$	
$egin{array}{c} \widehat{Q} \ \widehat{U}^c \ \widehat{D}^c \end{array}$	quarks $\begin{cases} \widetilde{Q} = (\widetilde{u}_L, \widetilde{d}_L) \\ \widetilde{U}^c = \widetilde{u}_R^* \\ \widetilde{D}^c = \widetilde{d}_R^* \end{cases}$	$(u,d)_L \ u^c_L \ d^c_L$	Higgsino mass ${ m ightarrow} \mu ilde{H}_u ilde{H}_d$
$\widehat{H}_d \ \widehat{H}_u$	$\operatorname{Higgs} \begin{cases} H_d^i \\ H_u^i \end{cases}$	$(\widetilde{H}_d^0, \widetilde{H}_d^-)_L (\widetilde{H}_u^+, \widetilde{H}_u^0)_L$	

Maria de la companya de la companya

Focus on models which provide a dynamical origin of μ term: $SH_{\mu}H_{d} \quad \text{where singlet} < S > \sim \mu \sim \text{TeV}$ Danger from weak scale axion due to global $\mathcal{U}(1)$ symmetry Need to avoid axion somehow

• In NMSSM we add S³ to break u(1) to $Z_3 - but this results in cosmological domain walls (<math>\mu S^2, \mu^2 S$ reintroduces μ problem) • In $E_e SSM$ we gauge the u(1) symmetry to eat the axion resulting in a massive Z' gauge boson - anomalies are cancelled by three complete 27's of E_e at the TeV scale with $u(1) \in E_e$

Higgs mass bounds

400

500

600

 $m_{\tilde{t}_2}$

stop mass

NMSSM Fine Tuning vs Higgs Mass

LEP favours NMSSM over MSSM (10 years ago) LHC with Higgs @ 125 GeV strengthens conclusion

NMSSM Higgs Benchmarks Near 125 GeV

Point	NMP1	NMP1 NMP2	
aneta	3	2	2
$\mu_{\rm eff} \ [{\rm GeV}]$	200	200	200
λ	0.64	0.6	0.57
κ	0.25	0.18	0.2
$A_{\lambda} \; [\text{GeV}]$	560	405	395
$A_{\kappa} \; [\text{GeV}]$	-10	-10	-80
$M_{Q_{3L}}$ [GeV]	650	700	530
M_{t_R} [GeV]	650	700	530
$M_1 \; [\text{GeV}]$	106	91	115
$M_2 \; [\text{GeV}]$	200	200	200
$M_3 \; [\text{GeV}]$	600	600	600
SM-like Hig	gs boson	++-	
M_{H_1} [GeV]	124.5	126.5	124.6
$R_{\gamma\gamma}(H_1)$	1.06	1.24	1.47
$R_{WW}(H_1)$	0.85	0.93	1.02
$R_{ZZ}(H_1)$	0.76	0.85	0.90
$R_{b\bar{b}}(H_1)$	1.12	1.09	1.04
$R_{\Gamma_{tot}}(H_1)$	1.02	0.93	0.76
$R_{\sigma_{gg}}(H_1)$	0.97	0.96	0.77
$R_{\sigma_{tot}}(H_1)$	0.84	0.91	0.82
$m_{\tilde{t}_1}$ [GeV]	•• 548	587	358
$m_{\tilde{t}_2}$ [GeV]	782	838	686
$X_t/m_{\tilde{t}}$	1.74	1.86	2.26
Relic densit	y		
Ωh^2	0.9819	0.1170	0.1100

Point	NMP4	NMP5	NMP6
aneta	3	3	2
$\mu_{\rm eff} \ [{\rm GeV}]$	200	200	140
λ	0.67	0.66	0.55
к	0.1	0.12	0.31
$A_{\lambda} \; [\text{GeV}]$	650	650	210
A_{κ} [GeV]	-10	-10	-210
$M_{Q_{3L}}$ [GeV]	600	600	800
M_{t_R} [GeV]	600	600	600
$M_1 \; [\text{GeV}]$	200	200	145
$M_2 \; [\text{GeV}]$	400	400	300
$M_3 \; [\text{GeV}]$	600	600	800
SM-like Hig	gs boson	H2	San
M_{H_2} [GeV]	123.8	126.5	124.5
$R_{\gamma\gamma}(H_2)$	1.09	1.19	1.431
$R_{WW}(H_2)$	0.91	0.98	1.00
$R_{ZZ}(H_2)$	0.80	0.89	0.89
$R_{bar{b}}(H_2)$	1.08	1.06	1.04
$R_{\Gamma_{tot}}(H_2)$	0.96	0.90	0.78
$R_{\sigma_{gg}}(H_2)$	1.00	0.96	0.91
$R_{\sigma_{tot}}(H_2)$	0.92	0.95	0.93
$m_{\tilde{t}_1} \ [\text{GeV}]$	517	483	549
$m_{\tilde{t}_2} [\text{GeV}]$	724	741	892
$X_t/m_{\tilde{t}}$	1.56	1.89	-1.83
Relic densit	y		13.0.124-
Ωh^2	0.0999	0.1352	0.1258

King, Muhlleitner, Nevzorov

Key features: - Stops below 1 Tev in all cases - Two photon Higgs BR enhanced - WW and ZZ Higgs BR suppressed

Exceptional SUSY SM (E₆SSM) $E_6 \rightarrow SO(10) \times U(1)_{U}$ $SO(10) \rightarrow SU(5) \times U(1)_{\chi}$

 $SU(3) \times SU(2) \times U(1)_{Y} \times U(1)_{N}$

RH neutrínos neutral under:

Mstring

M3

M2

M,

Energy

 $U(1)_{N} = \frac{\sqrt{15}}{4}U(1)_{\psi} + \frac{1}{4}U(1)_{\chi}$

remaining matter content of 3 families of 27's of E_6 survives down to the TeV scale

TeV _ $u(1)_{N}$ broken, Z' and exotics get mass, μ term generated M_{W} _ $SU(2)_{L} \times U(1)_{Y}$ broken

Matter Content of 27's of E₆

All the SM matter fields are contained in one 27-plet of E_6 per generation.

Miller

E6SSM Couplings $D \subset D_i, \overline{D}_i,$ $S \subset S_i$, $H \subset H_i^u, H_i^d$ $F \subset Q_i, L_i, U_i^c, D_i^c, E_i^c, N_i^c$

W = SHH + SDD + HFF + DFF

Singlet-Higgs-Higgs couplings includes effective µ term

Singlet-D-D couplings Yukawa couplings includes effective D mass terms

but extra Higgs give FCNCs

DQQ, DQL allows D decay but also proton decay. Need to: - either forbid one of DQQ or DQL

- or allow both with Yukawas $\sim 10^{-12}$

LHC phenomenology of E₆SSM

- SUSY typical spectrum has heavier squarks and lighter gluinos, with gluinos having longer decay chains than MSSM, due to extra neutralinos and charginos, giving less missing energy and more soft leptons and jets
- Higgs Richer Higgs spectrum than MSSM or NMSSM (incl. inert Higgs)
- Exotics Z', D-leptoquarks/díquarks

Neutralinos in E₆SSM Hall, King

3 Higgs families = 1 MSSM family $H_u H_d + 2$ inert families $H_{u1} H_{d1} H_{u2} H_{d2}$ 3 families of Singlets = 1 NMSSM singlet S + 2 inert singlets $S_1 S_2$ The full neutralino mass matrix $\tilde{\chi}_{\text{int}}^0 = (\tilde{B} \quad \tilde{W}^3 \quad \tilde{H}_d^0 \quad \tilde{H}_u^0 \mid \tilde{S} \quad \tilde{B}' \mid \tilde{H}_{d2}^0 \quad \tilde{H}_{u2}^0 \quad \tilde{S}_2 \mid \tilde{H}_{d1}^0 \quad \tilde{H}_{u1}^0 \quad \tilde{S}_1 \mid)^{\text{T}}$ B_2^{T} $M_{\rm EeSSM}^n$ A_{21} matrix!!

Hall, King **The Inert Neutralino Sector**

~ 0

$$\begin{split} & \tilde{H}_{d\beta}^{0} \quad \tilde{H}_{u\beta}^{0} \quad \tilde{S}_{\beta} \\ A_{\alpha\beta} &= -\frac{1}{\sqrt{2}} \begin{pmatrix} 0 & \lambda_{\alpha\beta}s & \tilde{f}_{\beta\alpha}v\sin\beta \\ \lambda_{\beta\alpha}s & 0 & f_{\beta\alpha}v\cos\beta \\ \tilde{f}_{\alpha\beta}v\sin\beta & f_{\alpha\beta}v\cos\beta & 0 \end{pmatrix} \begin{pmatrix} \tilde{H}_{d\alpha}^{0} \\ \tilde{H}_{u\alpha}^{0} \\ \tilde{S}_{\alpha} \end{pmatrix} \end{split}$$

 $m_{\chi_1^0} \approx \frac{f^2}{\lambda} \frac{v^2}{s} \sin 2\beta \quad \left\{ \begin{array}{l} \text{Inert LSP is naturally light} \sim \sqrt{2} \text{ /s} \\ \text{Inert LSP is inert Higgsino/singlino} \end{array} \right.$

Inert LSP would be natural dark matter candidate

Higgs and gluinos can decay into inert LSP (invisible Higgs decays, longer gluino chains)

Hall, King, Pakvasa Nevzorov, Sher

Invisible Higgs Decays

 $\Gamma(h_1 \to \chi^0_\alpha \chi^0_\beta) \quad >$

To get a 125 GeV SM-like visible Higgs need one of: (i) $M\chi > 62$ GeV $\Gamma(h_1 \rightarrow f\bar{f})$ (ii) $M\chi < 1$ GeV

due to large coupling of inert neutralinos to Higgs $-M_{\chi}/v$ with $M_{\chi} - M_{z}/2$ can get "invisible" Higgs

gíves large SI DD cross-sections -- challenged by XENON 100

Also shown are gluino decay chain lengths

E	6	C	C	KA	
C				/*	

Benchmarks

MSSM-ínos ->

E₆SSM-ínos→

Belyaev, Hall, King, Svantesson (preliminary

		MSSM-A	MSSM-B	E ₆ SSM-A	E ₆ SSM-B	E_6SSM-C	E ₆ SSM-D	E_6SSM-E	E_6SSM -F	
	$\tan \beta$	9.9	39.2	1.42	1.77	1.42	1.5	1.42	3	
	λ	-	-	0.598	-0.462	0.598	0.55	0.598	-0.4	
	8	-	-	5268	5418	5268	3700	5268	5500	
	μ	-112.6	1578	(2228)	(1770)	(2228)	(1439)	(2228)	(-1556)	
	$A_t = A_b = A_\tau$	-724.6	-566.1	-2684	476.2	-2684	-2200	-2684	4638	
	M_A	1593	302.5	2791	2074	4000	2736	4010	4341	G
	M_1	150	150	150	150	150	150	150	150	eV
	M_2	285	285	300	300	300	300	300	300	
	$M_{1'}$	-	-	151	151	151	151	151	151	
	$m_{\tilde{g}}$	800.3	800.2	800.0	800.0	800.0	800.0	800.0	800.0	
	$m_{ ilde{\chi}^0_{M1}}$	94.1	149.9	149.1	151.2	149.1	148.6	149.1	150.6	
	$m_{\tilde{\chi}^0_{M2}}$	128.8	302.8	296.8	303.7	296.8	296.8	296.8	301.7	
\rightarrow	$m_{\tilde{\chi}^0_{140}}$	163.0	1580	2233	1766	2233	1254	2233	1557	G
	$m_{\tilde{\chi}^0}$	323.5	1581	2246	1771	2246	1468	2246	1558	eV
	$m_{\tilde{\chi}^{\pm}}$	112.2	302.8	299.2	300.9	299.2	298.7	299.2	300.4	
	$m_{\tilde{\chi}_{M2}^{\pm}}$	323.5	1582	2229	1771	2229	1440	2229	1557	
	$m_{\tilde{\chi}^0_{U1}}$		-	1835	1909	1835	1420	1835	1937	G
\rightarrow	$m_{\tilde{\chi}_{U2}^0}$	-	-	2003	2062	2003	1459	2003	2087	[V ^e
	$m_{\tilde{\chi}_{E1}^0}$	-	- /	43.5	45.2	0.00011	62.7	0	0	
	$m_{ ilde{\chi}_{E2}^0}$	-1.9	SP `	48.6	53.2	1.53	62.8	0	0	
	$m_{\tilde{\chi}^0_{E3}}$	-	-	131.3	141.6	120.1	119.9	119.9	164.1	
\rightarrow	$m_{\tilde{\chi}_{F4}^0}$	-		163.6	187.4	122.8	121.1	119.9	164.1	Ge
	$m_{\tilde{\chi}_{D}^0}$	-		197.0	227.8	185.8	183.1	185.8	388.9	$[\Sigma]$
	$m_{\tilde{\chi}^0_{E6}}$	-		224.3	265.6	187.0	184.4	185.8	388.9	
	$m_{\tilde{\chi}_{E1}^{\pm}}$		Laas	119.9	122.7	119.9	109.8	119.9	164.1	
	$m_{\tilde{\chi}_{E2}^{\pm}}^{\pm}$	-	199-	185.8	225.1	185.8	117.8	185.8	388.9	
,	m_h	120.4	119.0 <	133.8	116.3	125.8	125.4	126.1	124.7	Ģ
(11)	$m_{\tilde{t}_1}$	1979	1992	1916	2042	1917	1917	1917	1885	eV
'y)	P(l=1)	0.09847	0.188	$< 10^{-5}$	$< 10^{-5}$	$< 10^{-12}$	$< 10^{-9}$	$< 10^{-8}$	0.1727	
	P(l=2)	0.4705	0.812	0.01524	0.1723	$< 10^{-5}$	$< 10^{-4}$	0.0061	0.8273	
	P(l=3)	0.387	0	0.2336	0.7986	0.1721	0.1746	0.1953	$< 10^{-6}$	
	P(l=4)	0.04387	0	0.7512	0.02915	0.8280	0.8196	0.7987	$< 10^{-15}$	
	P(l=5)	$< 10^{-4}$	0	$< 10^{-7}$	0	0	0.0058	$< 10^{-15}$	0	
	Ωh^2	0.01513	0.00816	0.0006842	0.0006937		0.00114	$< 10^{-2}$	0.101	
	σ_{SI}	2.35×10^{-8}	0.38×10^{-8}	9.35×10^{-8}	16.35×10^{-8}		15.34×10^{-8}	$< 10^{-12}$	3.75×10^{-11}	[dd]

 \bigcirc

O

O

O

Lepton multiplicity assuming perfect lepton identification

Soft Lepton multiplicity is a clear signal of EGSSM de Santo, King

FIG. 8: Lepton multiplicities, where all leptons are assumed to be identified.

(c) p_T^{miss} after 9 CMS cuts.

(d) p_T^{miss} with $N_l + N_j > 8$, with one muon (or electron) with $p_T > 15$ GeV (20 GeV).

Conclusion

- Hierarchy problem addressed by SUSY...
- ...but SUSY is a symmetry not a model
- LHC can only test individual SUSY models
- Focus on dynamical solutions to mu problem
- \square NMSSM \rightarrow E₆SSM (string theory) gives spectacular signals
- SUSY typical spectrum has heavier squarks and lighter gluinos, with gluinos having longer decay chains than MSSM, due to extra neutralinos and charginos, giving less missing energy and more soft leptons and jets
- Higgs -may have invisible decays or be SM-like depending on the (inert) LSP mass
- Exotics Z', D-leptoquarks/díquarks (maybe long lived)

Extra Slides

F-Theory GUTs: a 12d string theory

Heckman and Vafa

Figure 1: The structure of an F-theory GUT

GUT breaking is achieved not with Higgs but with Hypercharge Flux

 $SU(5) \supset SU(3)_C \times SU(2)_L \times U(1)_Y$ $5 \rightarrow (1,2)_{1/2} + (3,1)_{-1/3}.$

2-d Matter curve Σ

Index theorem gives number of chiral doublets and triplets (think of Gauss's law):

Doublet-triplet Higgs splitting requires:

$$(1,2)_{1/2} : n_L - n_R = 3 \int_{\Sigma} F_{U(1)_Y} + q \int_{\Sigma} F_{U(1)_\perp}$$
$$(3,1)_{-1/3} : n_L - n_R = -2 \int_{\Sigma} F_{U(1)_Y} + q \int_{\Sigma} F_{U(1)_\perp}$$

Higgs:
$$\int_{\Sigma} F_{U(1)_Y} \neq 0$$

Matter: $\int_{\Sigma} F_{U(1)_Y} = 0.$
Typically predicts exotics

Callaghan, King, Leontaris, Ross

E6SSM from F-theory

<i>SO</i> (10)	SU(5)	Weight vector	N _Y	$M_{U(1)}$	SM particle content	Low energy spectrum
16	$\overline{5}_3$	$t_1 + t_5$	1	4	$4d^{c} + 5L$	$3d^c + 3L$
16	10 _M	t_1	-1	4	$4Q + 5u^c + 3e^c$	$3Q + 3u^c + 3e^c$
16	θ_{15}	$t_1 - t_5$	0	<i>n</i> ₁₅	$3v^c$	-
10	51	$-t_1 - t_3$	-1	3	$3D+2H_u$	$3D+2H_u$
10	$\overline{5}_2$	$t_1 + t_4$	1	3	$3\overline{D} + 4H_d$	$3\overline{D} + 3H_d$
1	θ_{14}	$t_1 - t_4$	0	<i>n</i> ₁₄	$ heta_{14}$	-
16	$\overline{5}_5$	$t_3 + t_5$	-1	-1	$\overline{d^c} + 2\overline{L}$	-
16	102	<i>t</i> ₃	1	-1	$\overline{Q} + 2\bar{u^c}$	-
16	θ_{35}	$t_3 - t_5$	0	<i>n</i> ₃₅	—	-
10	5_{H_u}	$-2t_1$	1	0	H_u	H_u
10	$\overline{5}_4$	$t_3 + t_4$	-1	0	$\overline{H_d}$	-
	SO(10) 16 16 10	$\begin{array}{c c} SO(10) & SU(5) \\ \hline 16 & \overline{5}_3 \\ \hline 16 & 10_M \\ \hline 16 & \theta_{15} \\ \hline 10 & 5_1 \\ \hline 10 & \overline{5}_2 \\ \hline 10 & \overline{5}_2 \\ \hline 1 & \theta_{14} \\ \hline 16 & \overline{5}_5 \\ \hline 16 & 10_2 \\ \hline 16 & \theta_{35} \\ \hline 10 & 5_{H_u} \\ \hline 10 & \overline{5}_4 \\ \end{array}$	$SO(10)$ $SU(5)$ Weight vector16 $\overline{5}_3$ $t_1 + t_5$ 16 10_M t_1 16 θ_{15} $t_1 - t_5$ 10 5_1 $-t_1 - t_3$ 10 $\overline{5}_2$ $t_1 + t_4$ 1 θ_{14} $t_1 - t_4$ 16 $\overline{5}_5$ $t_3 + t_5$ 16 10_2 t_3 16 θ_{35} $t_3 - t_5$ 10 5_{H_u} $-2t_1$ 10 $\overline{5}_4$ $t_3 + t_4$	$SO(10)$ $SU(5)$ Weight vector N_Y 16 $\overline{5}_3$ $t_1 + t_5$ 116 10_M t_1 -1 16 θ_{15} $t_1 - t_5$ 010 5_1 $-t_1 - t_3$ -1 10 $\overline{5}_2$ $t_1 + t_4$ 11 θ_{14} $t_1 - t_4$ 016 $\overline{5}_5$ $t_3 + t_5$ -1 16 θ_{35} $t_3 - t_5$ 010 5_{H_u} $-2t_1$ 110 $\overline{5}_4$ $t_3 + t_4$ -1	$SO(10)$ $SU(5)$ Weight vector N_Y $M_{U(1)}$ 16 $\overline{5}_3$ $t_1 + t_5$ 1416 10_M t_1 -1 416 θ_{15} $t_1 - t_5$ 0 n_{15} 10 5_1 $-t_1 - t_3$ -1 310 $\overline{5}_2$ $t_1 + t_4$ 1310 $\overline{5}_2$ $t_1 + t_4$ 1310 $\overline{5}_5$ $t_3 + t_5$ -1 -1 16 10_2 t_3 1 -1 16 θ_{35} $t_3 - t_5$ 0 n_{35} 10 5_{H_u} $-2t_1$ 1010 $\overline{5}_4$ $t_3 + t_4$ -1 0	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

F-theory model predicts incomplete multiplets with matter content of 3 copies of 27s of E6

Standard Model Puzzles

The origin and fate of the Universe - and why is it so big and flat?

□ The dark side of the Universe – why is 95% of mass-energy in a form that is presently unknown, including 23% dark matter and 72% dark energy?

□ The origin of matter - the problem of why there is a tiny excess of matter over antimatter in the Universe, at a level of one part in a billion.

The origin of mass - the origin of the weak scale, its stability under radiative corrections, and the solution to the hierarchy problem.

□ The quest for unification - the question of whether the three known forces of the standard model (and gravity) may be unified.

□ The problem of flavour - the problem of the three generations with fermion (incl. neutrino) masses and mixing angles and CPV phases, giving small FCNCs and tiny strong CPV.

In SM, top loops dominate $V = m_{H}^{2} |H|^{2} + \frac{1}{2}\lambda |H|^{4}$ Higgs potential $m_H^2 = -\lambda v^2 = -\lambda \left(246 \, GeV\right)^2$ Tree-level min cond $m_H^2 + \delta m_H^2 = -\lambda \left(246 \, GeV\right)^2$ Including rad corr $\delta m_H^2(top \, loop) = -\frac{3}{\sqrt{2\pi^2}} G_F m_t^2 \Lambda^2 = -\left(100 \, GeV\right)^2 \left(\frac{\Lambda}{1 \, TeV}\right)^2$ $\Lambda \gg 1 TeV$ Fine-tuning is required if the cut-off

11 -- 110

In SUSY, stop loops dominate

Leading quadratic divergence cancels

$$\delta m_{h_u}^2 = -\frac{3y_t^2}{4\pi^2} m_{\tilde{t}}^2 \ln\left(\frac{\Lambda_{UV}}{m_{\tilde{t}}}\right)$$

To avoid tuning need

 $m_{\tilde{t}} \lesssim 400 \text{GeV}.$

Constrained MSSM

Two Higgs doublets get VEVs

$$H_{u} = \begin{pmatrix} H_{u}^{+} \\ H_{u}^{0} \end{pmatrix} \quad H_{d} = \begin{pmatrix} H_{d}^{0} \\ H_{d}^{-} \end{pmatrix}$$

 $\tan\beta = \frac{v_u}{v_d}$

C SUSY limits

* stars indicate squark = gluíno = 1 TeV

0 lepton 2011 combined

CL_s observed 95% C.L. limit

2010 data PCL 95% C.L. limit

ĝ (1200)

ĝ (1000)

ğ (800)

3000

m_o [GeV]

3500

ă (600)

2500

2000

1500

--- CL_s median expected limit

Expected limit ±1 σ

Reference point

CMSSM Dark Matter

Neutralino mass matrix

 \tilde{B} \tilde{W}_3 \tilde{H}_d \tilde{H}_u

 $\chi_1 = N_1 \tilde{B} + N_2 \tilde{W} + N_3 \tilde{H}_d + N_4 \tilde{H}_u$

$$\begin{array}{c} M_1 \\ M_2 \\ 0 & -\mu \\ -\mu & 0 \end{array}$$

 $\Omega_{DM}h^2 = C$

$$\mathbf{2}_{DM}h^2 = C\frac{T_0^3}{M_P^2}\frac{1}{\langle \sigma v \rangle}$$

Higgsino LSP

Focus

Funnel

 $m_{A,h} \approx 2m_{\chi_1}$

Co-annihilation

 $m_{\tilde{\tau}} \approx m_{\chi_1}$

 $m_{\tilde{f}} \approx m_{\chi_1}$

Bulk

Constrained E₆SSM

Assume universal soft parameters at GUT scale $m_0^2 27_i 27_i^* + A_0 Y_{ijk} 27_i 27_j 27_k$

Allowed regions of parameter space with correct EWSB and m_h>115 GeV

Squark and gluino masses Athron, King, Miller, **Preliminary** 28 TeV 1200 Morettí, Nevzorov s = 5 TeV- 1 TeV 2.4 TeV $M_{Z'} = 1.89 \ TeV$ 2.2 TeV 2.0 TeV 900 GeV 1.9 TeV $\tan\beta = 10$ 1.8 TeV gluíno 1.7 TeV $M_{1/2}$ masses 1.6 TeV 💊 $m_{\tilde{g}} = 0.9 M_{1/2}$ 1.5 TeV 600 1.4 TeV 400 1.3 TeV squark masses (N.B. heavy!) 200 $m_{\tilde{q}_{1,2}}^2 = m_0^2 + 1.95M_{1/2}^2 + 5/80(\tilde{g}_1'^2)s^2$ 0 1000 1500 300 m_0

Invisible Higgs Decays <u>h1</u>

 $\Gamma(h_1 \to \chi^0_{\alpha} \chi^0_{\beta}) \implies \Gamma(h_1 \to f\bar{f})$

- □ due to large coupling of inert neutralinos to Higgs $-M_{\chi}/V$ with $M_{\chi} - M_{z}/2$
- gíves large SI DD cross-sections
 -- challenged by XENON 100

Hall, King, Pakvasa Nevzorov, Sher

				_	_
	i	ii	iii	iv	v
λ	0.6	0.6	0.468	0.468	0.468
$\tan(\beta)$	1.7	1.564	1.5	1.5	1.5
A_{λ}	1600	1600	600	600	600
$m_{H^{\pm}} \simeq m_A \simeq m_{h_3}/\text{GeV}$	1977	1990	1145	1145	1145
$m_{h_1}/{ m GeV}$	133.1	134.8	115.9	115.9	115.9
λ_{22}	0.094	0.0001	0.094	0.001	0.468
λ_{21}	0	0.06	0	0.079	0.05
λ_{12}	0	0.06	0	0.080	0.05
λ_{11}	0.059	0.0001	0.059	0.001	0.08
f_{22}	0.53	0.001	0.53	0.04	0.05
f_{21}	0.05	0.476	0.053	0.68	0.9
f_{12}	0.05	0.466	0.053	0.68	0.002
f_{11}	0.53	0.001	0.53	0.04	0.002
$ ilde{f}_{22}$	0.53	0.001	0.53	0.04	0.002
\tilde{f}_{21}	0.05	0.4	0.053	0.49	0.002
$ ilde{f}_{12}$	0.05	0.408	0.053	0.49	0.05
\tilde{f}_{11}	0.53	0.001	0.53	0.04	0.65
$m_{ ilde{\chi}_1^0}/{ m GeV}$	33.62	-36.69	35.42	-45.08	-46.24
$m_{ ilde{\chi}_2^0}/{ m GeV}$	47.78	36.88	51.77	55.34	46.60
$m_{ ilde{\chi}_3^0}/{ m GeV}$	108.0	-103.11	105.3	-133.3	171.1
$m_{ ilde{\chi}_4^0}/{ m GeV}$	-152.1	103.47	-152.7	136.9	-171.4
$m_{ ilde{\chi}_5^0}/{ m GeV}$	163.5	139.80	162.0	178.4	805.4
$m_{ ilde{\chi}_6^0}/{ m GeV}$	-200.8	-140.35	-201.7	-192.2	-805.4
$m_{ ilde{\chi}_1^\pm}/{ m GeV}$	100.1	101.65	100.1	133.0	125.0
$m_{\tilde{\chi}_2^\pm}/{ m GeV}$	159.5	101.99	159.5	136.8	805.0
$\Omega_{\chi}h^2$	0.109	0.107	0.107	0.0324	0.00005
R_{Z11}	-0.144	-0.132	-0.115	-0.0217	-0.0224
R_{Z12}	0.051	0.0043	-0.045	-0.0020	-0.213
R_{Z22}	-0.331	-0.133	-0.288	-0.0524	-0.0226
$\sigma_{SI}/10^{-44} \text{ cm}^2$	1.7-7.1	2.0-8.2	3.5 - 14.2	6.0-24.4	6.1-25.0
${ m Br}(h o ilde\chi_1^0 ilde\chi_1^0)$	57.8%	49.1%	76.3%	83.4%	49.3%
${ m Br}(h o ilde\chi_1^0 ilde\chi_2^0)$	0.34%	3.5×10^{-11}	0.26%	7.6×10^{-9}	3.0×10^{-8}
${ m Br}(h o ilde\chi_2^0 ilde\chi_2^0)$	39.8%	49.2%	20.3%	12.3%	47.9%
${ m Br}(h o b\bar{b})$	1.87%	1.59%	2.83%	3.95%	2.58%
$\operatorname{Br}(h \to \tau \bar{\tau})$	0.196%	0.166%	0.30%	0.41%	0.27%
$\Gamma^{tot}/{ m MeV}$	141.2	169.0	82.0	58.8	90.1

Belyaev, Hall, King, Svantesson (preliminarį Scanning regions							
- gioni			E6SSM				
MSSN	м						
parameter	min	max					
aneta	2	60					
	[TeV]	[TeV]					
$A_t = \overline{A_b} = A_\tau = A_\mu$	-3	3					

TABLE I: The MSSM scanning region. A common squark and slepton mass scale was fixed to $M_S = 2$ TeV. The gaugino masses were fixed to $M_1 = 150$ GeV, $M_2 = 285$ GeV and $M_3 = 619$ GeV, providing a gluino mass close to 800 GeV.

 M_A

 μ

0.1

-2

 $\mathbf{2}$

 $\mathbf{2}$

parameter	min	max
$\tan\beta$	1.4	2
$ \lambda $	0.3	0.7
λ_{22}	0.0001	0.01
λ_{21}	0.01	0.1
λ_{12}	0.01	0.1
λ_{11}	0.0001	0.01
f_{22}^d	0.0001	0.01
f_{21}^{d}	0.1	1
f_{12}^d	0.1	1
f_{11}^{d}	0.0001	0.01
f_{22}^u	0.0001	0.01
f_{21}^u	0.1	1
f_{12}^{u}	0.1	1
f_{11}^{u}	0.0001	0.01
x_2^d	10^{-4}	10^{-2}
x_1^d	10^{-4}	10^{-2}
x_2^u	10^{-4}	10^{-2}
x_1^u	10^{-4}	10^{-2}
z_1	10^{-3}	10^{-1}
z_2	10^{-3}	10^{-1}
	[TeV]	[TeV]
$A_t = A_b = A_\tau$	-3	3
M_A	1	3
S	2	5

TABLE II: The E_6SSM scanning region. A common squark and slepton mass scale was fixed to $M_S = 2$ TeV. The gaugino masses were fixed to $M_1 = 150$ GeV, $M'_1 = 150$ GeV, $M_2 = 300$ GeV and $M_{\tilde{g}} = 800$ GeV.

Gluino production cross-section

Belyaev, Hall, Kíng, Svantesson (prelímínary)

Exotic D-particles Kang, Langacker, Nelson

D-particles are coloured and may be pair produced at LHC D-particles may be Leptoquarks $D\rightarrow LQ$ or Diquarks $D\rightarrow QQ$

 1.0λ

$$\begin{array}{ccc} pp \rightarrow t\bar{t}\tau^{+}\tau^{-} + E_{T}^{miss} + X \\ \mbox{Leptoquark} & \mbox{Leptoquark} & \mbox{Diquark} \\ pp \rightarrow b\bar{b} + E_{T}^{miss} + X \\ \hline & \nu_{\tau} \end{array}$$

 $g_{ijk}D_i\left(Q_jQ_k\right)$

c.f. $T \rightarrow t + A_0$

c.f. $T \rightarrow t + A_0$

$$\begin{array}{c|c} pp \rightarrow t\bar{t}\tau^{+}\tau^{-} + E_{T}^{miss} + X \\ \hline pp \rightarrow b\bar{b} + E_{T}^{miss} + X \\ \hline pp \rightarrow b\bar{b} + E_{T}^{miss} + X \\ \hline D \\ \hline \end{array} \begin{array}{c|c} pp \rightarrow t\bar{t}\tau^{+}\tau^{-} + E_{T}^{miss} + X \\ \hline pp \rightarrow b\bar{b} + E_{T}^{miss} + X$$

Exotic Mass (GeV)

Two potential problems: rapid proton decay + FCNCs

• FCNC problem may be tamed by introducing a Z_2^H under which third family Higgs and singlet are even all else odd \rightarrow only allows Yukawa couplings involving third family Higgs and singlet H_u , H_d , S

• Z_2^{H} also forbids all DFF and hence forbids D decay (and p decay) $\rightarrow Z_2^{H}$ cannot be an exact symmetry! How do we reconcile D decay with p decay?

In E₆SSM can have extra discrete symmetries:

 Z_2^{L} under which L are odd \rightarrow forbids DQL, allows DQQ \rightarrow exotic D are diquarks

 Z_2^B with L & D odd \rightarrow forbids DQQ, allows DQL \rightarrow exotic D are leptoquarks

Or:-- small DFF couplings $\sim 10^{-12}$ will suppress p decay sufficiently while couplings $\sim 10^{-12}$ will allow D decay with lifetime <0.1 s (nucleosynth) N.B. $\Gamma_D \propto g^2$, $\Gamma_p \propto g^4$ (Howl, SFK)